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1 Introduction

In the main paper, we have introduced GazeXplain, a novel study of visual scan-
path and prediction. It involves an annotation of ground-truth explanations for
diverse eye-tracking datasets related to scanpath, a general model architecture
with an attention-language decoder simultaneously predicting scanpaths and
the corresponding natural language explanations, a novel semantic alignment
mechanism for consistent fixation-explanation alignment, and a cross-dataset
co-training to generalize the scanpath prediction and explanation as well as
overcome data and task-specific biases. Our experimental results demonstrate
that the proposed method achieves competitive performance and strong gener-
alizability. The supplementary materials provide further details and additional
results to support these findings:

1) Sec. [2| elaborates on the specific details of the proposed GazeXplain model,
including the vision-language encoding module and the objective functions.

2) Sec. |3| presents the implementation details regarding the setting of hyperpa-
rameters and the training method of the proposed GazeXplain.

3) Sec. [4] presents supplementary ablation studies conducted on all three eye-
tracking datasets (AiR-D [2]|, OSIE |19], and COCO-Searchl8 [20]). These
studies evaluate the effectiveness of the three key technical components of
our approach:

— Language Decoder for Scanpath Explanations (EXP)
— Semantic Alignment Mechanism (ALN)
— Cross-Dataset Co-training (CT)

4) Sec. presents additional quantitative results by analyzing the generated ex-
planations from various large vision-language models, including our GazeX-
plain. We provide comprehensive experiments on different prompt settings,
with or without observer answers to the prompts, varied training strategies
of competitors, and a more diverse range of eye-tracking datasets. These re-
sults highlight the robustness and effectiveness of our model across various
scenarios.

5) Sec. |§| presents additional qualitative results comparing GazeXplain’s scan-
paths and explanations with those generated by state-of-the-art scanpath
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prediction methods. These results further emphasize the superior perfor-
mance of GazeXplain on the OSIE (free-viewing) and COCO-Search18 (vi-
sual search) datasets, highlighting its adaptability to various real-world vi-
sual tasks.

2 Supplementary Method

We have introduced the novel components of our GazeXplain model architecture
to address the scanpath explanation problem, including an attention-language
decoder, a semantic alignment mechanism, and cross-dataset co-training. In this
section, we elaborate on further details of GazeXplain’s architecture, specifically
focusing on the vision-language encoding process and the objective function used
for training the model (as briefly mentioned in Section 3.2 of the main paper).

2.1 Vision-Language Encoding

GazeXplain adopts a vision encoder and a language encoder to effectively capture
both the inherent visual cues within an image (bottom-up processing) and the
higher-level cognitive influences stemming from the task instructions (top-down
processing).

Vision Encoding. To characterize the bottom-up stimulus-driven attention,
the vision encoding involves the extraction of local image features and refining
the features considering the global context:

To extract local image features, the input image is processed with a pre-
trained convolutional neural network (CNN), such as the well-established ResNet-
50 architecture [7]. The final convolutional-layer outputs of the network are ex-
tracted, denoted as Vi € RE*" where C is the number of channels and h
and w indicate the height and width of the feature map, respectively. The ex-
tracted features represent localized details scattered across the image, providing
a foundational understanding of the visual content.

While V' i captures localized details, it lacks a holistic understanding of the
scene. To address this, GazeXplain employs a Transformer encoder [6{12}/17] that
excels at capturing the relationships between these local features, resulting in the
refined visual features denoted as Vp € R¥*"™ | representing the visual content
independent of the specific task at hand, where d is the feature dimensionality.

Language Encoding. Human visual attention is not solely driven by the raw
visual stimuli. GazeXplain incorporates the influence of task instructions by
accepting a general task description as input. It is formatted as a question, such
as “What do you see in the image?” or “Is there a [search target] in the
image?”

