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Abstract. In the supplementary material, we provide additional infor-
mation of SceneGraphLoc:
1. Qualitative results to further understand the performance of Scene-

GraphLoc (Section A).
2. Ablation studies and analysis of experiment results (Section B).
3. Details on implementation (Section C).

A Qualitative Results

In this section, we provide additional qualitative results of successful and failed
cases of room retrieval with Rt@1 in different scenarios.

In Fig. 6a, we show successful cases with the target scene ranked as No.1 in
the pool of 10 candidate scenes. From the left images in Fig. 6a, we can see that
the majority of the patches is correctly assigned to corresponding objects given
a pool of objects within the target scene graph. Furthermore, the similarity score
gap of the target scene is significantly larger than the second most similar scene,
showing the effectiveness of the proposed similarity score in distinguishing the
target scene and other scenes.

In Fig. 6b, we show failure cases with the target scene not ranked as No.1 in
the pool of candidate scenes. Compared to Fig. 6a, we can see that the query
images in Fig. 6b have a limited field of view and a limited diversity of observed
distinct objects. The intuition is that the localization performance of the query
image is related to the diversity of objects observed in the image: the more
diverse and distinctive objects are in the query image, the easier it is for the
query image can be correctly matched to the target scene, as shown in Fig. 6a.
Conversely, if the query image is dominated by non-unique objects (i.e., wall),
then it can be difficult to retrieve the target scene graph, as shown in Fig. 6b.
The dependence on the object number will be shown in the next section. This
tendency can be exploited in practice as confidence in the predicted results,
assigning high confidence if many objects are seen from the query image.
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(a) Successful cases of top-1 scene retrieval

(b) Failures for top-1 scene retrieval

Fig. 6: Successful and failed cases for scene retrieval with Rt@1. On the left are the
G.T. and predicted objects of query image within the target scene graph. On the right
are the top-3 retrieved scenes with their image-scene similarity scores.
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Table 5: Ablation study on the methods generating image embeddings for the map.

Kview Rt@1 @3 @5

1 83.9 96.6 99.4
3 84.2 96.7 99.5
5 85.4 97.4 99.5
7 86.7 97.0 99.4

10 88.5 97.7 99.6
15 86.3 97.8 99.6
20 86.8 97.8 99.7

(a) The recall values w.r.t. the number
(Kview) of views used to create an im-
age embedding for a particular object.

Configuration
Rt@1 @3 @5TE PE Max Mean

✗ ✗ ✗ ✓ 85.5 96.8 99.4
✗ ✗ ✓ ✗ 86.0 97.1 99.4
✓ ✗ ✓ ✗ 86.6 97.2 99.4
✓ ✓ ✓ ✗ 88.5 97.7 99.6

(b) Multi-view image fusion. "Max" and "Mean" indicate
max- and average-pooling over the Kview views, respec-
tively. "TE" indicates using the transformer encoder. "PE"
means using camera poses for positional encoding in "TE".

Fig. 7: Shannon entropy HI , denoting the diversity of objects observed in the query
image.

B Additional Ablation Study

B.1 Image Modality Embedding I

SceneGraphLoc integrates multi-view image features for object embedding of im-
age modality I, as shown in Fig.3 in the main paper. In Table 5, we explore the
impact of the number (Kview) of views considered when creating the multi-view
embedding and the employed image fusion methods on the localization perfor-
mance. Table 5a shows that by using more views for modality I, the localization
performance improves, and this trend stoping when Kview reaches 15 and 20.
Furthermore, Table 5b shows that the localization performance benefits from
the transformer encoder with positional encoding followed by max-pooling. The
intuition behind positional encoding with image poses is to integrate spatial con-
text with the multi-view visual information for more-informed visual embedding
of objects within the scene graph.

B.2 Correlation between variables and the recall performance

In Table 6, we report the correlation between multiple factors and the localization
performance Rt@1 and Acctq under multiple settings of modalities. The following
notations are defined:

– Scalar |Vt
0| represents the number of object nodes within the target scene

graph with potential temporal changes Gt
I .
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Table 6: Statistics Analysis on the val. split of 3RScan [5], analysing the correlation
between multiple factors (|Vt

0|, HI and sI) and the performance of coarse localization
(Rt@1 abbreviated as Rt

1 and Acctq) under multiple modalities.

