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The supplementary material consists of quantitative evaluations on text descrip-
tion of 3D reasoning grounding (Sec. A), more visualization (Sec. B), the Scan-
Reason annotations generation prompts (Sec. C) and details of instruction tuning
datasets (Sec. D).

A More Evaluations

Considering the expected outputs of 3D reasoning grounding questions consist
of not only the target objects’ 3D bounding boxes but also text responses includ-
ing either demonstrating the explanation (e.g. Why to choose these objects) or
offering reasonable suggestions (e.g. How to use these objects.). We argue that
it is also necessary to evaluate the text response’s correctness. However, due to
the complexity and diversity of the answers, it is non-trivial to use or design a
proper evaluation method that can ensure the evaluation accuracy. To ensure
the evaluation accuracy with limited human and time resources, we uniformly
sample 100 reasoning grounding pairs from evaluation datasets and test GPT-
4 [5], 3D-LLM [3] and ReGround3D on the datasets. Then we manually score
the 300 responses using an integer ranging from 1 to 5, while 1 indicates an
incorrect answer, 5 is a correct answer. The matching score λi represents levels
of the similarity between the response and ground-truth answer. The correctness
metric is denoted as :
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The results in Tab. 1 demonstrate that even if GPT-4 could not access in-
formation of the 3D scene, it can “guess” the answer to the complex reasoning
question based on its powerful world knowledge and common sense, and it could
serve as a strong baseline for evaluation. ReGround3D achieves the superior per-
formance (38.7 vs. 32.4) based on a much smaller LLM (FlanT5XL-3B) and has
the ability to localize the target objects in the 3D scene at the same time.
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Table 1: Matching scores of text responses on 3D reasoning grounding task among
ReGround3D(ours), 3D-LLM and GPT-4.

Methods Spatial Functional Logical Emotional Safety Overall

GPT-4 [5] 23.7 48.7 29.1 19.7 26.5 32.4

3D-LLM(vg) [3] 17.2 24.4 18.4 11.1 13.8 17.2
ReGround3D 34.9 49.2 35.1 30.1 30.2 38.7

Fig. 1: This example demonstrates that our model sometimes struggles to localize the
small and long-tailed objects in the 3D scene.

B More Visualizations

B.1 More Examples

In this section we will illustrate more examples of our ScanReason benchmark
for each type of reasoning questions in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7.
Each example consists of the reasoning question, target object locations (3D
bounding boxes), and the corresponding text response.

B.2 Failure Case Analysis

Illustrated in the qualitative results in the paper, we find that our model tends
to output much fewer 3D bounding boxes compared with the ground-truth 3D
bounding boxes when multiple objects are regarded as the target objects. Be-
sides, as shown in Fig. 1, even if the 3D grounding module is introduced to more
accurately localize the target objects, ReGround3D still struggles to recognize
and localize the small and long-tailed objects in the 3D scene, which has been a
long-term challenge in the 3D object detection and grounding model. Besides, we
found that sometimes the visual-centric reasoning module seems to misinterpret
human intention, as illustrated Fig. 2, where we attribute this phenomenon to
the lack of the corresponding type of training data, leading to incorrect responses
to this type of problem.
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Fig. 2: This example demonstrates that our model sometimes misinterprets human
intention.

C ScanReason Annotations Generation Prompts

We show five prompt templates for generating five types of reasoning question-
answer-location pairs, each comprising system messages and manually crafted
context examples. In our attempts, since GPT-3.5 struggles to understand the
3D spatial relationships of objects in the scene based on the provided 3D spatial
coordinates of objects, we resort to GPT-4 for data generation, which is verified
to be much better than GPT-3.5 in understanding the spatial relationships. We
input the category information and 3D bounding boxes of the objects in the 3D
scenes, providing information about the semantics and spatial locations of the
scene in a textual representation. Then we provide specific instructions to the
GPT-4 [5] to generate diverse data. As shown in Fig. 8, Fig. 9, Fig. 10, Fig. 11
and Fig. 12, to further make the generated question-answer-location pairs more
accurate and responsive, we adopt prompt engineering by giving GPT-4 [5] about
3-5 few-shot examples to show what kind of data it is should generate. For each
sample in the few shot samples, the “content” has the object ids, category in-
formation, and 3D bounding boxes of the objects in the scenes, and the “re-
sponse” refers to human-written question-answer-location pairs. We include the
3D bounding boxes and categories information of all the objects in scenes into
“query” and ask the GPT-4 [5] to give us 10 meaningful samples.

D Details of Instruction Tuning Datasets

D.1 Data Reformulation

3D Object Detection data. Generally speaking, 3D object detection datasets
contain information about 3D bounding boxes of all objects in the pre-defined
list of categories. In order to cover as many objects as possible, we chose to
construct question and answer pairs based on the EmbodiedScan [6] dataset,
which includes 160k 3D-oriented boxes spanning over 760 categories. During the
model training process, we convert the annotations of 3D boxes into a specific
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Fig. 3: Examples of spatial reasoning data. Each row represents one question-
answer-location pair. The left column represents the 3D scene and target object loca-
tion, and the right column shows the question and corresponding text answer.

question answering pair template: “User: <scene> Where is the <category> in
this 3D Scene? Assistant: Sure, <LOC>.” Here, <category> is randomly selected
from the ground-truth categories contained in the current 3D scene, <scene> is
the placeholder of 3D scene tokens.

