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Fig. 1: Zero-shot image generation from multi-modal prompts. MultiGen can
generate images by either using text alone (first column) or by combining text with
coordinates (second column) and object-level images (third and fourth column) without
any model tuning. This empowers the control of the image generation process through
multi-object multi-modal prompts.

Abstract. The field of text-to-image generation has witnessed substan-
tial advancements in the preceding years, allowing the generation of high-
quality images based solely on text prompts. However, accurately de-
scribing objects through text alone is challenging, necessitating the inte-
gration of additional modalities like coordinates and images for more pre-
cise image generation. Existing methods often require fine-tuning or only
support using single object as the constraint, leaving the zero-shot im-
age generation from multi-object multi-modal prompts as an unresolved
challenge. In this paper, we propose MultiGen, a novel method designed
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to address this problem. Given an image-text pair, we obtain object-
level text, coordinates and images, and integrate the information into an
“augmented token” for each object. The augmented tokens serve as addi-
tional conditions and are trained alongside text prompts in the diffusion
model, enabling our model to handle multi-object multi-modal prompts.
To manage the absence of modalities during inference, we leverage a co-
ordinate model and a feature model to generate object-level coordinates
and features based on text prompts. Consequently, our method can gen-
erate images from text prompts alone or from various combinations of
multi-modal prompts. Through extensive qualitative and quantitative
experiments, we demonstrate that our method not only outperforms ex-
isting methods but also enables a wide range of tasks.

Keywords: Image generation · Multi-modal prompt · Customization

1 Introduction

The field of image generation, particularly in text-to-image synthesis, has experi-
enced notable advancements in recent years [11,23,26,31]. Existing methods can
generate high-quality images based on given text prompts [26, 28, 31]. However,
text has inherent limitations in accurately describing objects, which restricts
text-to-image models from generating user-specified objects [9, 29]. Therefore,
other modalities need to be introduced as supplements for precise image gen-
eration. Among them, coordinates and images are two important modalities,
corresponding to positions and attributes of objects in an image.

Previous studies have made efforts to incorporate modalities other than
text into image generation. Customized generation methods often fine-tune pre-
trained models using a few object-specific images [9, 14, 29], but this process
is time-consuming due to parameter updates through back propagation. Addi-
tionally, storing extra parameters for each object increases the overall storage
overhead. Recently, some methods explore to introduce image modality in a
zero-shot manner to alleviate these challenges [4,5,15]. However, these methods
typically only support using a single object as the constraint, limiting their ap-
plicability. Furthermore, they often only focus on the fixed combination of text
and image modalities, lacking flexibility. The challenge of utilizing multi-object
multi-modal prompts for zero-shot image generation remains unresolved.

In this paper, we propose a new method called MultiGen to address this
challenge. During the training process, given a pair of image and text, we obtain
object-level information including the text, coordinate, and image for each object
through off-the-shelf open-set detection methods. Subsequently, we integrate the
information into an augmented token for each object. These augmented tokens
serve as additional conditions and are jointly trained with the text prompts in
the diffusion model. By leveraging the augmented tokens, the diffusion model can
accurately generate objects within an image. This approach enables our model
to effectively handle multi-object multi-modal prompts in a zero-shot manner.

However, during the inference process, there may arise challenges related to
missing modalities, such as scenarios where only text modality is provided or
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when multi-modal input is available for only some objects. To address these
missing modalities, we propose to generate these modalities through generation
models. By leveraging the object-level text as conditions, we generate corre-
sponding coordinates and image features for each object. This enables us to
complete the missing modalities in situations where only text modality is avail-
able. As a result, MultiGen can support generation solely from text or from a
combination of text, coordinates, and image modalities. This overcomes the lim-
itation of some existing methods that rely on complete modalities for generation.

We conduct extensive experiments across various scenarios to validate the
promising effectiveness of MultiGen in addressing zero-shot image generation
from multi-modal prompts. Our qualitative experiments demonstrate that Multi-
Gen successfully generates images using various combinations of multi-modal
prompts, while enabling multiple generation applications. Importantly, our model
exhibits successful image generation when a relatively large number of objects
are provided. Furthermore, our quantitative experiments highlight the superior
performance of our method in zero-shot subject-driven generation as well as
text-to-image generation.

