Supplementary Materials

Zhonghan Zhao'* ©, Wenhao Chai?* |©, Xuan Wang!'® |®, Boyi Li' (@,
Shengyu Hao' @, Shidong Cao® (@, Tian Ye® ©, and Gaoang Wang!f

! Zhejiang University
2 University of Washington
3 Hong Kong University of Science and Technology (GZ)

The supplementary material is structured as follows:

A

We begin with the “Contribution and Idea” of the STEVE to explain the
reason of data collection and fine-tuning in Appendix [A]

Then, we introduce the “STEVE Pseudo Code” section, detailing the STEVE
method, encompassing input requirements, variables, functions, and the pro-
cedure of the STEVE Method algorithm in Appendix [B]

Next, the “Component Comparison” section offers a comparison of the STEVE
system with representative and concurrent works, focusing on various system
characteristics such as availability of demos, nature of rewards, and types of
observations, and even the specific core method differences and whether there
is control capability, among others, in Appendix [C]

The “Implementation Detail” section outlines the steps involved in imple-
menting STEVE, including the warm-up with the Question-Answering pair,
collection of Vision-Environment pair, and training and fine-tuning processes
in Appendix

In the “STEVE-7B/13B” section, we introduce the features and capabilities
of the STEVE-7B/13B model, along with the Pearson correlation coefficient
analysis for various score methods and showcases the efficiency of language
models in the Minecraft knowledge QA domain, as shown in Appendix [E]
The “Prompt” section provides insights into the LLM Decomposer, the pro-
cess for generating Question-Answering pairs, and the evaluation methodol-
ogy in Appendix [F]

The “Demo Image and Video” section presents practical demonstrations of
STEVE in various tasks, supported by figures and video content, and exam-
ples of skills and code in Appendix [G}

Lastly, the “Skill-Code Example” section contains examples from the STEVE-
21K skill-code part, illustrating specific skill codes used in the STEVE sys-
tem, as showvn in Appendix [H]

Contribution and Motivation

STEVE is the first pure LLM-based embodied agent with vision percep-
tion and comprehensive control capabilities, as shown in Table [C2] We get
SOTA performance as an LLM-based model, providing excellent performance


https://orcid.org/0009-0001-6537-376X
https://orcid.org/0000-0003-2611-0008
https://orcid.org/0009-0007-0073-6893
https://orcid.org/0009-0004-7271-3429
https://orcid.org/0000-0002-8652-8556
https://orcid.org/0009-0005-7132-8753
https://orcid.org/0000-0002-8255-2997
https://orcid.org/0000-0002-8403-1538

2 7. Zhao et al.

in visual perception and interpretable planning (Section 5.3) with flexibility
on tasks. We explain why we collect data and fine-tune a smaller LLM instead
of relying solely on GPT-4 as follows.

(1) Innovative embodied agent tasks with a smaller LLM: We showed
that complex tasks can be done with few LLM parameters while ensuring in-
terpretability. This is necessary for cost-effective solutions. STEVE-7B/13B has
better efficiency than GPT-4, achieving SOTA performance by adding visual
perception. Our work verifies that models with small parameter quantities can
perform well beyond models with extremely large parameter quantities through
simple finetuning on a specific domain. Although it may sacrifice some perfor-
mance in unseen scenarios, it is common for most non-gradient-free and finetuned
LLM methods, as shown in Table [C2}

(2) Superior performance and vision integration: Our work enhances the
SOTA LLM-based model Voyager with visual capabilities. STEVE has shown a
significant performance boost in tasks like tech tree mastery and block searching,
suggesting potential improvements in navigation tasks. This approach bridges
the gap between virtual environments and the real world for embodied agents.
We train the vision encoder with object-level labels, providing fine-grained recog-
nition.

(3) Multi-role collaboration in language instruction: The Language In-
struction system, composed of different roles of the STEVE-7B/13B model (Plan-
ner, Critic, Curriculum, and Describer) with buffer to manage tasks in Minecraft
by formulating long-term plans, refining strategies through feedback, adapting
via a curriculum of complex tasks, and translating strategies into executable
textual actions.

(4) Online training via simulation: We provide online training for visual
encoders, multi-role language models, and agent simulation for faster and more
realistic training. No need for separate visual and language model training or
offline strategies.

(5) Cost-effectiveness lightweight and sustainable development: Many
methods rely directly on GPT-4, combined with RL model. The fine-tuning
process LoRA we employed is cost-effective without any API expense. STEVE
is also very lightweight because using only the 7B/13B model without other
additional models will not bring additional costs, and it also has control capabil-
ities. STEVE will be open-source, reducing ongoing development expenses. This
makes our model more practical for complex tasks such as RLEF (Environment
Feedback) and Role Agents.

(6) Value of the dataset: We contribute a comprehensive multimodal dataset
of actual simulation that spans visual perception, knowledge instruction, and
action execution. This dataset has 20K Minecraft question-answering text pairs,
600 vision-environment pairs including more than 36K temporal frames with
corresponding environment information and LLM context, and 210 skill code
snippets with descriptions (GPT generation). We collect a comprehensive dataset
including simulation (vision-environment-chatflow), instruction (Knowledge QA),
and skill codebase.