Map modalities
Rt@1 ρ(|Vt

0|,R
t
1)

ρ(HI ,R
t
1)

ρ(sI ,Rt
1)

Acctq ρ(|Vt
0|,Acctq)

ρ(HI ,Acctq)P I A S R
✓ 43.9 0.20 0.16 0.02 49.2 -0.10 0.03
✓ ✓ 54.8 0.21 0.19 0.07 53.8 -0.06 0.05
✓ ✓ ✓ 56.5 0.29 0.20 0.11 55.9 -0.04 0.03
✓ ✓ ✓ ✓ 62.7 0.38 0.22 0.19 54.8 -0.07 0.06

✓ 80.2 0.15 0.06 0.19 55.6 -0.06 -0.07
✓ ✓ 84.7 0.21 0.19 0.20 61.1 -0.06 -0.01
✓ ✓ ✓ ✓ ✓ 88.5 0.28 0.15 0.17 64.2 -0.07 -0.03

– Scalar HI represents the Shannon entropy of object information observed in
image patches q ∈ QI , defined in Eq. 9.

– Scalar sI = s(Gt
I , I) represents the similarity score between Gt

I and the query
image.

– Scalar Acctq represents the percentage of image patches qI that are correctly
assigned to the objects in the scene graph given Eq. 3 in the main paper.

– Scalar ρ(a, b) ∈ [−1, 1] represents the Pearson Correlation coefficient between
two variables a and b. Parameter ρ > 0 represents positive correlation while
ρ < 0 means negative correlation.

HI = −
∑

o∈Ogt
I

pI(o)logpI(o),

pI(o) =
|{qI |qI ∈ QI , oI(qI) = o}|

|QI |
,

(9)

Ogt
I is the ground truth set of objects observed in query image I and pI(o) is

the frequency of patches observing the object o. Scalar HI denotes the diversity
of objects observed in I, as illustrated in Fig. 7.

From the table, we can see that:

– Values ρ(|Vt
0|,Rt

1)
and ρ(|HI |,Rt

1)
are greater than 0 by a not negligible amount,

denoting positive correlation between |Vt
0| and Rt

1, and the positive corre-
lation between HI and Rt

1. The intuition is that the more objects observed
in the query image and located in the target 3D scene graph, the easier the
query image can be localized. This correlation agrees with the qualitative
results in Section A.

– Noticeably, with integration of modalities {S,R}, the correlation ρ(|Vt
0|,Rt

1)
,

ρ(HI ,Rt
1)

increases. The intuition is that by incorporating {S,R}, the pro-
posed modules learn to leverage scene-context information, e.g., the relation-
ship between objects, for object embedding and coarse localization. Thus,
the localization accuracy Rt

1 benefits from more context information (larger
ρ(|Vt

0|,Rt
1)

and ρ(HI ,Rt
1)

).
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Table 7: Ablation study performed on the val. split of ScanNet [2] with SceneGraphLoc
with ground truth 3D instance segmentation and predicted instance segmentation
from [6].

Map modalities G.T. Seg Predicted Seg [6]
P I Rt@1 @3 @5 Rt@1 @3 @5

✓ 62.0 86.9 94.5 53.1 85.1 93.4
✓ ✓ 79.3 96.3 99.4 68.7 94.9 98.8

– For patch-object association accuracy Acctq, all modalities except R have
contributions to improving Acctq. On the other hand, there is a slightly neg-
ative correlation between |V t

0 | and Acctq, denoting that the more diversity of
the objects in the scene graph, the slightly harder for the image patches to be
correctly assigned to certain objects. Noticeably, with integration of image
modality I, the correlation ρ(HI ,Acctq)

turns from slightly positive to slightly
negative, denoting that with object embedding of I, the diversity of objects
observed in the query image affects the patch-object matching accuracy.

B.3 The Impact of 3D Instance Segmentation Accuracy

In the main paper, the experiments on ScanNet [2] with predicted scene graph
with [6] shows that there is a performance gap between SceneGraphLoc and the
image-retrieval-based methods. One potential reason for the gap is the inaccurate
instance segmentation from [6], as illustrated in Fig. 8, as the object embedding
of modalities P and I requires a 3D model of each object node within the
scene graph. In order to understand the impact of 3D instance segmentation
accuracy in the performance, we compare the performance of SceneGraphLoc
with predicted and ground truth 3D instance segmentation under the modalities
of object embedding (P and I). From Table 7 we can see that by using ground
truth instance segmentation, the performance of SceneGraphLoc improves by a
large margin, implying that the performance in Table 2 in the main paper can
be potentially improved by applying more accurate 3D instance segmentation
methods when creating the reference map of the environment.