2 Related Work

Text-to-Image Generation. Text-to-image generation [13,23,26,28,31,32] has
made unprecedented progress in recent years. These methods have demonstrated
strong capabilities in generating high-quality images based on text prompts.
These advancements are mainly based on diffusion models [6, 11, 35, 37] and
auto-regressive methods [3, 27]. Among them, models based on diffusion have
received significant attention due to high-quality images they generate. Despite
these methods being able to generate high-quality, realistic images, they often
only support using text prompts and are unable to provide more precise control
for image generation through other modalities.
Multi-modal and Customized Generation. Many recent works have ex-
tended text-to-image models to include multi-modal and customized generation.
Some studies have introduced additional conditions to enhance control capa-
bilities [12, 17, 22, 41, 44]. These methods often rely on the provision of extra
modalities or conditions, and cannot generate images when the conditions are
missing. Customized generation methods [9,20,29] typically involve an optimiza-
tion process to enable the model to learn to generate new objects. Although these
methods produce high-quality results, they need lengthy training periods and
involve additional storage expenses to facilitate the generation of new objects.
Some methods enable zero-shot generation by incorporating image modality into
the prompts [4,5,15,34]. However, these methods are limited to generating single
objects and can only accept combined inputs of text and image modalities. Our
method supports image generation leveraging object-level text, coordinates, and
image modalities. Additionally, it can accommodate arbitrary combinations of
modalities. This makes MultiGen an effective and versatile method.
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Fig. 2: Overall pipeline of MultiGen, which is for generating images from multi-
modal prompts. Our method can handle various combinations of different modalities.
When provided with inputs (Sec. 3.1), MultiGen utilizes the multimodal information to
obtain augmented tokens for each object, which are used to generate images. In cases
where some modalities are missing or only textual modality is provided (Sec. 3.2),
MultiGen utilizes the coordinate model to generate coordinates and the feature model
to generate image features, in order to compensate for the missing modalities and
obtain augmented tokens, which are then used to generate images.

3 Method

We propose MultiGen, an image generation model based on the diffusion process
that supports multi-modal prompts by integrating augmented tokens. Given
an image-text pair, we obtain object-level multi-modal information including
text, coordinates, and images. We construct augmented tokens for each object
by incorporating multi-modal information and train them alongside the text
prompts as conditions, enabling our model to generate images from multi-object
multi-modal prompts in a zero-shot manner.

Moreover, during the inference process, there may be cases where certain
modalities are absence, such as only text prompts or incomplete multi-modal
prompts are provided. To address this, we propose to utilize generative models
to generate the missing modalities. By leveraging the object-level texts extracted
from the NLP parser, we generate coordinates and image features for each ob-
ject to complete the missing modalities. Consequently, our model is capable of
generating images by combining various modalities in a flexible manner.

In the following part, we describe the components of MultiGen in detail.

3.1 Image Generation with Augmented Tokens

Diffusion Models. We provide a concise overview of diffusion models, which be-
long to the category of generative model. Diffusion models convert Gaussian noise
into a learned data distribution through an iterative denoising procedure. In ad-
dition to generating images of a distribution unconditionally, diffusion models
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can also be conditional, such as generating images based on text or low-resolution
images. Typically, the mean square error is used as the denoising objective:

L = Ex0,c,ϵ,t(||ϵ− ϵθ(αtx0 + σtϵ, c)||22), (1)

where x0 is the training data, c is the optional condition, ϵ ∼ N (0, I) is the addi-
tive Gaussian noise. t ∼ U([0, 1]), and αt, σt are scalar functions of t. ϵθ represents
the diffusion model with learnable parameters θ. When the x0 is substituted as
z0 = E(x0), where E is a compression model such as Autoencoder, the diffusion
process is trained on a latent space. Compared with high-dimensional pixel space,
the generative model in latent space pays more attention to important semantic
information, and is trained in a lower dimension, so the computational cost is
more efficient. In this paper, for the purpose of saving computing resources, we
train our model on a pre-trained latent diffusion model. For conditional data
sampling from diffusion models, a popular approach is to use classifier-free guid-
ance to adjust the predicted noise:

