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Abstract. In the era of content creation revolution propelled by ad-
vancements in generative models, the field of web design remains un-
explored despite its critical role in modern digital communication. The
web design process is complex and often time-consuming, especially for
those with limited expertise. In this paper, we introduce Web Rendering
Parameters Generation (WebRPG), a new task that aims at automat-
ing the generation for visual presentation of web pages based on their
HTML code. WebRPG would contribute to a faster web development
workflow. Since there is no existing benchmark available, we develop
a new dataset for WebRPG through an automated pipeline. Moreover,
we present baseline models, utilizing VAE to manage numerous elements
and rendering parameters, along with custom HTML embedding for cap-
turing essential semantic and hierarchical information from HTML. Ex-
tensive experiments, including customized quantitative evaluations for
this specific task, are conducted to evaluate the quality of the generated
results. The dataset and code can be accessed at GitHub1.

Keywords: Generative model · Visual Design Automation · Web Ren-
dering Parameters

1 Introduction

Recently, we are witnessing a revolution in content creation, driven by rapid
advancements in generative models across domains such as image [21,48,55–57],
text [3, 42, 62], and audio [6, 7, 32]. Numerous studies aim to leverage these ad-
vancements to enhance efficiency in graphic design, including advertisement [35,
40] and magazine [19,35,73] design. Nevertheless, the automation of web design,
an essential part of graphic design [64], lacks exploration. Web design plays a
significant role in the visual communication of web pages [61], impacting not
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Fig. 1: Overview of the WebRPG task. The input consists of plain HTML code and the
output comprises rendering parameters for each element. With browser rendering, plain
HTML produces a disorganized visual presentation, while incorporating the generated
rendering parameters significantly enhances the visual presentation.

only user satisfaction [9] but also user behavior [14]. Yet, it is a complex, time-
consuming task, especially challenging for those developers with limited design
expertise, leading to substandard visual presentations [66]. Automating web de-
sign can simplify this process, enabling developers to create visually appealing
web pages, and bridging the gap between technical development and aesthetic
excellence.

Web pages are formed by HTML2 and CSS3 code, where HTML defines the
content and structure, and CSS controls the visual presentation. With the advent
of large language models (LLMs) [3,52,62], automating HTML code generation
has become feasible. However, efforts in automatic visual presentation design,
the core aspect of web design, currently center on specific subtasks such as layout
generation [28, 49, 53], font recommendation [2, 71], and colorization [17, 27, 54],
rather than designing a holistic web visual presentation from scratch.

Intuitively, leveraging generative models to learn design knowledge from ex-
isting web pages is a practical strategy for automated web visual design. How-
ever, the complexity of CSS coding practices poses challenges for its automatic
generation [26]. To address this, we propose standardizing CSS using Rendering
Parameters (RPs), which are defined by CSS properties that control the visual
appearance of each web element [16]. Consequently, we introduce a novel task
called Web Rendering Parameters Generation (WebRPG for short), which
requires the automatic generation of rendering parameters for each web element
based on the HTML code, as depicted in Fig. 1. With the help of a WebRPG
system, HTML is the only prerequisite for obtaining an effective web visual pre-
sentation, which has the potential to achieve a faster web development workflow.
With the integration of LLMs, a WebRPG system can even enable the realization
of a fully automated web development workflow. Moreover, it can facilitate new
applications, such as efficient exploration of various design options and dynamic
personalization of web page styles.

Since there is no existing benchmark available for WebRPG, we develop au-
tomatic data processing steps to transform raw web pages into formalized We-

2 https://html.spec.whatwg.org/
3 https://www.w3.org/Style/CSS/specs.en.html
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bRPG samples and construct a new dataset utilizing the Klarna dataset [22].
From a theoretical perspective, the WebRPG task presents two primary chal-
lenges: 1) Web pages comprise hundreds of elements, each with numerous RPs.
2) The visual presentation of web elements should be associated with the se-
mantic and hierarchical information provided by HTML code. To address the
challenges, variational autoencoder (VAE) [30] is employed to handle the large
volume of rendering parameters for web elements, and specially designed HTML
embedding is introduced to encode semantic and hierarchical information from
HTML code. Using these modules, two WebRPG baselines are established, which
are based on autoregressive and diffusion models, respectively. To verify the ef-
fectiveness of WebRPG baselines, metrics are designed to evaluate the overall
appearance, layout, and style of the generated results. Both quantitative and
qualitative experiments are conducted to assess the baselines.

