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1 Overview

In this supplementary material, we provide the following elements:

– Basics on DoFP polarization camera (Sec. 2).
– Additional details of our dataset (Sec. 3).
– Signed error maps and normal maps by PISR-ON and PISR-PN (Sec. 4).
– Additional qualitative results by PISR-PN (Sec. 5).

We also provide a video that shows additional qualitative results, including se-
quences of rendered RGB images and normal maps.

2 Basics on DoFP polarization camera

A division-of-focal-plane (DoFP) polarization camera [8] can measure the inten-
sities at four different polarizer angles in one shot, which is achieved by assigning
each pixel a polarizer. As shown in Fig. 1, every 2×2 adjacent pixels have linear
polarizers at four different angles 0◦,45◦,90◦ and 135◦ and each 4× 4 superpixel
can measure intensities in 12 channels including RGB channels. Since there is
no circular polarizer on the sensor, the polarization camera can only measure
linear polarized light.

From the perspective of a camera, linear polarized light can be described in
terms of intensity I, angle of polarization (AoP) φ and degree of polarization
(DoP) ρ. For each pixel, the measured intensity Iϕ of polarized light is a function
of the polarizer angle ϕ:

Iϕ = fpol(ϕ) =
1

2
[I + ρI cos(2φ− 2ϕ)]

=
1

2
(I + ρI cos 2φ cos 2ϕ+ ρI sin 2φ sin 2ϕ),

(1)
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Fig. 1: Polarization image.

where the constant 1/2 is the attenuation caused by the polarizer [2]. Let s0 =
I, s1 = ρI cos 2φ and s2 = ρI sin 2φ, then we can get the Stokes vector s =
[s0, s1, s2]

T at the camera frame for representing linear polarized light.
Denote the four images captured by the polarization camera as I0, I45, I90

and I135. With the four intensity values, we can calculate s according to Eq. (1)
as follows:

s0 =
1

2
(I0+I45+I90+I135) =

1

2
[fpol(0)+fpol(

1

4
π)+fpol(

2

4
π)+fpol(

3

4
π)] = I (2)

s1 = I0 − I90 = fpol(0)− fpol(
2

4
π) = ρI cos 2φ (3)

s2 = I45 − I135 = fpol(
1

4
π)− fpol(

3

4
π) = ρI sin 2φ (4)

Therefore, we can easily calculate φ and ρ with s according to the above equa-
tions:

φ =
1

2
arctan2(s2, s1), ρ =

√
s21 + s22
s0

. (5)

3 Additional details of our dataset

We capture images of each object at two (three for Figure) different heights with
a color polarization camera [8]. At each height, the camera is moved around the
object to capture images from 20 different viewpoints, resulting in 40 (60 for
Figure) polarization images for each object. We show images of two viewpoints of
each object in Fig. 3. Each object is placed on a table indoors under uncontrolled
lighting conditions.

Since geometry reconstruction is more sensitive to the accuracy of camera
calibration than novel view synthesis, we calibrate the camera and use SuperGlue
[6] and COLMAP [7] to achieve robust and accurate sparse reconstruction given
camera intrinsics. We additionally use a ChAruco board to provide key points for
feature extraction and matching. An example of a sparse reconstruction result
is shown in Fig. 2.
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Fig. 2: The sparse reconstruction result of Standing Rabbit
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Fig. 3: Examples of RGB images, AoP maps and DoP maps of our dataset
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4 Signed error maps and normal maps

As shown in Fig. 4, there are more artifacts on the reconstructed meshes by
PISR-ON. PISR-ON and PISR-PN are based on the orthographic and perspec-
tive polarimetric constraints, respectively. The orthographic constraint is based
on the assumption of orthographic projection, which is inconsistent with the
commonly used pinhole camera model, and thus can lead to errors in the recon-
struction results.

The signed error maps present the directed distances from the reconstructed
points to the ground-truth points. Let R be the vertex set of the reconstructed
mesh and G be the ground truth. For a vertex r ∈ R, its signed error is defined
as:

er→G = sgn
(
(r− g)Tng

)
·min
g∈G

∥r− g∥ (6)

where sgn(·) is the sign function that gets the sign of its argument and ng is the
ground-truth normal.
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Ground truth PISR-ON PISR-PN Ground truth PISR-ON PISR-PN

Fig. 4: Signed error maps and normal maps of the reconstruction results by PISR-ON
and PISR-PN (zoom in for a better view). For the signed error maps in the first row of
each object, higher color saturation means higher errors and the errors are truncated
to within ±2 mm.
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Fig. 5: Qualitative results of the PANDORA dataset.
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Fig. 6: Qualitative results of the PMVIR dataset.

5 Additional qualitative results

We present qualitative results on the PANDORA [1] and PMVIR [9] datasets
in Fig. Fig. 5 and Fig. Fig. 6. Due to the imbalanced convergence between the
foreground and background [4], PISR could fail, particularly when the camera’s
focal length is longer, as is the case with these two datasets. Therefore, we add
2D mask loss as work [1] to help PISR separate the foreground and background.

Since PISR uses demosaiced RGB images and AoP maps for shape estima-
tion, the noise on texture edges caused by the demosaicing process could lead to
incorrect bumpiness on the reconstructed surfaces of objects that are supposed
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to be smooth. Using raw sensor data as RawNeRF [5] and NeISF [3] without
demosaicing might bypass this problem.
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