ϵ̂θ(xt, c) = ωϵθ(xt, c) + (1− ω)ϵθ(xt), (2)

where xt = αtx0 + σtϵ, and ω is a guidance weight.
Multi-Modal Augmented Token. Text-to-image diffusion models usually use
word embedding cw extracted from text prompt p as condition: c = [cw], where
cw = ftext(p), and ftext is a language model. However, the text has a high level
of abstraction and limited information density, making it difficult to describe
objects accurately. Therefore, we introduce two additional modalities to describe
objects, i.e., images and coordinates.

We design our method based on the following principles. Firstly, the multi-
modal information of the same object should be bound together to avoid affecting
other objects or the global condition. Secondly, we aim to maintain the original
structure of the pre-trained text-to-image model as much as possible, enabling
the integration of extensions to the existing model.

We introduce augmented tokens to achieve the required properties. Each
token contains object-level text, coordinate, and image information at the same
time, and is used to describe an object in the generated image. We obtain the
augmented token ai for object i in the following way:

ai = fg
text(pi) + MLPimg(f

g
img(xi)) + MLPcrd(ri), (3)

where fg
text(·) and fg

img(·) represent extracting global embedding from a language
model and image model, respectively. pi is object-level text of object i, xi is
the cropped image corresponding to pi in image x, and ri is the 4-dimensional
coordinates of xi in the image x. MLPimg and MLPcrd are two feed-forward
neural networks for mapping image features and coordinates into the same space
as text. Each MLP consists of two linear layers with a GeLU [10] activation
function in between.

For all objects involved in the image, we obtain such augmented tokens ca =
[a1, ..., an], where n is the number of objects in the image. Then, augmented
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tokens are appended to the text embeddings: c = [cw, ca], and serve as the
sampling condition of the diffusion model for image generation. Our method does
not require changing the architecture of the diffusion model but only changes
the input, maintaining the availability of techniques for building on top of the
diffusion model.
Training Data. In order to train the model, we need to get the object-level data
required for augmented tokens. Specifically, given an image-text pair (x,p), we
need to detect the object i in image x and its corresponding coordinates, to
construct the object-level multi-modal data (xi, pi, ri). Such data can be ob-
tained through off-the-shelf open-set detection methods. Here, we use Ground-
ing DINO [19] to process approximately 100M of data offline. We perform NMS
post-processing on the detected data, set the threshold to 0.7, and limit the
number of detected objects to a maximum of 15. For cases where the number of
objects is less than 15, we pad augmented tokens with zero.

3.2 Handling the Missing Modalities

In the process of inference, acquiring multi-modal information for all objects can
pose challenges. For instance, there may be situations where only text prompts
are available, or only certain objects have their multi-modal information pro-
vided, such as when users desire to merge real objects with generated ones in
an image. Therefore, we propose the utilization of generative models to generate
the missing modalities including coordinates and image features, enabling the
flexible combinations of multiple modalities.
Object Extraction from Text Prompts. When given a text prompt, the task
is to extract the mentioned object from it. Various methods can be employed
for object extraction in text, such as constructing a constituency tree to identify
noun phrases within the prompts or utilizing a large language model for in-
context learning to extract objects. In this case, we utilize the constituency tree
to identify objects in text prompts due to its high accuracy and minimal resource
requirements. Consequently, we obtain the object-level text: po = [p1, ..., pn] =
fparser(p). For the sake of notation simplicity, we will also represent the text
embedding mapped by fg

text(·) as po in the following discussion.
Coordinate Generation. When coordinates are not provided, we generate
them for augmented tokens to indicate positions of objects. Intuitively, with the
text prompt of the image and object-level text, we have sufficient information
to generate the coordinates of objects. In this case, we employ a diffusion model
to generate the coordinates for each object. Formally, given cr = [cw,po], the
goal is to generate reasonable r = [r1, ..., rn] for objects in the image. Thus, the
training objective can be written as