Our main contributions are as follows:

– We introduce a novel task WebRPG for automatic web design from HTML
code and create a new dataset.

– We explore the WebRPG task by establishing two baselines and propose
solutions for its challenges.

– We design metrics to quantitatively evaluate the quality of generated results,
and conduct qualitative experiments to analyze the strengths and weaknesses
of the baselines.

2 Related Work

Generative models achieve notable success in image [4,50,55–57], text [3,42,62],
and audio [6,7,32]. Image synthesis can create web visual presentations by gen-
erating screenshots but struggles with producing coherent text [55]. Moreover,
image synthesis is limited to static images and cannot offer interactive, manip-
ulable web pages.

Numerous efforts utilize generative models for graphic design, including ad-
vertising [35, 40], magazines [19, 23, 73], UI [8, 24, 25, 44], and posters [37, 74].
Yet, the designs restrict the element count to no more than 25. These methods
primarily employ a one-dimensional sequence to represent designs, with each el-
ement defined by five tokens: four describe the bounding box, and one indicates
the category (e.g., text, headline) [35]. However, the reliance on a simplistic flat
input for the WebRPG task, which involves managing hundreds of elements and
various RPs, leads to a substantial memory consumption increment, and perfor-
mance degradation [12]. Moreover, the one-dimensional sequence neglects crucial
hierarchical information in web pages.

Research focused on web pages has continuously emerged. In terms of un-
derstanding, efforts in web question answering [5, 72], web information extrac-
tion [34,69], and web pre-trained language models [10,41,60] have made notable
progress in comprehending the essential semantic content and hierarchical struc-
ture of web pages. For instance, MarkupLM [41] stands out with its unique archi-
tecture and pre-training tasks, effectively encoding HTML content, which offers
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insights for our research. Moreover, there are works aimed at web page design,
such as optimizing the overall or specific block coloring of web pages [17,27,54],
determining layouts based on given components like navigation bars [28,49,53],
and recommending fonts for particular elements [2, 71]. However, these studies
focus only on specific subtasks of the web page design workflow, leaving the
comprehensive design of web pages from scratch as an unexplored area.

3 Preliminary

3.1 Task Definition

Web design is centered on visual presentation, i.e., the manipulation of CSS
code. The complexity of CSS coding practices, including a wide range of selec-
tor options, makes the automatic generation of CSS code challenging [26]. To
facilitate the model for learning web design, we standardize CSS by converting
it into rendering parameters (RPs), which can be transformed back into CSS,
with additional details in Sec. A.1. Consequently, the WebRPG task is defined
as follows: given the HTML code, generate rendering parameters for each web
element. Specifically, given a web page X , whose HTML code is H, it consists of
a set of elements X = {X1, X2, . . . , XS}, where S is the number of elements in
X . The visual appearance of element Xi is controlled by a set of RPs denoted as
Pi = {pki | k ∈ W}, where W indicates the indices for all RPs, and the complete
set of RPs for X is P = {P1, P2, . . . , PS}. Therefore, the primary objective of
the WebRPG task is to create a function f that generates RPs based on HTML
code, that is, f : (H) 7→ P̂, where P̂ represents the estimate of P.

3.2 Web Rendering Parameter Definition

The term “Rendering Parameters (RPs)” is employed to collectively describe
the parameters controlling the visual appearance of each web element on the
browser, as defined by CSS properties. Layout and visual style are crucial in the
design of web pages [60,67], leading us to summarize 13 common CSS properties,
divided into 3 categories as follows.

– Layout properties include left, top, width, and height.
– Text properties include font-style, font-weight, font-size, line-height, text-

align, text-decoration, and text-transform.
– Color properties include color and background-color.