STEVE 3

B STEVE Pseudo Code

STEVE takes an image, the agent’s current state, and a task as inputs and uses
a series of functions like a vision encoder, text tokenizer, and the core STEVE-
7B/13B model to process these inputs. The model generates a plan consisting
of steps, each of which is decomposed into an executable format, encoded into
a query, and then used to retrieve an action code from a skill database. This
process ultimately produces a series of action codes that guide the agent in
performing the specified task.

Algorithm 1 STEVE Method F

Input: Image Z, Agent State S, Task T
1: Variables:
2:  step.: Executable step
q: Action query
a: Action code
: Functions:
V. Vision encoder
T': Tokenizer for text
S: STEVE-7B/13B
9:  E: Query encoder
10:  R: Retrieval module on Skill Database
11: procedure F(Z, S, T)
12: OV < V(Z)
13: Og + T(S)
14: Or T(T)
15: Py < S(Ov,0s,07)
16: for each step in Py do

17: stepe < Decompose(step)
18: Query + E(stepe)

19: a < R(Query)

20: end for

21: end procedure

C Component Comparison

As shown in Tab. we compare STEVE with several existing works in
the field. We consider the following characteristics of each system: availability
of demos, nature of rewards, types of observations, action form, use of itera-
tive planning, existence and capacity of a skill database, and whether they are
gradient-free. As shown in Table[C2] our STEVE uses Ego-view RGB to directly
perceive visual information within a 256-block range, enhancing realism and di-
rectional sensitivity. It also features unique multi-role language models with
continuous learning for long-term planning and task adaptation.



4 7. Zhao et al.

[VPT [i] |DreamerV3 5] |DECKARD [7] |DEPS [i1]|Plan4MC [i3]|Voyager [3)] ~[STEVE (ours)

Demos ‘Videos ‘None ‘Videos ‘None ‘None ‘None ‘Videos
Rewards ‘ Sparse ‘ Dense ‘ Sparse ‘ None ‘ Dense ‘ None ‘ None
Observations |Pixels Pixels & Pixels & Feedback &Pixels & Feedback & |Pixels &
Only Meta Inventory Inventory |Meta Meta & Feedback &
Inventory Meta &
Inventory
Actions Keyboard |Discrete Keyboard &|Keyboard |Discrete Code Code
& Mouse Mouse & Mouse
Iterative v v v
Planning
Skill 9 172 210
Database
Gradient-Free ‘ ‘ ‘ ‘ ‘ ‘ v ‘ v

Table C1: Comparison between STEVE and representative works. It is a system-
level comparison consisting of LLM-based and RL-based methods.

Method | LLM. | Perception |Training| Dataset
Voyager |GPT-4—0613| Meta, r = 32 | - | -
STEVE (ours)|STEVE-13b|Ego RGB, r = 256| Online |simulation

Table C2: Component comparison with Voyager. Meta is the metadata from the
background, Ego RGB is for Ego-view image, and r represents the maximal distance
of perceived entities.

We also compare agents using non-pure LLM and RL, excelling in environ-
ments with defined objectives but challenging to address open-ended tasks. Our
STEVE is designed for open-ended tasks with varying language-based objectives,
operating autonomously in the unrestricted Minecraft environment, contrasting
with RL agents confined to specific settings like Minedojo. As a loose compari-
son, it achieves a 19% success rate in the Diamond Tool task within 10 minutes,
surpassing RL-based VPT [2] at 12%.

D Implementation Detail

(1) RayTracing module: Raytracing is a perception module we developed.
Through this module, we can ensure that all content outside the robot’s per-
spective screen is eliminated and only all visible blocks and entities are saved.
Note that it is only used to collect data. This module is removed in STEVE
since a vision encoder is used for perception.

(2) LLM warm-up: We use LoRA finetuning on the 20K Knowledge QA pairs
of STEVE-21K, using LLaMA2-7B/13B, before being deployed in a simulated
environment. The warm-up step is a one-time process that allows the model to



STEVE 5

absorb extensive knowledge. It is a crucial step in the initial simulation, which
enables the collection of the vision-environment pair.

(3) Second stage of LLM finetuning: We simulate STEVE-13B in Minecraft,
a simple embodied agent that uses the RayTracing module directly. After 5,000
simulations, we collected context information from successful runs, including
sequences of QA. We then use these to fine-tune STEVE-13B via the LoRA
process. Note that the process is to adjust STEVE-13B to work on correct
simulation knowledge while remaining adapted to visual perception.

(4) Vision-environment pair collection: We run STEVE-13B with a second-
round Minecraft simulation. We recorded 600 videos, collected environmental
data with RayTracing, saved state information, and chatflow. We collect the
dataset in six different terrains: forest, desert, coastal, etc. We use the STEVE-
7B/13B model to enable robots to autonomously plan and execute actions based
on tasks defined by human supervisors. We record the video of the robot oper-
ation, environment information, and all the corresponding chat flow. Note that
we use ray tracing [12] to ensure the environmental information obtained is the
blocks and entities seen in the field of vision.