Lcrd = Er0,cr,ϵ,t(||ϵ− ϵθcrd(αtr0 + σtϵ, cr)||22). (4)

Here, the neural network backbone ϵθcrd is implemented as a Transformer model.
It should be noted that since ri and pi have a one-to-one correspondence, to en-
able the network to learn this relationship, we add learnable position embedding
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in these tokens. During the training process, we convert absolute coordinate val-
ues into relative coordinate values to facilitate generation at various resolutions.
Image Feature Generation. In the case that the object-level images are not
given, we generate the corresponding image features based on object-level texts
and coordinates of objects, to complete the missing image feature modality, and
maintain the alignment among augmented tokens. In Sec. ??, we verified the
importance of incorporating image features through ablation study. Given ce =
[cw,po, r] as condition, our aim is to generate image embeddings e = [e1, ..., en]
for objects in the image. We leverage the following objective:

Lfeat = Ee0,ce,ϵ,t(||ϵ− ϵθfeat(αte0 + σtϵ, ce)||22), (5)

where ϵθfeat is also a network based on Transformer. For the conditions po and r,
we follow the form of the augmented token and add r to po after MLP mapping
as the extra condition in addition to cw. Since there exists a one-to-one cor-
respondence between ei and the condition token, we also incorporate learnable
position embeddings for them.

4 Experiments

In this section, we first introduce the detailed setup of experiments, then present
the qualitative and quantitative experimental results. Finally, we conduct de-
tailed ablation studies on MultiGen.

4.1 Experimental Details

Model and Training Details. We employ Stable Diffusion 1.5 [28] as the image
generation diffusion model. The batch size is set to 640. We use AdamW [21] as
the optimizer, with a learning rate of 1e-4, and training is performed for a total
of 100K steps using the cosine scheduler.

The coordinate model and feature model are based on the Transformer archi-
tecture [7, 40]. Each model consists of 24 transformer blocks, with 32 attention
heads and the dimension of 2048. The total parameter count for each model is
approximately 1.2B. Similarly, AdamW is used as the optimizer for the training
of these models, with a learning rate of 1e-4, and the training is conducted for
100K steps from scratch. The overall batch size is set to 4096.

To extract text features, we utilize CLIP ViT-L/14 [25] as the text encoder.
For image feature extraction, we employ SigLIP ViT-SO400M-384 [43] as the
encoder, and for comparison, CLIP ViT-L/14-336 [25] is used.
Datasets Details. We train our model using a combination of internal datasets
and public datasets, which collectively consist of approximately 100M images.
The public datasets used in our training include ImageNet21K [30], WebVi-
sion [16], and a filtered version of the LAION dataset [33]. To ensure data quality,
we remove duplicates, low-resolution images, and those that potentially contain
harmful content from the LAION dataset.
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Fig. 3: Qualitative results of MultiGen under different multi-modal prompt
combinations. MultiGen supports various combinations of modalities as inputs, in-
cluding but not limited to: (1) text only, (2) text and coordinates, (3) text, coordinates,
and images of some objects, (4) text, coordinates, and images of all objects. Even when
provided with 4 object images, MultiGen still generates images successfully.