Various formats are available for web developers to define CSS properties. To
standardize, we adopt the values computed by the browser [47] as the reference.
Specifically, the values related to position and size are uniformly measured in
integer pixels, and the values related to color correspond to 46 widely used colors.
The vocabulary for all rendering parameters is available in Sec. A.1.
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压缩图⽚

Fig. 2: Selected sub-page screenshots from our dataset. Notably, regions displayed are
cropped due to space limitations.

4 Dataset Construction

4.1 Data Pre-processing

Raw web pages cannot provide straightforward supervision for RPs. Thus, sev-
eral pre-processings are conducted. Headless chrome4 is used to render web pages
and selenium5 is employed to store HTML with only visible elements and record
each element’s selected CSS properties. Note that elements in this paper mean
nodes in the DOM6 tree. The elements are stored following the DOM tree’s pre-
order traversal. Since many web pages retain thousands of elements, we treat
elements with a certain number of children as sub-pages with the semantic and
hierarchical integrity preserved. The sub-pages are further cleaned while keeping
the visual appearance, including removing uncommon HTML tags and intricate
components like carousel images, as well as placing sub-pages at the top-left cor-
ner of the browser. Additionally, we only consider static components. Our models
disregard the image on web pages, preserving only <img> tags. To guarantee
data quality, a specific Visual Complexity (VC) metric is introduced to assist
in filtering samples. The metric integrates three dimensions: color, size, and
alignment, inspired by previous works [1,15]. The definition of the VC metric is
provided in Sec. A.2.

4.2 Dataset Details

To accommodate the requirement for offline rendering, the Klarna dataset [22]
is utilized to build our WebRPG dataset. The Klarna dataset, initially used for
web information extraction, comprises 20K English product pages from 3K e-
commerce sites, ensuring domain-specific diversity. The dataset stores all pages
in MHTML7 format, enabling offline rendering of the original pages in browsers
with high fidelity.

The pre-processing in Sec. 4.1 is applied to the web pages with the browser
canvas size setting to 1920*1920 pixels, generating sub-pages containing between
32 and 128 child elements. The token length for each sample (sub-page) does not
surpass 512. The size of RP vocabulary is 1993. The samples with a VC below
4 https://developer.chrome.com/blog/headless-chrome/
5 https://www.selenium.dev/
6 https://www.w3.org/DOM/DOMTR
7 https://en.wikipedia.org/wiki/MHTML

https://developer.chrome.com/blog/headless-chrome/
https://www.selenium.dev/
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Fig. 3: Key components of WebRPG models. In the upper left, VAE compresses the
RPs of each element into latent vectors shown in blue. In the top right, "Semantic"
(Sem), "Hierarchical" (Hier), and "Character Count" (CharC) embeddings combine
into the HTML embedding in orange. Below, two generative models are illustrated.

0.1 are filtered out. After preprocessing, our dataset includes 88,418 samples,
split into training and testing sets at an 8:2 ratio. Our dataset exceeds the size
of established graphic design datasets such as CLAY [38] (50K samples) and
RICO [44] (43K samples), ensuring it can meet our objectives. Screenshots of
some samples are shown in Fig. 2. More details are provided in Sec. A.3.

5 Methodology

5.1 Overview

As indicated in Sec. 3.1, the WebRPG task is formulated as a function that
generates rendering parameters (RPs) for each web element based on the HTML
code. Inspired by classical generation methods [50, 56, 57], we employ a latent
generation approach. In the approach, VAE is leveraged to compress all RPs of
an element into latent space representation (Sec. 5.2), and a generative model
(Sec. 5.4) generates the latent vector based on the given HTML embeddings
(Sec. 5.3), which is then decoded back into RPs by the decoder of VAE. The key
components of our method are shown in Fig. 3.