The task instruction is fed through a tokenizer |18|, which breaks it down into
a sequence of meaningful units. The tokens are then processed by a transformer-
based language model, such as the powerful RoOBERTa architecture [11]. This
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stage generates instructional features, denoted as t; € R%ext | where dyey is the
feature dimensionality. Thus, the features t; encapsulate the semantic meaning
and intent conveyed by the task instruction.

Multimodal Integration. Following these independent encoding stages, Gaz-
eXplain merges the bottom-up visual features (V1) and the top-down instruc-
tional features (¢;) through a concatenation operation. This combined repre-
sentation, denoted as V; € R¥" gerves as the foundation for GazeXplain’s
subsequent processing steps, enabling the model to leverage both visual informa-
tion and task-specific guidance for accurate scanpath prediction and explanation
generation.

2.2 Objectives

GazeXplain tackles the dual challenge of predicting scanpaths and generating
explanations concurrently. To achieve this, it employs a combined loss func-
tion that guides the training process and optimizes model performance for both
tasks. Given the ground-truth scanpath {y, Tk}iil and the language explana-
tion {w" }fg{:/l with the length of scanpath K’, where 1, indicates the fixation
position, 7, indicates its duration, and w” is its corresponding explanation, the
final training objective is a combined loss function to optimize for both scanpath
prediction and explanation

;C = ;Cﬁx + Eexp + £aln7 (1)

where Lgy is the standard scanpath prediction loss, Lexp, is the standard language
prediction loss, and L), is the semantic alignment loss as detailed in Section
3.2 of the main paper, which encourages the model to ensure that the gener-
ated explanations exhibit a strong semantic connection with the visual features
associated with each fixation. By carefully balancing these loss terms during
training, GazeXplain not only predicts scanpaths accurately but also generates
explanations that illuminate the rationale behind those fixations.

Scanpath Prediction Loss. Given the ground truth scanpath {y, T;@}f:/l, and
the corresponding duration parameters {mwa,%}f:ll of log-normal distribution
from the output of GazeXplain, the scanpath prediction loss is defined as

K'+1 K’
Lex = — Z log p{ (yklyrs -+ yk—1;0) — Zlong(Tka,a,%;G), (2)
k=1 k=1

where 0 represents the learnable parameters of GazeXplain, logpj is the para-
metric conditioned probability of fixation position y, and log pj, is the paramet-
ric log-normal function [3|. This standard scanpath prediction loss term acts as
a guiding force, encouraging the model to predict fixations that closely resemble
the actual sequence of fixations observed in the ground truth data.
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Language Prediction Loss. This standard language prediction loss term en-
sures that the generated explanations are not only grammatically correct but
also semantically consistent with the predicted scanpath and the provided task
instruction.

K L
1
[’eXp = LK’ ZZ*logp(wﬂgg,t?,wg:@_l;9), (3)
k=1 /¢=1

where @ represents the learnable parameters of GazeXplain, gg and t‘} represents
the encoded integration of visual and textual information mentioned in Section
3.2 of the main paper, w” is the ground truth language explanation of the k-th
fixation with length L and w? represent the ¢-th token of the explanation wF.
This loss term promotes the generation of explanations that accurately reflect

what the model sees at each fixation point.

3 Implementation Details

We adhere to the original dataset splits |3}/12,/21|, maintaining consistency with
prior research. During training, we conduct supervised learning for 8 epochs
using the Adam [8] optimizer with specific hyperparameters: a learning rate
of 4 x 1074, weight decay of 5 x 107°, and batch size of 16. Subsequently, we
integrate self-critical sequence training (SCST) [3l/15] for the remaining 2 epochs
to enhance the model’s ability to sample scanpaths and generate explanations.
In SCST, the learning rate linearly decays from 10~°, with a batch size of 8,
facilitating further refinement of the model’s performance. The minimum and
maximum lengths of the fixations for the generated scanpath are set to 1 and
16, respectively. All compared models are adapted following the same settings
for fairness [3|.