3D Visual Grounding data. 3D visual grounding data aims at localizing the
unique object in 3D scenes given the descriptive object expression. The descrip-
tions of objects in these data typically explicitly include the object attributes
and their spatial relationships with other objects. To ensure diversity in training
data, we selected ScanRefer [2], SR3D [1], NR3D [1] as training data. Considering
the variety of object descriptions, it is difficult to simply reformulate the object
expression using a simple template like: “ User: <scene> Where is <expr> in the
3D Scene?. Assistant: It is <LOC>.” Therefore, we choose to retain the original
object description as much as possible and use a template: “Here is a description
about an object: “ <expr> ”, where is the object in the 3D Scene? Assistant: It is
<LOC>.”, where <expr> represents the object description in the data. Besides, we
have created a range of similar question templates that are randomly selected
during the training process.

Spatial Question Answering data We hope the model can understand 3D
position in a more natural way using numerical values in Natural Language. We
use [x, y, z, dx, dy, dz] to represent a 3D box, where [x, y, z] represents the cen-
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Fig. 4: Examples of functional reasoning data. Each row represents one question-
answer-location pair. The left column represents the 3D scene and target objects loca-
tion, and the right column shows the question and corresponding text answer.

ter of a 3D area and [dx, dy, dz] represents the 3D box size, these coordinates
can appear anywhere in the input text. Since there are no explicit coordinate
question answering pairs in the 3D vision-language datasets, we turned our at-
tention to the SR3D dataset. SR3D is a template-based generated dataset that
not only provides expressions of target objects but also provides object ids for
target objects and anchor objects. Based on SR3D, we constructed a 3D QA
dataset focusing on 3D positional relationships between objects. For example,
the query “select the trash can that is beneath the desk” from SR3D dataset can
be transformed into “User: Is the trash can [x1, y1, z1, dx1, dy1, dz1] beneath the
desk [x2, y2, z2, dx2, dy2, dz2]?” Assistant: Yes.” with the assistance of GPT-3.5.

3D Question Answering data. Considering that we expect the model can also
output reasonable answers in the conversation, we also introduce 3D QA data
during the training process to further enhance the model’s 3D visual question
answering and scene understanding capabilities. We reformulate CLEVR3D [7]
data into a simple question-answer template: “User: <scene> <question>. As-
sistant: <answer>.” The SQA3D [4] dataset not only provides questions but also
provides the situation in which the questions are asked. We reformulate it into
a template: “User: <scene> <situation> <question>. Assistant: <answer>.”
wherein the <question> is the placeholder for the question and <situation> is
the placeholder of the situation while raising the corresponding question.
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Fig. 5: Examples of logical reasoning data. Each row represents one question-
answer-location pair. The left column represents the 3D scene and target objects loca-
tion, and the right column shows the question and corresponding text answer.

3D Reasoning Grounding data. In addition to the types of data mentioned
above, We also employed our own proposed 3D reasoning grounding data to
train the model, further enhancing its capability to handle complex reasoning
questions. The output format is more akin to a combination of 3D Question
Answering (QA) and localization, where the model’s response not only includes
the target object but also provides an explanation for the selection of the target
object. We adopted a template: “User: <scene> <question>. Assistant: Sure,
<LOC>, <reason>.”

D.2 Output Type Templates

In the actual interaction between users and the model, questions are generally
not divided according to the aforementioned tasks but are more concerned with
whether the model’s output format meets the user’s needs. For example, in
the 3D QA data, there exists a question: “Where is the pillow on the bed?”,
with the corresponding answer being “near the headboard”. Simultaneously, such
questions may also appear in our reformulated 3D Object Detection and Visual
Grounding datasets, where the desired model output is the specific location
coordinates of the object in the scene. To make the interaction between the
model and users more natural and the outputs more in line with user needs,
we accordingly employ output type templates appended to user instructions.
Such instructions enable the training data to break free from the constraints
of its original task and integrate more naturally according to the output type,
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Fig. 6: Examples of emotional reasoning data. Each row represents one question-
answer-location pair. The left column represents the 3D scene and target objects loca-
tion, and the right column shows the question and corresponding text answer.

thereby further enhancing the model’s understanding and response to complex
and varied inputs in natural dialogue.
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Fig. 7: Examples of safety reasoning data. Each row represents one question-
answer-location pair. The left column represents the 3D scene and target object loca-
tion, and the right column shows the question and corresponding text answer.

Fig. 8: Prompts on generating functional reasoning question-answer-location pairs
data..
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Fig. 9: Prompts on generating spatial reasoning question-answer-location pairs data.

Fig. 10: Prompts on generating logical reasoning question-answer-location pairs data..
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Fig. 11: Prompts on generating emotional reasoning question-answer-location pairs
data..

Fig. 12: Prompts on generating safety reasoning question-answer-location pairs data.
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