B.4 Confusion Matrix

In SceneGraphLoc, each patch of the query image q ∈ QI is assigned to an object
node v ∈ VI in the scene graph. We compute and visualize confusion matrices of
semantic categories of (q, v) pairs, as illustrated in Fig. 10. From the figure, we
can see that as more modalities are integrated (from Fig. 10a to Fig. 10f), the
confusion matrix is closer to the identity matrix, denoting that the patch-object
matching becomes more accurate, which agrees with the trend of Acctq shown
in Table 6. Fig. 10f shows that with all modalities integrated, there are still
objects of certain categories with non-trivial probabilities of being mismatched:
(i) image patches of counter can be assigned to nodes of other structure; (ii)
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(a) G.T. Instance Segmentation. (b) Predicted Instance Segmentation [6].

Fig. 8: Comparison of G.T. and predicted instance segmentation in ScanNet
dataset [2]. The left image shows that SceneGraphFusion [6] applied in the Section
4 in the main paper can output inaccurate instance segmentation (red box) and under-
reconstruction (white boxes) results.

Fig. 9: The two left image show that the clothes hangs on the chair back and the right
image shows the under-segmentation of the clothes and the chairs.

patches of door can be assigned to nodes of wall and (iii) patches of clothes can
be assigned to nodes of chair due to the inaccurate instance segmentation when
a cloth is hanging on the back of a chair, as shown in Fig. 9.

B.5 Patch Size

In order to further understand the impact of patch size selection in the perfor-
mance, we further conduction ablation study with various patch sizes on test
set of 3RScan dataset: As shown in table 8, the proposed method is robust to
the patch size of the query images. With small (15px) or large (135px) patches

Table 8: Ablation study on patch size of the query image.

patch size (px) 135 90 60 30 15
Rt@1 78.4 81.6 81.5 80.2 79.3
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used for query image encoding, the accuracy dropped slightly from 81.5% (with
patch size of 60 px) to 78.4% and 79.3%.

B.6 Sub-sampled database of images

It is noticeable that there is a performance gap between the proposed method and
the heavy image-based methods (i.e., AnyLoc). One assumption is that image-
based methods (AnyLoc) have better accuracy due to the exhaustively sampled
image database, especially in the ScanNet dataset. Thus, we show comparisons
against image-based methods within sub-sampled image databases (each scan
preserves at least one image). Additionally, we evaluate NetVLAD [1], the tra-
ditional learning-based image-retrieval method in the proposed task. As shown
in the Fig. 11, as the database is down-sampled, the gap between our method
and others narrows and even reverses, while our method maintains low mem-
ory cost. Additionally, SceneGraphLoc outperforms NetVLAD in both accuracy
and storage on 3RScan. On ScanNet, the performance of SceneGraphLoc can be
significantly improved with better segmentation (GT in this case).

C Implementation Details

Machine. All the experiments of the room retrieval tasks during the infer-
ence phase are implemented on a machine with an Intel-12700K CPU, a Nvidia
RTX3090 GPU and 64 GB RAM. For time measurement, the time teq of en-
coding the query image is measured by using the GPU and the time tNretr of
implementing room retrieval task is measured by using the CPU.
Models and Training. We use L = 3,Kview = 10 for multi-level multi-view
image embedding of objects as depicted in Section 3.1 in the main paper. We use
α = 0.5 as the weight between static loss and temporal loss. The dimension Dk

for the embedding ev of each modality k ∈ {P, S,R,A} is 100 and the dimension
for image modality is 256. The dimension of unified embedding D is 400. We
train SceneGraphLoc our model with a batch size of 16 using Adam [3] optimizer.
Learning rate is 0.0011 with the step learning rate scheduler.
Dataset. In 3RScan dataset [5], the query images are with resolution of 960×540
pixels and are resize to 224×126 pixels before feeding into the Dino [4] backbone,
which then extract 16×9 patches features from the image. In ScanNet dataset [2],
images of 1296 × 968 are resized to 448 × 338 and 24 × 32 patch features are
extracted.
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(a) P (b) P + A

(c) P + A + S (d) P + A + S + R

(e) P + I (f) P + I + A + S + R

Fig. 10: Confusion Matrices of 6 modality combinations of SceneGraphLoc. The y-axis
represents the ground truth semantic category of the image patch q of query image and
the x-axis represents the semantic category of the object note v in scene graph matched
to q. Ideally, the confusion matrix should be the identity matrix.
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(a) 3RScan - Test Set

(b) ScanNet - Test Set

Fig. 11: Ablation study on down-sampled database of images.
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