5.2 Rendering Parameters Compression

Assume a web page consists of S elements, with the appearance of each element
Xi determined by W rendering parameters Pi =

{
pki | k ∈ W

}
. The WebRPG

model necessitates the processing of S × W values for both input and output.
Expanding all pki of Xi into a one-dimensional sequence, as per graphic design
methods [24,35], leads to excessively long input and output lengths. To mitigate
this challenge, we utilize VAE to compress the rendering parameters into a latent
space. This ensures that the input length for the generative model correlates
solely with S.
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More precisely, given the RPs of an element Pi ∈ RW∗V , where V is the size
of RPs vocabulary (Sec. 3.2), and the corresponding latent vector is Zi ∈ Rd. We
denote the generative distribution as pθ(Pi | Zi) and the posterior as qϕ(Zi | Pi),
respectively. The learning objective of VAE is expressed as:

LV AE =
1

S
·
S∑
i=1

(−Eqϕ(Zi|Pi) [log pθ(Pi | Zi)] + λKLKL (qϕ(Zi | Pi)∥p(Zi))), (1)

where θ and ϕ are the encoder and decoder parameters, E indicates the expecta-
tion, KL is the Kullback-Leibler divergence, and λKL is the hyperparameter to
balance the two terms. The encoder and decoder of VAE both consist of a mul-
tilayer perceptron with five layers. To ensure that the latent space encompasses
as many element appearances (i.e., combinations of RPs) as possible, the VAE
is pre-trained using synthetic data.

5.3 Encoding HTML

The visual presentation of a web page should be in harmony with the content and
structure dictated by its HTML code. To this end, we design an HTML em-
bedding that captures the essential information in the HTML code, establishing
the input feature for the generative model (Sec. 5.4). HTML code essentially en-
compasses hierarchical information among elements and the textual content of
each element [10]. The character count of each element is also crucial, as the
size of an element generally exhibits a positive correlation with the length of
characters. Therefore, our HTML embedding integrates three facets of informa-
tion: semantics, hierarchy, and character count. Precisely, for an element Xi, its
HTML embedding Hi ∈ Rd is defined as:

Hi = ΛSem(HSem
i ) + ΛHier(HHier

i ) + ΛCharC(HCharC
i ), (2)

where HSem
i , HHier

i and HCharC
i denote the semantic, hierarchical and character

count embedding respectively, and Λ◦() is the linear projection layer.
Semantic embedding: The MarkupLMlarge model [41], a language model

explicitly pre-trained for web understanding, is employed as the semantic extrac-
tor. Specifically, given an element Xi with HTML code tokens Xi = {xji | j ∈ L},
where L denotes the token length, we calculate the semantic embedding of Xi

as HSem
i = Pool(MarkupLM(x1i , x

2
i , . . . , x

L
i )), where Pool(·) denotes an average

pooling operation.
Hierarchical embedding: The XPath embedding layer [41] is employed to

model the hierarchical information of elements, taking their XPath expressions
as input. XPath8 is a query language for selecting elements from a web page,
which is based on the DOM tree and can be used to easily locate an element.
Specifically, for an element Xi with its corresponding XPath expression xpi, we
compute the hierarchical embedding directly as HHier

i = XPathEmb(xpi).

8 https://www.w3.org/TR/xpath-31/

https://www.w3.org/TR/xpath-31/
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Character count embedding: We establish a mapping mechanism that
translates the raw count of characters into dense vector space. For an element
Xi with the content of k characters, the character count embedding is calculated
as HCharC

i = EmbCharC(k).

5.4 Generative Models

Two generative models are implemented: autoregressive and diffusion model.
Autoregressive Model (AR): To enhance the model stability during

training, a masked latent vector Zmask of real RPs is introduced inspired by
BART [36] and MaskGIT [4]. Zmask is constructed in two steps. Firstly, the real
RPs are encoded into the latent vectors with the VAE encoder, i.e., Z = θ(P).
Then a special MASK vector and a binary mask M = {mi | i ∈ S} are utilized
to partially substitute the real latent vectors with the MASK as Zmask,i =
mi ·MASK + (1−mi) · θ(Pi).