(5) Multi-role instruction: The Planner uses visual information for task de-
composition and sequencing, while the Critic, inspired by Voyager, provides es-
sential error correction. The Curriculum stores extensive semantic information
to support continuous learning and preserve effective task sequences. Lastly, the
Describer, influenced by the chain of summarization [6|, condenses historical
data to improve long-term memory.

(6) STEVE-21K dataset: It is not only specifically tailored for training our
STEVE system but is used as the foundation for developing STEVE from scratch,
utilizing the open-source LLaMA as the base model. The dataset contains visual
environment data and contextual LLM QA pairs, with 50% used for real-time
learning and the rest for diversity. STEVE-21K effectively trains STEVE, show-
ing its potential for wider language model training.

(7) Experiment and evaluation: We propose Continuous Block Search, Knowl-
edge QA, and Tech Tree Mastery (Section 5.3). Our model has achieved SOTA
results in each domain. Continuous Block Search enhances exploration abil-
ities by evaluating the visual perception capabilities of the model. It is inspired
by Voyager’s map exploration tasks, emphasizing purpose-driven searches influ-
enced by multimodal navigation tasks [10]. Knowledge QA explicitly demon-
strates the language model’s performance (more Language model efficiency de-
tails in Supplementary Material D.). LLM-based methods can reflect simulation
performance to an extent. High QA performance can indicate high simulation
performance and vice versa. Tech Tree Mastery demonstrates the control ca-
pabilities. We use the same settings as the comparison method, including the
code database.



6 7. Zhao et al.

E STEVE-7B/13B

We propose STEVE-7B/13B, a powerful language model series derived from
LLaMA2 [4], fine-tuned specifically on Minecraft-related content from the Minecraft-
wiki and Reddit corpus. This model’s expertise covers a broad spectrum of game-
specific knowledge areas including:

World Understanding: Geography, biomes, and entity interactions.

Player Mechanics: Health management, combat, and mobility.

Survival Strategies: Food sourcing, shelter building, and enemy evasion.

Resource Management: [tem gathering, mining techniques, and inventory

optimization.

e Crafting and Construction: Recipe knowledge, item crafting, and struc-
ture creation.

e Utility and Tool Usage: Tool selection, item upgrades, and special abili-

ties.

We test the performance of our STEVE-7B/13B on the above-mentioned
functional indicators. The entire knowledge question and answering section of
our paper used 1000 pairs that were divided from our STEVE-21K. Among these
1000 pairs, the categories World & Entities, Player Mechanics & Survival, Knowl-
edge & Discovery, Resources & Crafting, Tools & Utilities, and Miscellaneous
are respectively 332, 152, 108, 219, 169, 20.

E.1 Detailed evaluation

850
825
85 8.00
~N7.75

S
g 7.50

Claude-2
~

]
7.5 5725
7.0 7.00
6.75

6.5 6.50
7.0 85 9.0 55 75 55

75

5 80 6.0 65 70 6.0 65 70
GPT-4 Human Blind Rating Human Blind Rating

(a) GPT-4 and Claude-2: 0.976(b) GPT-4 and Human Blind(c) Claude-2 and Human Blind
Rating: 0.965 Rating: 0.998

Fig. E1: Pearson Correlation Analysis, including scatters and trend. Note that all

scatters come from Tab. @

Pearson correlation coefficient on score methods. The formula represents the
Pearson correlation coefficient:

I v )l )
VI P - P

Txy

where:



STEVE 7

Method [World & Entities Player Mechanics & Survival Knowledge & Discovery Resources & Crafting Tools & Utilities Miscellaneous| Overall
GPT-4 | 8.53 8.56 8.85 8.49 8.63 9.00 | 859
Llama2-7B 7.22 7.43 7.12 7.01 7.28 845 7.23
Llama2-13B 7.34 7.32 7.42 7.37 7.44 6.75 7.36
STEVE-7B 8.67 8.41 8.42 8.53 8.35 8.50 8.52
STEVE-13B 8.74 8.67 8.72 8.68 8.74 7.95 8.70

Table E3: Quantitive comparison on knowledge question and answering task
by GPT-4 |8]. It is rated on a scale of 0 to 10; Higher scores indicate greater alignment
of the generated answers with the ground truth.

Method ‘\Vorld & Entities Player Mechanics & Survival Knowledge & Discovery Resources & Crafting Tools & Utilities Miscellaneous‘Overall
GPT-4 | 8.17 8.31 8.27 8.17 8.24 810 | 821
Llama2-7B 6.76 6.94 6.90 6.60 7.10 6.85 6.83
Llama2-13B 7.21 7.19 7.01 7.00 7.32 715 7.16
STEVE-7B 8.14 8.12 8.09 8.11 8.18 8.00 8.13
STEVE-13B 8.24 8.34 8.21 8.24 8.20 8.15 8.24

Table E4: Quantitive comparison on knowledge question and answering task
by Claude-2 [3]. It is rated on a scale of 0 to 10; Higher scores indicate greater
alignment of the generated answers with the ground truth.