4 Supplementary Ablation Study

In Tab. 3 of the main paper, we have conducted a comprehensive ablation study
on the AiR-D [2] dataset to demonstrate the effectiveness of three key compo-
nents of our proposed GazeXplain: language decoder (EXP), semantic alignment
(ALN), and cross-dataset co-training (CT). In this section, to demonstrate the
generalizability of our GazeXplain model and provide further insights into the
contributions of these components, we conduct comprehensive ablation studies
on all datasets: AiR-D [2], OSIE [19] and COCO-Search18 [20] (see Tab.[1]). Sim-
ilar to the findings reported in Section 4.3 of the main paper, these results show
that EXP, ALN, and CT play complementary roles in significantly enhancing
overall performance on our GazeXplain:

Language Decoder. Across all datasets, incorporating the language decoder
yields significant improvements in scanpath prediction, spatial saliency, and ex-
planation quality. This highlights the importance of explaining fixations for the



Learning to Predict Natural Language Explanations of Visual Scanpaths 5

Table 1: Ablation study for the proposed technical components: language decoder
(EXP), semantic alignment (ALN), and cross-dataset co-training (CT). The best results
are highlighted in bold.

b Modules Scanpath Saliency Explanation 1
AL 5XP ALN CT SM 1 MM 1 SED | SS 1 SemSS + OC 1 NSS 1 AUC 1sAUC+ B4 MR OR
0.337 0.805 8.197 0.274 - 0582 1582 0.794 0.693 195 185 45.0 619
v 0.339 0.805 8.216 0.280 -  0.614 1.674 0.806 0.706 27.6 205 50.1 91.9
srnf Y Y 0.346 0.806 8.250 0.284 -  0.631 1.733 0.807 0.713 30.4 21.7 51.6 115.1
v 0.356 0.812 7.834 0.292 - 0.582 1.597 0.781 0.688 18.6 18.1 44.4 66.7
v v' 0.378 0.819 7.693 0.299 - 0.647 1.797 0.806 0.713 27.7 20.6 50.3 97.3
v v v 0.386 0.817 7.489 0.308 - 0.662 1.851 0.808 0.719 30.7 21.9 51.7 123.1
0.364 0.804 7.588 0.301 -  0.674 2.272 0.805 0.754 13.9 142 38.6 24.0
v 0.366 0.803 7.561 0.312 -  0.701 2.380 0.824 0.768 124 165 40.2 23.6
oswi] Y 0.369 0.804 7.633 0.315 -  0.728 2.414 0.826 0.769 16.1 17.4 41.7 37.4
v' 0.358 0.804 7.431 0.305 - 0.682 2.304 0.807 0.755 13.7 14.2 39.0 26.2
v v'0.372 0.805 7.392 0.314 - 0.730 2.471 0.829 0.776 15.7 20.4 41.7 37.2
v v v 0.380 0.806 7.228 0.317 - 0.748 2.530 0.839 0.786 16.7 21.1 42.0 48.6
0415 0.791 2.043 0477 0387 0.662 2.859 0.864 0.772 22.0 194 48.6 69.9
coCco- v 0.433 0.795 2.122 0.499 0407 0.718 3.074 0.891 0.808 23.3 154 524 1112
Searchl8 v v 0.449 0.798 1983 0.513 0424 0.772 3.208 0.908 0.827 26.0 16.2 542 133.2
Target- v' 0.419 0.800 2.216 0.487 0.385 0.675 2.887 0.874 0.777 22.4 19.0 48.1 67.6
Present |20] v v’ 0.476 0.809 1.966 0.535 0.440 0.804 3.503 0.913 0.831 26.8 18.1 54.5 130.9
v v v 0.480 0.807 1.981 0.541 0.443 0.809 3.529 0.915 0.836 28.2 19.5 55.3 139.6
0.328 0.801 4.430 0.342 0.338 0628 1.737 0.779 0.680 10.2 12.8 39.7 618
coCo- v 0.342 0.806 4.48) 0.352 0.345 0.682 1.891 0.804 0.706 15.6 20.9 43.2 77.0
Searchl8 v v 0.349 0.810 4.409 0.362 0354 0.692 1.948 0.805 0.711 17.2 225 43.8 91.9
Target- v’ 0.345 0.805 4.414 0.359 0.340 0.609 1.739 0.772 0.680 10.2 12.7 39.6 62.2
Absent |20J v v 0.368 0.811 4.282 0.378 0.362 0.704 2.055 0.802 0.712 16.3 26.4 43.2 92.9
v v v 0.373 0.813 4.307 0.382 0.365 0.716 2.089 0.811 0.721 18.5 27.5 44.5 106.5