Here M is generated using a mask scheduling function γ(r) ∈ (0, 1] following
MaskGIT [4], and the MASK vector is a learnable parameter with the same
shape as Zi. Additionally, it is important to highlight that during inference, all
Zi are masked, i.e., M = {mi = 1|1 ≤ i ≤ S}.

As depicted in Fig. 3, the model inputs the sum of Zmask and H to generate
Ẑ, which is then decoded by the VAE decoder as P̂ = ϕ(Ẑ). The VAE and
generative models are trained jointly, thus the training loss is as follows:

L = log pψ(P|H,Zmask) + LV AE , (3)

where ψ is the parameters of the generative model.
Diffusion Model: Diffusion models [21, 48, 75] have recently emerged as a

new class of generative models with high performance. These models are char-
acterized by forward and reverse Markov processes of length T . In our rendering
parameters compression (VAE) model, rendering parameters P are encoded into
a latent space, i.e., Z = θ(P). These latent vectors Z, which align more closely
with a Gaussian distribution, improve compatibility with the noise distribution
in diffusion models. Following successful models [11, 57, 59], our diffusion model
can be interpreted as an equally weighted sequence of denoising autoencoders
E(Zt, t,H); t = 1 . . . T , which are trained to predict the noise ϵ ∼ N (0, I) in Zt.
The Zt is obtained from a forward process starting from Z0 (where Z0 = Z),
defined as Zt =

√
αtZt−1 +

√
1− αtϵ, with αt being a predefined set of coeffi-

cients. As illustrated in Fig. 3, Zt and H are added and input into the model.
Our diffusion model employs the standard variational lower bound objective as
its training loss, and we jointly optimize the VAE, leading to the overall loss
function:

L = EZ,ϵ∼N (0,1),t

[
∥ϵ− ϵψ(Zt, t,H)∥22

]
+ LV AE . (4)

During inference, the predicted Ẑ is progressively obtained through a reverse
process, expressed as Zt−1 = 1√

αt

(
Zt − 1−αt√

1−αt
ϵψ(Zt, t,H)

)
. Subsequently, Ẑ is

decoded to P̂ via a single pass through the VAE decoder ϕ. Additionally, ZT is
random Gaussian noise.
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6 Experiment

6.1 Evaluation Metrics

Three metrics are utilized to assess the quality of the generated rendering pa-
rameters. Fréchet Inception Distance (FID), Element Intersection over Union
(Ele. IoU), and newly introduced Style Consistency Score (SC Score) enable the
evaluation of the overall appearance, layout, and style of generated web pages
respectively. As indicated in Sec. 3.2, “layout” refers to layout properties, while
“style” encompasses text properties and color properties.

Fréchet Inception Distance FID [20], a metric initially proposed in the do-
main of image generation, measures the similarity of generated data to real
ones in feature space. Inspired by Lee et al. [35], a binary classifier is trained
to distinguish between real and noise-added RPs. This classifier is employed to
generate representative features of RPs for calculating FID. We also introduce
layout-specific and style-specific FID models. Further details are in Sec. A.4.

Elements Intersection over Union Ele. IoU is a metric for evaluating the
similarity between generated layouts and real ones, based on adaptation to the
Maximum IoU [29]. As the elements of real and generated web pages correspond
one-to-one, IoU is computed between the corresponding pairs. Denote the real
layouts as B = {bi}Ni=1 and the generated ones as B̂ = {b̂i}Ni=1, with N being
the element count, and bi and b̂i as corresponding elements. The Ele. IoU can
be calculated as follows:

EleIoU(B, B̂) =
1

N

N∑
i=1

IoU(bi, b̂i). (5)

Style Consistency Score The “Principle of Similarity” of Gestalt theory sug-
gests that people tend to perceive elements with similar style as a whole [31,65],
highlighting the importance of style consistency among elements. Hence, the SC
Score assesses whether elements with the same style on a real web page retain
that consistency on the generated page, beyond merely visual similarity. An ex-
ample explanation is provided in Sec. C. Elements are deemed to have the same
style only if all their style properties are identical [60]. Specifically, for a web page
W = {ei | i ∈ N} with N being the number of elements, the style consistency
subset of the page is defined as S ⊆W, ∀ei, ej ∈ S, style(ei) = style(ej).