Method ‘\Vnrld & Entities Player Mechanics & Survival Knowledge & Discovery Resources & Crafting Tools & Utilities Miscolluneous‘Ovn:rall
GPT-4 ‘ 7.48 7.33 7.08 7.11 7.39 7.52 ‘ 7.32
Llama2-7B 5.34 5.67 5.72 5.65 6.01 5.57 5.62
Llama2-13B 6.23 6.35 5.89 5.94 6.19 6.02 6.14
STEVE-7B 7.15 7.11 7.01 7.22 7.27 6.97 7.16
STEVE-13B 7.43 7.39 7.17 7.52 7.43 7.06 7.41

Table E5: Quantitive comparison on knowledge question and answering task
by human blind rating. It is rated on a scale of 0 to 10; Higher scores indicate greater
alignment of the generated answers with the ground truth.

T4y is the Pearson correlation coefficient between two variables x and y.

x; and y; are the individual sample points for variables x and y, respectively.
Z and § are the means (averages) of the x and y samples, respectively.

n is the number of sample points.

This formula essentially measures the degree of linear relationship between
two variables. It compares the product of their deviations from their respective
means. The numerator captures the covariance between the two variables, and
the denominator normalizes this value, ensuring that the coefficient remains
between -1 and +1. The Pearson correlation coefficient measures how much two
variables change together compared to how much they vary individually.

As shown in Tab. [E6] the Pearson correlation coefficients are calculated be-
tween these methods: GPT-4 vs. Claude-2 (0.976), GPT-4 vs. Human Blind Rat-
ing (0.965), and Claude-2 vs. Human Blind Rating (0.998). It suggests a high
level of agreement among these evaluation approaches. The alignment of scores
from different evaluation methods reinforces the reliability of our assessment.
Our STEVE models outperform other language models in knowledge question
and answering tasks, including the benchmark GPT-4. This superior perfor-
mance of STEVE, particularly the 13B version, is evident across a broad spec-



8 7. Zhao et al.

Method |Pearson Correlation Coeflicients
GPT-4 VS. Claude-2 0.976
GPT-4 VS. Human Blind Rating 0.965
Claude-2 VS. Human Blind Rating 0.998

Table E6: Comparison on Pearson correlation coefficients between score meth-
ods. It calculates the mean score across each score dimensions for each language meth-
ods and then computes the Pearson correlation between these means for each pair of
score methods (GPT-4, Claude-2 and Human blind rating). The Pearson correlation
coefficient ranges from -1 to +1. Higher Pearson correlation coefficient (closer to +1)
means that there is a stronger positive linear relationship between the two sets of data.

Method |time(s) (1)

Llama2-7B [4 | 18.34
Llama2-13B [4]| 21.17
GPT-4 [§] 22.86
STEVE-7B 7.19

Table E7: Comparison on language model efficiency. It shows the average time
for each question-answering.

trum of categories. This suggests that our model has a deeper understanding of
Minecraft-related content and exhibits a more accurate and consistent ability to
generate relevant responses.

E.2 Language model efficiency

We primarily test the reasoning efficiency of large language models on Minecraft
knowledge QA and showcased case studies. We conduct this experiment in the
Question-Answering part of our STEVE-21K dataset. As shown in Tab. our
model STEVE-7B/13B achieves leading performance in terms of time cost. This
is due to its smaller number of parameters compared to GPT-4, and its shorter
yet more accurate responses compared to the Llama series.

F Prompt

F.1 LLM Decomposer

We use STEVE-7B/13B for goal decomposition. The format of the prompt is
presented thus: directions under the "SYSTEM" role and questions under the



STEVE 9

"USER" role. The {target amount}, {target name} and {extensive knowledge}
are designed to be filled with specific content, which will then be inputted into
the language model after substitution.

F.2 Generate Question-Answering pairs

We employ the following prompt during the collection of Question-Answer pairs.
In this context, the placeholder {text} is intended to be filled with cleaned
Minecraft-Wiki text.

F.3 Evaluation

We utilize GPT-4 and Claude-2 to evaluate various models, employing the fol-
lowing prompt structure. Within this structure, the placeholders {question},
{ground truth}, and {answer} are designated to be filled with questions, stan-
dard answers, and model-generated answers, respectively.

G Demo Image and Video

As shown in Fig. [H2] we experiment with our STEVE on various practical
tasks, covering collecting, combating, mining etc.

H Examples

The section contains examples from the STEVE-21K skill-code part, illustrating
specific skill codes used in the STEVE system.

SYSTEM:

You are designated as an assistant for the game Minecraft. Your task in-
volves formulating goals related to obtaining specific objects within the
game. I'll provide you with a specific target and relevant extensive infor-
mation. Please provide a standardized format for acquiring this target as
a goal.

Goal Structure:
{
“object”: “[Name of Target Object]”,
“amount”: [Target Amount],
“material™ {
[Material Name|: [Material Quantity],

“tool”: “[Tool Required]”,

59, ¢

“info”: “[Concise Information Related to the Goall]”




10 7. Zhao et al.