model to gain a deeper understanding of the underlying visual semantics, leading
to more refined predictions. In particular, when co-training is applied, there is
a consistent improvement in the SM scores (0.01+ on OSIE and 0.02+ on all
datasets) and CIDEr-R scores (11.0 on OSIE and 30.0+ on the other datasets).
Similarly, SS, SemSS, CC, NSS and etc. scores all see a substantial increase
on all the datasets, indicating that explanations enhance the model’s ability to
not only predict fixations accurately but also describe them in a way that is
consistent with human understanding.

Semantic Alignment. Including semantic alignment further enhances perfor-
mance. We observe improvements in most metrics on all the datasets, indicating
that aligning the semantics of fixations with their explanations improves both
the precision of explanations and the accuracy of fixations. Across all datasets,
semantic alignment yields a boost in CIDEr-R scores (about 10.0+ on all the
datasets) and an improvement on almost the scanpath and saliency metric across
all the datasets (0.018 increase of CC on OSIE dataset). This suggests that ensur-
ing semantic coherence between fixations and their corresponding descriptions
not only improves the quality of the explanations themselves but also guides the
model to generate more accurate fixations.
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Cross-Dataset Co-Training. Co-training the model across diverse datasets
consistently improves performance. This is evident from the overall increase
in scores across all metrics on most datasets. Co-training allows the model to
leverage complementary information from various data sources, leading to more
robust scanpath prediction and explanation generation. For instance, on the
COCO-Search18 Target-Present dataset, co-training results in significant im-
provements in both scanpath prediction (SM increases from 0.449 to 0.480) and
explanation quality (CIDEr-R increases from 133.2 to 139.6). This highlights the
effectiveness of co-training in enhancing the model’s generalizability.

Overall, the ablation study highlights the effectiveness of each core compo-
nent in GazeXplain. Language decoding empowers explanation, semantic align-
ment fosters coherence, and cross-dataset co-training promotes generalizability.
By incorporating all three components, GazeXplain achieves superior perfor-
mance in scanpath prediction, saliency prediction, and explanation generation
across diverse datasets.

5 Supplementary Quantitative Results

We have presented comprehensive quantitative results in the main paper, includ-
ing scanpath prediction results, an ablation study of our proposed GazeXplain,
and scanpath explanation results. In this section, we elaborate on further analy-
ses and quantitative results of generated explanations from large vision-language
models, explore the inclusion of observer answers during the training and infer-
ence stages, and investigate cross-dataset training strategies for competitors as
well as the generalizability of GazeXplain across datasets. These analyses serve
as complementary quantitative results to the main paper.