Thus the real web page W and its generated page Ŵ are divided into style
consistency subsets W = {Sj | j ∈ M} and Ŵ = {Sk | k ∈ N}, respectively.
Given N and M can differ, we apply a max operation for optimal matching. The
SC Score is then calculated as:

SCScore(W, Ŵ ) =

M∑
j=1

wj ·max
k

J(Sj , Ŝk), (6)
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where J(A,B) is the Jaccard similarity coefficient. Additionally, under the as-
sumption that style consistency subsets with more elements are more semanti-
cally valuable, we utilize a weight wj =

|Sj |∑M
l=1 |Sl|

.

6.2 Implementation

Two baselines are implemented: autoregressive (WebRPG-AR) and diffusion
model (WebRPG-DM). The VAE, hierarchical embedding, and character count
embedding are jointly trained with the backbone, and the semantic embedding is
produced by frozen pre-trained MarkupLMlarge [41]. The XPath embedding layer
is initialized following Li et al. [41]. All baselines are based on Transformer [63]
and have approximately 50M of parameters to ensure fair comparison, whose
hidden dimensions are 128. The dimensions of latent vector and HTML embed-
ding d is 128. For optimization, AdamW [45] is used with a learning rate of
1.2e-4. All models are trained for 1M steps with a batch size of 300.

Additionally, LLMs have been gaining adoption in different domains. We as-
sess GPT-4 [51,70], StarCoder2-7b [46], DeepSeek-Coder-6.7b [18], CodeLlama-
13B [58] on the WebRPG task. GPT-4 is one of the state-of-the-art LLMs, while
the others are open-source models known for code generation. Due to limited re-
sources, we randomly select 10% of test samples. The prompt template employs
in-context learning [3], incorporating a task description, three demonstrations,
and a test instance. Further details are available in Sec. A.5.

6.3 Quantitative and Qualitative Evaluation

We present quantitative results in Tab. 1 and qualitative results in Fig. 4. Re-
garding the results of real data, in addition to the normally rendered web page
(Tab. 1, “Real Web Pgae”), we also report the web page rendered using only
HTML code (Tab. 1, “Plain HTML”). Since the browser would apply default
CSS when custom CSS is absent, some models perform worser than the plain
HTML due to unreasonable generated RPs. The FIDs for real data are calculated
between the test set and other real web pages.

The experimental results show that WebRPG-AR consistently surpasses other
baselines. Its sequential decoding mechanism allows for more refined control
based on previously generated results [13,68]. As shown in Fig. 4 a, b, e, WebRPG-
AR demonstrates impressive visual quality in detail.

The performance of WebRPG-DM is suboptimal across all metrics. It only
tends to produce standard web visual presentations in simpler cases, as illus-
trated in Fig. 4 e, such as bolding prices, adding background color to buttons,
and aligning a few elements. This implies that diffusion models may be inappro-
priate for this task. There are two plausible explanations: First, unlike images
and videos in Euclidean space, web elements are non-Euclidean due to their hier-
archical arrangement, while diffusion models are confined to Euclidean space [33].
Second, the WebRPG task demands meticulous adjustments and detailed control
for realism, a limitation of diffusion models [43].
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Table 1: WebRPG baselines quantitative comparison with bold figures for best results.
"*" stands for the result in the randomly selected test set.

Overall Layout Style
Model FID ↓ FIDlayout ↓ Ele. IoU ↑ FIDstyle ↓ SC Score ↑

WebRPG-AR 0.1281 0.1520 0.7082 0.2124 0.9474
WebRPG-DM 62.021 60.942 0.0357 106.95 0.3671

WebRPG-AR* 0.1324 0.2877 0.7069 0.1359 0.9485
WebRPG-DM* 61.135 60.870 0.0356 105.86 0.3649
GPT4* 4.2141 47.732 0.0347 8.8898 0.5515
StarCoder2-7b* 11.899 51.432 0.0309 18.186 0.3639
DeepSeek-Coder-6.7b* 5.8219 55.744 0.0330 7.4542 0.3949
CodeLlama-13b* 9.2826 55.427 0.0278 11.625 0.3864