}

- Target: Enter the name of the target object you wish to obtain or
craft.,

- Amount: Specify the amount of the target object needed.,

- Material: List the materials required to achieve this goal. Format
each entry as "material name": quantity. If no material is required, set
this field to None,

- Tool: Indicate the most basic tool necessary for this goal. If multiple
tools can be used, choose the simplest one. If no tool is required, set this
to None,

- Info: Provide essential information related to the goal. Summarize
the knowledge in up to three sentences, focusing on key details about
obtaining or crafting the target object.

Requirements:

1. Goals must be constructed based on the provided knowledge, rather
than relying solely on pre-existing knowledge.

2. The "info" section should be concise and informative, limited to a
maximum of three sentences. Extracting and summarizing the key infor-
mation from the provided knowledge is essential, rather than replicating
the entire text.

Example Goal 1:
{

“target”: “bed”,

“amount”: 1,

“material”: {“wool”: 3, “planks™ 3},

“tool”: “crafting table”,

“info”: “A bed is crafted using 3 wool and 3 wooden planks on a
crafting table. Beds allow players to skip the night and reset their spawn
point.”

}
Example Goal 2:
{

“target”: “paper”,

“amount”: 3,

“material”: {"sugar cane": 3},

“tool”: “None”,

“info”: “Paper is crafted from 3 sugar cane, arranged in a row. It’s
used for creating maps and books.”

}

USER:




STEVE

11

Target info: {target amount} {target name}
Knowledge info: {extensive knowledge}

SYSTEM:

You are a helpful assistant engaging in a conversation with an in-game
Minecraft agent. This agent seeks to enhance both its survival techniques
and interaction tactics within the Minecraft universe.

Your task is to extract crucial questions and their corresponding answers
from the provided Minecraft information. These may pertain to survival
challenges, crafting recipes, interactions with in-game entities, and other
relevant aspects.

##INSTRUCTIONS:

- Craft questions to prompt the in-game Minecraft agent to contem-
plate various aspects of gameplay, including survival challenges, crafting
recipes, managing resources, navigating terrain, interactions with in-game
entities, and more.

- For each question, extract a suitable answer. Each answer should eluci-
date the agent’s perspective, emphasizing effective strategies, item appli-
cations, or interaction approaches.

USER:
The information about Minecraft is: {text}.

Present your output in the mold of a Python dictionary string, utiliz-
ing ‘Q’ for questions and ‘A’ for the agent’s anticipated responses. For
multiple questions derived, maintain the ’Q’ and A’ structure.

An example could be: ‘Q’: ‘How to craft a wooden pickaxe in Minecraft?’,
‘A’: ‘“To craft a wooden pickaxe, the approach involves...”, ‘Q’: ©...7, ‘A’:‘...0,




12 7. Zhao et al.

SYSTEM:

You are an intelligent chatbot designed for evaluating the correctness of
generative outputs for question-answer pairs.

Your task is to compare the predicted answer with the correct answer and
determine if they match meaningfully. Here’s how you can accomplish the
task:

##INSTRUCTIONS:

- Focus on the meaningful match between the predicted answer and the
correct answer.

- Consider synonyms or paraphrases as valid matches.

- Evaluate the correctness of the prediction compared to the answer.

USER:

Please evaluate the following question-answer pair:
Question: {question}

Correct Answer: {ground truth}

Predicted Answer: {answer}

Provide your evaluation only in the form of a score, where the score is an
integer value between 0 and 10, with 10 indicating the highest meaningful
match.

Do not provide any other output text or explanations. Only provide out-
put score. For example, your response should look like this: ‘9’.

Skill-Code example 1.1: craftShieldlmproved.

async function craftShieldImproved(bot) {
// Check if there are enough oak planks in the inventory

let oakPlanksCount = bot.inventory.count(mcData.itemsByName

.oak_planks.id);

// If not, check if there are enough oak logs in the
inventory
if (oakPlanksCount < 6) {

let oakLogsCount = bot.inventory.count(mcData.itemsByName

.oak_log.id);

const planksToCraft = Math.ceil((6 - oakPlanksCount) / 4)

>

// If not, explore to find and mine oak logs
if (oakLogsCount < planksToCraft) {
await exploreUntil(bot, new Vec3(1, 0, 1), 60, () =>
const oak_log = bot.findBlock ({
matching: mcData.blocksByName["oak_log"].id,
maxDistance: 32

1D




STEVE 13

return oak_log;
1) 8
await mineBlock(bot, "oak_log", planksToCraft -
oakLogsCount) ;
bot.chat("Collected oak logs.");
}

// Craft oak planks from oak logs

await craftItem(bot, "oak_planks", planksToCraft);
bot.chat ("Crafted oak planks.");

oakPlanksCount = bot.inventory.count(mcData.itemsByName.
oak_planks.id) ;

// Check if there are enough iron ingots in the inventory
let ironIngotsCount = bot.inventory.count (mcData.
itemsByName.iron_ingot.id);

// If not, explore to find and mine iron ores
if (ironIngotsCount < 1) {
await exploreUntil (bot, new Vec3(0, -1, 0), 60, () => {
const iron_ore = bot.findBlock ({
matching: mcData.blocksByName["iron_ore"].id,
maxDistance: 32
B
return iron_ore;
)M
await mineBlock(bot, "iron_ore", 1);
bot.chat("Collected iron ores.");

// Smelt iron ores into iron ingots
await smeltItem(bot, "iron_ore", "coal", 1);
bot.chat ("Smelted iron ores into iron ingots.");

// Place the crafting table near the bot

const craftingTablePosition = bot.entity.position.offset (1,
0, 0);

await placeItem(bot, "crafting_table",
craftingTablePosition) ;

// Craft a shield using the crafting table
await craftItem(bot, "shield", 1);
bot.chat ("Crafted a shield.");




14 7. Zhao et al.