Analyses on the Generated Explanations from Large Vision-Language
Models. In the main paper, we intend to summarize the natural advantages
of model-generated descriptions from large vision-language models (LVLM) over
those labeled by humans, where the former is automatic, cost-effective, scal-
able, and possibly more consistent.To further demonstrate the quality and accu-
racy of the LLaVA [10] generated descriptions in the main paper, we conduct a
systematic evaluation by comparing LLaVA [10] and GPT-4V [13] descriptions
of 201 red-circled COCO-Searchl8 objects with human annotations from Vi-
sual Genome [9], using CIDEr-R (C-R) |16] and Sentence Similarity (SenS) [14]
scores. The experimental result shows that LLaVA generates reasonably accu-
rate descriptions (C-R=110.4, SenS=0.606), better than GPT-4V (C-R=99.1,
SenS=0.592), while GazeXplain generates similarly accurate descriptions (C-
R=106.3, SenS=0.590). This demonstrates that LLaVA generates more reason-
able descriptions aligned with human annotations, and our GazeXplain has a
similar ability to describe fixation positions by learning from the curated dataset.

This work establishes the foundation for modeling scanpath explanations by
utilizing LLaVA-generated explanations. However, there are some limitations to
the LLaVA-generated explanations. For example, rephrased LLaVA outputs exist
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due to the variability of fixations in the same region, and our manual corrections
addressed outliers (less than 0.58%).

Exploration of Observer Answer. The AiR-D (VQA) dataset collects ob-
servers’ answer during eye-tracking [24], which can be different from the ground-
truth. This creates a new scenario for training scanpath models to be aware of
task performance. As shown in Tab. 2] GazeXplain can flexibly handle different
scenarios w/ or w/o observer answers: 1. When a particular observer’s answer
is present, it predicts the observer’s scanpaths. 2. When the answer is absent,
it predicts general scanpaths. The main paper presents the first scenario, where
SM=0.386 and NSS=1.851. Removing the answer from the test set results in a
similar performance (SM=0.385, NSS=1.845). Removing the answers from both
the training and test sets leads to a slight decrease (SM=0.380, NSS=1.810),
but it still outperforms the compared models. This demonstrates GazeXplain’s
ability to capture inter-observer attention variations and provide a flexible inter-
face for predicting either observer-specific scanpath patterns or general scanpath
patterns.

Table 2: Ablation study on AiR-D |2| for the absence of observer answers in the
training set and/or the test set. The best results are highlighted in bold.

Answer Absent Scanpath Saliency
Training Test SM 1 MM 1 SED | SS+ CC 1 NSS 1 AUC 1 sAUC 1t
0.386 0.817 7.489 0.308 0.662 1.851 0.808 0.719 123.1

v 0.385 0.816 7.539 0.310 0.659 1.845 0.805 0.717 119.6
v v’ 0.380 0.817 7.684 0.307 0.653 1.810 0.801 0.711 114.4

CIDEr-R +

Cross-Dataset Training for Competitors. To investigate whether retraining
other models (ChenLSTM [3] and Gazeformer [12]) on more datasets can improve
their performance, we adjusted the settings of these models to be trained on
various scanpath datasets. As shown in Tab. [3} directly combining all training
datasets results in lower performance compared to single-dataset training. This
suggests the challenge of leveraging data from distinct tasks and settings in
training. However, GazeXplain can address this challenge due to its unique model
design and co-training strategy.

Generalizability across Datasets. To demonstrate the generalizability across
different datasets, we also consider the COCO-FreeView [5] and WebSaliency |[1]
datasets. COCO-FreeView [5] enlarges the scale of free-viewing eye fixations,
offering a more appropriate testbed for free-viewing scenarios. WebSaliency |[1]
extends the scope of natural image analysis to include webpage images and
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Table 3: Ablation study on the cross-dataset training strategy for all the datasets
(AiR-D |2], OSIE [19], and COCO-Search18 [20]). The best results are highlighted in
bold. T indicates the model trained with the cross-dataset training strategy.