4.2 Qualitative Results

In this section, we present qualitative results. Due to limited space, we have
included the full results in the supplementary material.
Zero-shot Image Generation from Multi-modal Prompts. In Fig. 3,
we present the main qualitative results of MultiGen. The results demonstrate
the capability of our method in handling different combinations of multimodal
prompts. Our method supports flexible combinations of text modality with coor-
dinate and image modalities. Here, we validate four different scenarios, including
generating images by (1) using only text, (2) using text and coordinates, (3) using
text, coordinates, and images of some objects, and (4) using text, coordinates,
and images of all objects. The results indicate that our method is capable of han-
dling a variety of modality combinations effectively. This makes our approach
applicable to a wide range of tasks, from simple text-to-image generation to
complex tasks which involve placing both real and generated objects at specified
locations within a generated image. Notably, even when given images of multiple
objects, our method is able to generate images effectively while preserving the
original characteristics of the objects.
Comparison of Generation from Single-object Prompts. We compare the
image generation capabilities of various methods when provided with a single
image and a text prompt. We compare MultiGen with InstructPix2Pix [1], BLIP-
Diffusion [15] and Kosmos-G [24] and present the results in Fig. 4. MultiGen dis-
plays several advantages. Firstly, MultiGen is capable of seamlessly blending ob-
jects with the background mentioned in text prompts, without being affected by
the background of the original image. In contrast, we find that InstructPix2Pix
and Kosmos-G tends to preserve the background of the original image while dis-
regarding the text prompt. Although BLIP-Diffusion performs slightly better,
it occasionally faces similar challenges. Secondly, MultiGen exhibits a stronger
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A tower on a mountain

Input Image BLIP-DiffusionInstructP2P Kosmos-G

A dog jumping on a cobblestone street

MultiGen

Fig. 4: Qualitative comparison of zero-shot image generation results from single-
object multi-modal prompts. We compare MultiGen (fifth column) with InstructP2P [1]
(second column), BLIP-Diffusion [15] (third column) and Kosmos-G [24] (fourth col-
umn). While ensuring object fidelity, MultiGen can make changes to objects and back-
grounds according to the requirements of the text prompt.

ability to make reasonable modifications to objects based on the instructions
given in the text prompt. For instance, it successfully generates a jumping dog
or a cat in a nurse suit, whereas other methods struggle with more complex
text prompts. Lastly, MultiGen also demonstrates an advantage in preserving
the fidelity of objects.
Comparison of Generation from Multi-object Prompts. We compare the
capabilities of image generation when provided with multiple images and the text
prompt. We compare MultiGen with Kosmos-G [24] and Emu2 [39], and present
the results in Fig. 5. It is clear that MultiGen exhibits significant advantages.
Firstly, MultiGen does not omit any of the objects when combining multiple
objects. In contrast, Kosmos-G and Emu2 often fail to include all objects in the
scene. For example, when prompted with “A bear next to a bird”, our method
accurately depicts both the bear and the bird in the image, while Kosmos-G
and Emu2 overlook the bird. Similarly, with the prompt “An architecture under
the planet”, MultiGen retains the planet instead of discarding it, unlike Kosmos-
G. Secondly, MultiGen effectively blends the backgrounds of two images. For
instance, when prompted with “An architecture under the planet”, MultiGen
seamlessly integrates the architecture and the planet, whereas the image gen-
erated by Emu2 still contains remnants of the background from the original
architecture image. Lastly, the results produced by MultiGen appear more co-
herent with the prompts. Overall, MultiGen exhibits a significant advantage in
comprehending multi-modal prompts when compared to other existing methods.
Zero-shot Image Customization. Fig. 6 showcases the diverse zero-shot im-
age customization capabilities of MultiGen, utilizing multi-modal prompts. The
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Kosmos-G Emu2 MultiGenInput Image 1 Input Image 2

A bear next to a bird

An architecture under the planet

Fig. 5: Qualitative comparison of zero-shot image generation results from multi-
object multi-modal prompts. We compare MultiGen (fifth column) with Kosmos-G [24]
(third column) and Emu2 [39] (fourth column). When combining images of multiple
objects, it is evident that MultiGen does not result in missing objects. Additionally, it
excels in seamlessly fusing images with backgrounds.