Skill-Code example 1.2: craftBed.

async function craftBed(bot) {
// Check if there is a crafting table in the inventory or
nearby
let craftingTable = bot.inventory.findInventoryItem(mcData.
itemsByName ["crafting_table"].id);
if (!'craftingTable) {
craftingTable = bot.findBlock ({
matching: mcData.blocksByName["crafting_table"].id,
maxDistance: 32
B
if (!'craftingTable) {
// Mine oak logs and craft oak planks
await mineBlock(bot, "oak_log", 1);
await craftItem(bot, "oak_planks", 2);
// Craft a crafting table using oak planks
await craftItem(bot, "crafting_ table", 1);

// Find a suitable position to place the crafting table if
it’s not already placed

const tablePosition = bot.entity.position.offset(l, 0, 0);

const tableBlock = bot.blockAt(tablePosition);

if (!tableBlock || tableBlock.name !== "crafting_table") {
if (tableBlock && tableBlock.name === "lily_of_the_valley
") A
// Find a different position to place the crafting
table
const newPosition = bot.entity.position.offset(-1, O,
0);
await placeItem(bot, "crafting table", newPosition);
} else {
await placeItem(bot, "crafting_table", tablePosition);
}
}
// Check if there are enough wool blocks in the inventory
let wool = bot.inventory.findInventoryItem(mcData.
itemsByName ["white_wool"].id);
if (!'wool || wool.count < 3) {
// Find a sheep and use shears to collect wool
bot.chat ("Finding a sheep to collect wool...");

const sheep = await exploreUntil(bot, new Vec3(1, 0, 1),
60, O =>{
const sheep = bot.nearestEntity(entity => {
return entity.name === "sheep" && entity.position.
distanceTo (bot.entity.position) < 32;
1) 8




STEVE 15

return sheep;
I
await bot.pathfinder.goto(new GoalGetToBlock(sheep.
position.x, sheep.position.y, sheep.position.z));
await bot.equip(mcData.itemsByName["shears"].id, "hand");
await bot.useOn(sheep);
wool = bot.inventory.findInventoryItem(mcData.itemsByName
["white_wool"].id);

// Check if there are enough wooden planks in the inventory
let oakPlanks = bot.inventory.findInventoryItem(mcData.
itemsByName ["oak_planks"].id);
if (!oakPlanks || oakPlanks.count < 3) {
// Mine oak logs and craft oak planks
bot.chat ("Mining oak logs to craft oak planks...");
await mineBlock(bot, "oak_log", 1);
bot.chat ("Crafting oak planks...");
await craftItem(bot, "oak_planks", 1);

// Craft a bed using the wool blocks and wooden planks
bot.chat ("Crafting a bed...");

await craftItem(bot, "white_bed", 1);

bot.chat ("Bed crafted.");




16 7. Zhao et al.

Skill-Code example 1.3: craftPaper.

async function findSuitablePosition(bot) {
const offsets = [new Vec3(1, 0, 0), new Vec3(-1, 0, 0), new
Vec3(0, 0, 1), new Vec3(0, 0, -1)1;
for (const offset of offsets) {
const position = bot.entity.position.offset(offset.x,
offset.y, offset.z);
const block = bot.blockAt(position);
if (block.name === "air" || block.name === "water") {
const belowBlock = bot.blockAt(position.offset (0, -1,
0));
if (belowBlock.name !== "air" && belowBlock.name !== "
water") {
return position;

}

}
return null;

}

async function craftPaper (bot) {
// Check if there are enough sugar canes in the inventory

const sugarCanes = bot.inventory.findInventoryItem(mcData.
itemsByName . sugar_cane.id) ;
if (!sugarCanes || sugarCanes.count < 3) {

// Explore the area to find more sugar canes
await exploreUntil (bot, new Vec3(1, 0, 1), 60, () => {
const sugarCane = bot.findBlock ({
matching: mcData.blocksByName.sugar_cane.id,
maxDistance: 32
1
return sugarCane;

1D

// Mine the sugar canes
await mineBlock(bot, "sugar_cane", 3 - (sugarCanes ?
sugarCanes.count : 0));

}

// Check if there is a crafting table nearby or in the
inventory

const craftingTable = bot.findBlock ({
matching: mcData.blocksByName.crafting_table.id,
maxDistance: 32

}) || bot.inventory.findInventoryItem(mcData.itemsByName.
crafting_table.id);