Real Web Page 0.0027 0.0015 1.0000 0.0074 1.0000
Plain HTML 8.5342 52.438 0.0354 8.4951 0.3668

Table 2: Ablation study based on WebRPG-AR. Best results in bold. “Zmask” is
detailed in Sec. 5.4. “H.E.” stands for HTML embedding. “S.”, “H.”, and “C.” stand for
semantic, hierarchical, and character count embeddings.

H. E. Overall Layout Style
# VAE Zmask S. H. C. FID ↓ FIDlayout ↓ Ele. IoU ↑ FIDstyle ↓ SC Score ↑

1 ✓ ✓ ✓ ✓ 0.9702 5.4668 0.5954 15.923 0.8053
2 ✓ ✓ ✓ ✓ 0.1487 0.2055 0.6462 0.2944 0.9332

3 ✓ ✓ ✓ ✓ 0.1797 0.2096 0.6620 0.3055 0.9323
4 ✓ ✓ ✓ ✓ 0.3003 0.3770 0.6345 1.9048 0.8982
5 ✓ ✓ ✓ ✓ 0.1575 0.3152 0.6769 0.3065 0.9434

6 ✓ ✓ ✓ ✓ ✓ 0.1281 0.1520 0.7082 0.2124 0.9474

GPT-4’s performance on the WebRPG task surpasses that of WebRPG-DM
and falls short of WebRPG-AR. Open-source LLMs underperform compared to
GPT-4. As illustrated in the Fig. 4 a,b,e, GPT-4 can effectively handle element
styles, such as adding background colors to buttons and applying distinct colors
for prices. However, the performance of GPT-4 in layout is limited. As demon-
strated in Fig. 4 a-c, GPT-4 tends to generate simplistic vertical arrangements
when faced with complex HTML structures. With regular HTML, as depicted
in Fig. 4 e, GPT-4 achieves a layout that is similar to the real page. Therefore,
we conclude that GPT-4 demonstrates basic capability in WebRPG tasks with
regular HTML, but its performance with complex HTML is less effective. Ad-
ditionally, we notice that LLMs do not generate RPs for all elements, causing
many to use the browser’s default CSS, resulting in performance similar to plain
HTML.
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GPT-4Real Web Page WebRPG-AR WebRPG-DM

a

b

c

d

e

压缩图⽚

Fig. 4: Qualitative comparison of WebRPG baselines.

(a) WebRPG-AR (b) w/o Sem (c) w/o Hier (d) w/o CharC

压缩图⽚

Fig. 5: Case visualization from the ablation study.

It is worth noting that WebRPG-AR exhibits the ability to render diverse
web pages. For example, Fig. 4 d shows WebRPG-AR’s creation of a page with
a vertical layout (originally horizontal), preserving the pattern and order con-
sistency across four groups. This finding suggests that the model successfully
learns web design knowledge and applies it effectively to render web pages from
HTML code. Further cases are available in Sec. B.1.

Furthermore, we calculate the FID on screenshots of rendered web pages,
following conventional image generation practices [55,57]. The results, shown in
Sec. B.2, are consistent with Tab. 1. Additionally, we conduct a human evalua-
tion, detailed in Sec. B.4, with results that also align with Tab. 1.
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Failure Case (a) Failure Case (b)

Failure Case (c)

Model Performance Trends

压缩图⽚

Fig. 6: Left : Trends in WebRPG-AR performance relative to the number of elements
and average depth of elements within the DOM tree. Right : WebRPG-AR failure cases
with real web pages on the left, generated results on the right, and highlights in green.

6.4 Ablation Study

We conduct a series of ablation experiments based on WebRPG-AR, as shown
in Tab. 2. #1 uses a one-dimensional flat input instead of VAE. #2 removes
Zmask (in Sec. 5.4). #3 and #5 respectively remove the corresponding embed-
ding layers, while #4 substitutes hierarchical embedding with one-dimensional
positional embedding. Additionally, we visualize some cases from #3, #4, and
#5 in Fig. 5. All models are trained to convergence following the settings in
Sec. 6.2.