first row exemplifies the ability in artistic stylization, i.e., transforming a pro-
vided object image into various styles as dictated by textual descriptions. The
second row showcases its attribute modification capability, enabling alterations
of object attributes like color and texture via textual descriptions. In the third
row, we show MultiGen is able to re-contextualization, situating the provided
object within different contexts. The final row reveals its skill in accessorization,
allowing the incorporation of a variety of accessories such as hats, clothing, and
glasses, into the given object. Collectively, these results demonstrate the ability
of MultiGen to effectively integrate information from different modalities.
Zero-shot Style Transfer. Since Multigen inherits the original architecture of
stable diffusion, our method can be directly integrated with ControlNet. Such
combination can provide additional structure information to MultiGen, which
enables zero-shot style transfer. In our approach, we utilize PidiNet [38] to ex-
tract the sketch of the structure reference image, which serves as the input to
ControlNet and obtain the structure information. Given such structure infor-
mation provided by ControlNet, we can integrate the features of the reference
image. At this point, the style of the generated image is guided by the feature
embedding provided to MultiGen. We set the coordinates of the reference image
to be the same size as the generated image. Consequently, the reference image
effectively guides the structure image in generating the desired style. In Fig. 7,
we present the outcomes of zero-shot style transfer facilitated by MultiGen. The
results demonstrate that MultiGen can effectively perform zero-shot style trans-
fer, enabling the structure image to acquire the style of a specified reference
image without any additional training.
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Fig. 6: Zero-shot image customization with MultiGen. Our method supports
artistic stylization, attribute modification, re-contextualization, and accessorization
through multi-modal prompts in a zero-shot manner.

4.3 Quantitative Results

Results on DreamBooth Benchmark. We compare MultiGen with Texual
Inversion, DreamBooth, Re-Imagen, and BLIP-Diffusion on DreamBooth bench-
mark. This dataset contains 30 subjects in total, each with 4 to 7 images. There
are 25 prompt templates, and we generate 4 images for each subject-prompt pair,
resulting in 3000 images in total. Since MultiGen is zero-shot and accepts one
input image for each object, we pick one image from the 4 to 7 images provided
by each subject as description image and extract features. We use a classifier-free
guidance scale of 4.0 and 50 DDIM [36] inference steps for sampling.

We follow the setting in DreamBooth [29] and report DINO [2], CLIP-I, and
CLIP-T as evaluation metrics. DINO and CLIP-I reflect the subject fidelity, i.e.,
the preservation of subject details in generated images. While CLIP-T measures
the prompt fidelity, i.e., the image-text alignment.

As shown in Tab. 1, our method outperforms other zero-shot generation
methods, including Re-Imagen and BLIP-Diffusion. It is worth noting that our
method surpasses Textual Inversion without any optimization and with only a
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Fig. 7: MultiGen enables zero-shot style transfer. In the first column, we present
the structure images, and in the first row, we display the reference images. We are able
to transfer the style without any training.

single image input. This indicates that our method exhibits excellent zero-shot
multi-modal generation capabilities.
Results on MS-COCO Benchmark. Our method is capable of supporting
diverse combinations of multimodal prompts, including image generation from
text prompts. To evaluate the effectiveness of our method in generating images
based on text, we conduct experiments on the MS-COCO 2014 validation set [18].
Following the approach of previous studies [28, 31], we randomly sample 30,000
captions for image generation. We set the classifier-free guidance scale to 2.0
and utilize DDIM sampling for 50 steps. Notably, our zero-shot FID achieves
9.84 as shown in Tab. 2, surpassing the performance of the base model SD v1.5
that we employed. This showcases the strong performance of our method in the
text-to-image task while also supporting multi-modal prompts.

4.4 Ablation Studies

In this section, we validate the impact of image feature encoders and image
feature extraction methods on the generation based on image conditions. We also
analyze the capabilities of the image feature model and the coordinate model,
demonstrating their efficacy in tackling the issue of missing modalities. Due to
space limitations, we include this part of work in the supplementary materials.
Different Image Feature Encoders. We observe that the choice of image
encoders for feature extraction significantly impacts the fidelity and quality of
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Table 1: Quantitative comparisons on Dream-
booth Benchmark. MultiGen achieves the best
zero-shot generation performance.