// If not, craft a crafting table using the oak_log in the
inventory




STEVE 17

if (!'craftingTable) {

await craftItem(bot, "crafting_table", 1);
}

// Find a suitable position to place the crafting table if
it’s not already placed
const craftingTableBlock = bot.findBlock ({
matching: mcData.blocksByName.crafting_table.id,
maxDistance: 32
1
let craftingTablePosition;
if (!craftingTableBlock) {
craftingTablePosition = await findSuitablePosition(bot);
if (!craftingTablePosition) {
bot.chat ("No suitable position found to place the
crafting table.");
return;
}
} else {
craftingTablePosition = craftingTableBlock.position;

}

// Place the crafting table at the suitable position
await placeltem(bot, "crafting_table",
craftingTablePosition) ;

// Craft 3 paper using the sugar canes
await craftItem(bot, "paper", 1);
bot.chat ("3 paper crafted.");

Skill-Code example 1.4: craftShieldWithIron.

async function craftShieldWithIron(bot) {

// Check if we have enough spruce planks

const sprucePlankCount = bot.inventory.count(mcData.
itemsByName.spruce_planks.id);

if (sprucePlankCount < 6) {
// Mine 3 more spruce planks
await mineBlock(bot, "spruce_log", 3);
// Craft spruce planks from spruce logs
await craftItem(bot, "spruce_planks", 3);
bot.chat ("Spruce planks crafted.");

// Check if we have enough iron ingots

const ironIngotCount = bot.inventory.count (mcData.
itemsByName.iron_ingot.id);

if (ironIngotCount < 1) {
// Mine iron ore




18 7. Zhao et al.

await mineBlock(bot, "iron_ore", 1);
bot.chat("Iron ore mined.");

// Place a furnace if it’s not already placed

const furnacePosition = bot.entity.position.offset(l, -1,

0);

const furnaceBlock = bot.blockAt(furnacePosition) ;

if (!furnaceBlock || furnaceBlock.name !== "furnace") {
await placeItem(bot, "furnace", furnacePosition);
bot.chat ("Furnace placed.");

}

// Smelt iron ore into iron ingot using a furnace

await smeltItem(bot, "raw_iron", "coal", 1);

bot.chat ("Iron ingot smelted.");

// Place the crafting table if it’s not already placed

const craftingTablePosition = bot.entity.position.offset (1,
-1, 0);

const craftingTableBlock = bot.blockAt(
craftingTablePosition) ;

if (!craftingTableBlock || craftingTableBlock.name !== "
crafting_table") {
await placeItem(bot, "crafting_table",
craftingTablePosition);
bot.chat ("Crafting table placed.");

X

// Craft the shield using the 6 spruce planks and 1 iron
ingot

await craftItem(bot, "shield", 1);

bot.chat ("Shield crafted.");

Skill-Code example 1.5: mineFiveLapisOres.

async function mineFiveLapisOres (bot) {

// Check if the bot has a stone pickaxe, iron pickaxe, or
diamond pickaxe in its inventory

const stonePickaxe = bot.inventory.findInventoryItem(mcData
.itemsByName ["stone_pickaxe"].id);

const ironPickaxe = bot.inventory.findInventoryItem(mcData.
itemsByName ["iron_pickaxe"].id);

const diamondPickaxe = bot.inventory.findInventoryItem(
mcData.itemsByName ["diamond_pickaxe"].id);

// Equip the best pickaxe available
if (diamondPickaxe) {
await bot.equip(diamondPickaxe, "hand");




STEVE 19

} else if (iromnPickaxe) {
await bot.equip(ironPickaxe, "hand");
} else if (stonePickaxe) {
await bot.equip(stonePickaxe, "hand");
} else {
bot.chat ("I don’t have a stone, iron, or diamond pickaxe
to mine lapis ores.");
return;

}

// Explore the underground area to find lapis ores
const lapisOres = await exploreUntil(bot, new Vec3(0, -1,
0), 60, O =>{
const lapis_ores = bot.findBlocks ({
matching: mcData.blocksByName["lapis_ore"].id,
maxDistance: 32,

count: 5
)M
return lapis_ores.length >= 5 7 lapis_ores : null;

P

// Mine 5 lapis ores using the equipped pickaxe
if (lapisOres) {

await mineBlock(bot, "lapis_ore", 5);
bot.chat ("5 lapis ores mined.");

} else {
bot.chat ("Could not find 5 lapis ores.");

}

Skill-Code example 1.6: smeltTwelveRawCopper.

async function smeltTwelveRawCopper (bot) {

// Check if the bot has a furnace in its inventory

const furnaceltem = bot.inventory.findInventoryItem(mcData.
itemsByName . furnace.id) ;

if (!furnacelItem) {
// Craft a furnace if not found in the inventory
await craftItem(bot, "furnace", 1);
bot .chat ("Furnace crafted.");

}

// Find a suitable position to place the furnace
const furnacePosition = bot.entity.position.offset(1l, -1,
1)

// Place the furnace at the found position
await placeItem(bot, "furnace", furnacePosition);
bot.chat ("Furnace placed.");




20 7. Zhao et al.