The results of #1 demonstrate the effectiveness of using VAE for rendering
parameters compression. Although #2 is comparable to #6, the incorporation of
Zmask enhances the model stability during training. The results of #3, #4, and
#5 reveal that all three embeddings play critical roles in web design. Hierarchi-
cal embedding helps layout arrangement significantly. The simplification to 1D
positional embedding leads to a disorganized layout, as illustrated in Fig. 5 c.
Semantic embedding enhances the model with the capacity to perceive semantic
relationship. For example, as Fig. 5 b shows, the model struggles to horizontally
align elements like “select a color” and “sunshine,” suggesting challenges in identi-
fying key-value pairs without semantic information. Character count embedding
helps to predict appropriate element sizes for full content display, as in Fig. 5 d,
where a narrow “price” and “sunshine” width leads to incomplete text display.

6.5 Discussion on Failure Cases

To investigate the boundaries of the model’s capabilities, we analyze several
failure cases generated by WebRPG-AR. The left side of Fig. 6 reveals that
both layout (Ele. IoU) and style (SC Score) metrics decrease with an increase in
the number of elements or the average depth of elements within the DOM tree.
This trend may be attributed to two factors: the inherent complexity of a page
increases with more elements or greater depth, and the training set lacks web
pages with a large number of elements or significant depths (details in Sec. A.3).
Regarding error types, layout issues mainly include misalignments and overlaps,
as shown in Fig. 6 a and b. For style, the model struggles to recognize web page
elements with identical semantic functions, such as the “Add to Cart” buttons
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HTML Generated by
GPT-4

Screenshot of
WebRPG-AR Generated Results

Screenshot of
WebRPG-AR Generated Results

HTML Generated by
GPT-4

<img> <img>

<img>

压缩图⽚

Fig. 7: The HTML code generated by GPT-4 and the corresponding web page visual
results generated by WebRPG-AR. Screenshots use green <img> placeholders.

illustrated in Fig. 6 c, which should appear identical. Moreover, we observe two
primary error scenarios: elements positioned at the end of the HTML code tend
to be more error-prone, as seen with the element in the bottom right corner
of Fig. 6 b, likely due to the characteristics of the autoregressive model [12];
additionally, pages with large-scale images pose challenges, as shown in Fig. 6 a,
since the model does not take the original images as input. The discussion above
highlights the need for further research.

6.6 Discussion on the Integration of LLM and WebRPG Model

Recently, LLMs have enabled the possibility of automatically generating HTML
code [39]. Consequently, we hypothesize that integrating LLM into a WebRPG
system could facilitate a fully automated web development workflow. We employ
GPT-4 [51, 70] to validate this hypothesis. As Fig. 7 illustrates, WebRPG-AR
effectively creates visual presentations of web pages based on generated HTML,
demonstrating the potential of a fully automated web development workflow
through the integration of LLM and WebRPG. Additional cases and the prompt
for automatically generating HTML are provided in Sec. B.3.

7 Conclusion and Limitations

This paper presents WebRPG, a task that automates web design by generating
rendering parameters for web elements from HTML. We introduce a new dataset,
two baseline models, and evaluation metrics. Results show the autoregressive
baseline most effectively generates web visual presentations.

Nevertheless, this study has limitations that warrant further investigation in
future research. The proposed model can undergo fine-tuning to support design
tasks such as partial web page design by masking specific elements. Addition-
ally, it can be adapted to analyze raster images by replacing <img> tokens
with image embeddings. The employment of established CSS frameworks like
Tailwind9 could standardize CSS, thereby potentially simplifying the WebRPG
task. However, sourcing web pages based on these frameworks presents chal-
lenges. Furthermore, design options and control mechanisms of the results are
worth exploring. Future research will address these aspects.
9 https://tailwindcss.com/

https://tailwindcss.com/
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