Methods DINO↑ CLIP-I↑ CLIP-T↑
Real Images (Oracle) 0.774 0.885 -

Tuning-based generation

Textual Inversion [9] 0.569 0.780 0.255
DreamBooth [29] 0.668 0.803 0.305
BLIP-Diffusion [15] 0.670 0.805 0.302

Zero-shot generation

Re-Imagen [5] 0.600 0.740 0.270
BLIP-Diffusion [15] 0.594 0.779 0.300
MultiGen 0.615 0.780 0.308

Table 2: Zero-shot text-
to-image generation
FID on MS-COCO vali-
dation set. 30,000 samples
are randomly sampled for
evaluation.

Methods FID↓
GLIDE [23] 12.24
Make-A-Scene [8] 11.84
DALL-E 2 [26] 10.39
Imagen [31] 7.27
Parti [42] 7.23

SD v1.5 [28] 9.93
MultiGen 9.84

image generation. In the main experiments, we utilize SigLIP ViT-SO400M-384,
a CLIP-based model with 400M parameters that achieved an accuracy of 83.2%
on the ImageNet-1k validation set, to extract features. For comparison purposes,
we train another image generation diffusion model using CLIP ViT-L/14-336,
which achieves a zero-shot accuracy of 76.2% on the ImageNet-1k validation set.

Despite similar parameter numbers, SigLIP demonstrates superior represen-
tation ability, resulting in improved generation outcomes. In Fig. 8, we showcase
the generated results using SigLIP and CLIP for image feature extraction in row
(c) and row (d), respectively. It is evident that the model utilizing SigLIP fea-
tures better preserves the attributes of objects in the original image, including
shape, color, material, appearance, etc. This highlights the importance of using
an image encoder with a more effective representation space as a crucial factor
in enhancing image generation from multi-modal prompts.
Different Image Feature Extraction Methods. Another factor that affects
the generation results is the way to extract object-level image features. In gen-
eral, there are two methods to extract these features. The first involves obtaining
the coordinates of objects in the image, subsequently cropping the image based
on these coordinates to yield object-level images, and finally extracting features
from these images. The alternative approach involves extracting the complete
feature map of the original image and then employing feature pooling techniques
to obtain regional features. For example, RoIAlign can be used to pool regional
features from the feature map of the full image through interpolation. In the
main experiments, we leverage the first method, e.g., we directly crop the image
according to the coordinates to obtain the object-level images, then resize them
to the input size of the image encoder for feature extraction.

We compare the two methods and the results are shown in Fig. 8. It can
be seen that the regional features extracted using RoIAlign cannot accurately
restore the attributes of the original object as showing in row(e). The obvious
deviations include color, shape, material, and texture compare with the origi-
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(a)

(b)

(c)

(d)

(e)

Fig. 8: Ablation studies of image encoders and image feature extraction
methods. (a) Randomly sampled original images. (b) Object detection is performed
using open-set detection to identify objects in the images along with their corresponding
texts. (c) Images are generated based on the provided object-level images, texts, and
coordinates, where image features are extracted by SigLIP-SO400M-384. (d) Image
features are extracted by CLIP ViT-L/14-336. (e) Images are generated using regional
features obtained through RoIAlign instead of cropping-based feature extraction.

nal objects. We speculate that this is due to the inherent problem of CLIP’s
local features, as previous research has shown that its local features contain a
considerable amount of noisy activations. Therefore, extracting local features
from the feature map can lead to attribute confusion, resulting in unsatisfactory
generation results. On the other hand, directly extracting global features from
object-level images is a better approach as it avoids the problem of inaccurate
local features in CLIP.

5 Conclusion

In this paper, we present MultiGen, a diffusion-based model capable of gen-
erating images from multi-object multi-modal prompts. By creating augmented
tokens that combine text, image, and coordinate modalities, we enable the model
to generate images based on fine-grained multi-modal prompts, thus enhancing
the capability of image generation. Our model can generate missing modali-
ties through the text modality, allowing our approach to support the flexible
combination of multiple modal inputs. We consider MultiGen as a significant
advancement in zero-shot image generation from multi-modal prompts. Moving
forward, we aim to expand the incorporation of modalities and explore wider
applications based on the proposed MultiGen framework.
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