// Check if the bot has enough coal in its inventory to
smelt 12 raw copper

const coalCount = bot.inventory.count(mcData.itemsByName.
coal.id);

if (coalCount < 12) {
// Mine enough coal to smelt 12 raw copper
await mineBlock(bot, "coal_ore", 12 - coalCount);
bot.chat ("Coal mined.");

}

// Smelt the 12 raw copper using the furnace and the
available coal as fuel

await smeltItem(bot, "raw_copper", "coal", 12);

bot.chat ("12 raw copper smelted.");

Skill-Code example 1.7: obtainTenWoodLogs.

async function obtainTenWoodLogs (bot) {

const logNames = ["oak_log", "birch_log", "spruce_log", "
jungle_log", "acacia_log", "dark_oak_log", "mangrove_log"
1

let totalLogs = O0;

// Check if there are already 10 wood logs in the inventory
for (const logName of logNames) {
const logltem = bot.inventory.findInventoryItem(mcData.
itemsByName [logName] . id) ;
if (logItem) {
totallogs += logltem.count;
}
}
if (totallogs >= 10) {
bot.chat ("Already have 10 wood logs in inventory.");
return;
}
const logsNeeded = 10 - totallogs;
bot.chat (‘Mining ${logsNeeded} wood logs...‘);

// Equip the wooden axe if available in the inventory
const woodenAxe = bot.inventory.findInventoryItem(mcData.
itemsByName ["wooden_axe"].id);
if (woodenAxe) {
await bot.equip(woodenAxe, "hand");
}
for (let i = 0; i < logsNeeded; i++) {
// Use exploreUntil to find a wood log if not found
nearby
const logBlock = bot.findBlock ({
matching: block => logNames.includes(block.name),




STEVE 21

maxDistance: 32
1) 8
if (!'logBlock) {
await exploreUntil (bot, new Vec3(1, 0, 1), 60, () => {
const foundLog = bot.findBlock ({
matching: block => logNames.includes(block.name),
maxDistance: 32
1) 8
return foundLog;
1)
}

// Mine the required number of wood logs using mineBlock
await mineBlock(bot, logBlock.name, 1);

}

bot.chat ("Obtained 10 wood logs.");

\' 5% ' : [
[Collect Sugar Cane Collect Pumpkin Col
-

E

Fig. H2: Demo of basic survival skills.

References

1. Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J., Ecoffet, A., Houghton,
B., Sampedro, R., Clune, J.: Video pretraining (vpt): Learning to act by watching
unlabeled online videos. arXiv preprint arXiv: Arxiv-2206.11795 (2022)

2. Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J., Ecoffet, A., Houghton,

B., Sampedro, R., Clune, J.: Video pretraining (vpt): Learning to act by watching

unlabeled online videos. Advances in Neural Information Processing Systems 35,

24639-24654 (2022)

Talk to claude (2023), https://claude.ai

4. Gao, P., Han, J., Zhang, R., Lin, Z., Geng, S., Zhou, A., Zhang, W., Lu, P., He,
C., Yue, X., et al.: Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010 (2023)

o



https://claude.ai

22

10.

11.

12.

13.

7. Zhao et al.

Hafner, D., Pasukonis, J., Ba, J., Lillicrap, T.: Mastering diverse domains through
world models. arXiv preprint arXiv: Arxiv-2301.04104 (2023)

Ma, W., Mi, Q., Yan, X., Wu, Y., Lin, R., Zhang, H., Wang, J.: Large language
models play starcraft ii: Benchmarks and a chain of summarization approach. arXiv
preprint arXiv:2312.11865 (2023)

Nottingham, K., Ammanabrolu, P., Suhr, A., Choi, Y., Hajishirzi, H., Singh, S.,
Fox, R.: Do embodied agents dream of pixelated sheep?: Embodied decision making
using language guided world modelling. ARXIV.ORG (2023). https://doi.org/
10.48550/arXiv.2301.12050

OpenAl: Gpt-4 technical report. arXiv preprint arXiv: Arxiv-2303.08774 (2023)
Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., Anand-
kumar, A.: Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291 (2023)

Wang, H., Liang, W., Van Gool, L., Wang, W.: Towards versatile embodied navi-
gation. In: Advances in Neural Information Processing Systems (NeurIPS) (2022)
Wang, Z., Cai, S., Liu, A., Ma, X., Liang, Y.: Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560 (2023)

Whitted, T.: An improved illumination model for shaded display. In: ACM Sig-
graph 2005 Courses, pp. 4—es (2005)

Yuan, H., Zhang, C., Wang, H., Xie, F., Cai, P., Dong, H., Lu, Z.: Plan4dmc: Skill
reinforcement learning and planning for open-world minecraft tasks. arXiv preprint

arXiv:2303.16563 (2023)


https://doi.org/10.48550/arXiv.2301.12050
https://doi.org/10.48550/arXiv.2301.12050
https://doi.org/10.48550/arXiv.2301.12050
https://doi.org/10.48550/arXiv.2301.12050

	Supplementary Materials