Method SM 1 NSS 1
(Tcross-dataset training) AiR-D OSIE TP TA AiR-D OSIE TP TA
ChenLSTM ¥ 0.325 0.344 0.358 0.333 1.790 2.406 2.694 1.819
Gazeformer 0.356 0.358 0.419 0.345 1.597 2.304 2.887 1.739
ChenLSTM 0.350 0.377 0.448 0.366 1.727 2.488 3.376 2.036
Gazeformer 0.357 0.372 0.433 0.354 1.512 2.308 2.990 1.837
GazeXplain | 0.386 0.380 0.480 0.373 1.851 2.530 3.529 2.089

Table 4: Scanpath prediction results on two additional datasets (COCO-FreeView 5]
and WebSaliency [1]). The best results are highlighted in bold.

Scanpath Saliency

Dataset ‘ Method
\ SM 1t MM 1 SED | SS 71 |CC 1 NSS 1 AUC 1 sAUC

COCO.  |Human 0340 0.814 12782 0.325[0.830 1.998 0.869 0.719

FreeView ChenLLSTM 0.360 0.827 12.243 0.351|0.790 1.879 0.820 0.692
[5] Gazeformer 0.364 0.826 12.207 0.349|0.790 1.850 0.822 0.692
GazeXplain 0.375 0.828 12.125 0.353|0.804 1.909 0.832 0.701

‘Human 0.331 0.838 18.858 0.213‘0.819 1.720 0.842 0.768

ChenLLSTM 0.302 0.819 16.927 0.199|0.746 1.348 0.775 0.679
Gazeformer 0.284 0.831 17.106 0.218|0.714 1.328 0.777 0.702
GazeXplain 0.329 0.828 16.820 0.217 |0.754 1.516 0.789 0.715

WebSaliency
L

graphic designs, ensuring a thorough evaluation of our model’s generalizability
to non-natural images, which often contain a mix of text, images, logos, and
banners. As shown in Tab. [d] GazeXplain consistently outperforms the competi-
tors across all datasets, demonstrating promising performance in both scanpath
metrics and saliency metrics.

6 Supplementary Qualitative Results

In addition to the qualitative examples presented in Fig. 5 of the main paper, we
present more qualitative results, involving a thorough comparison of the Gaze-
former model, GazeXplain, and human ground truth, covering a range of visual
tasks based on the OSIE [19], COCO-Search18 Target-Present |20] and Target-
Absent |20] datasets. GazeXplain consistently enhances the capability to predict
fixations on key objects in these diverse tasks. These qualitative examples demon-
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Gazeformer GazeXplain Ground Truth

Q: What do you see in in the image?
3: There are two

people walking on
abeach.

2: There are two
people walking on
a beach.

1: There is a
model of a
sailboat.

8: There is a
sailboat on the
water.

9: There is a
model of a
sailboat.

8: There is a large
sailboat on the
water.

Q: What do you see in in the image?

3: There is a plate
of food being held
by a person.

1: There is a man
wearing
sunglasses and
eating food.

5: There is a
woman holding a
plate of food.

10: There is a
‘woman sitting on
the grass, reading
a book.

6: There is a
woman holding a
bowl of food.

8: There is a man
eating a sandwich.

Q: What do you see in in the image?
2: There is a baby
wearing a yellow
hat.

3: There is a
young child

~ wearing a yellow
hat and a white

=) shirt.

- 7: Thereisa P& - 10: Thereisa
young boy sitting 4 % > young man with a
on the ground with S NPT ¢ surprised

a young boy. ~“. expression.

4: There is a

young boy with a
surprised

expression. \

~ 9:Thereisa
yellow sponge and
a green sponge on
-2 awhite surface.

Fig.1: Quantitative examples from GazeXplain compared to Gazeformer and the
ground truth on the OSIE dataset. Each row shows scanpaths and explanations of
two key fixations.

strate the potential of our GazeXplain model as a promising and interpretable
tool for unraveling the mechanisms of visual perception and attention.

Results on OSIE Dataset. Fig.[I] presents qualitative examples on the OSIE
(free-viewing) dataset . Free-viewing tasks involve natural scene exploration,
where observers freely gaze at a stimulus without explicit instructions. Under-
standing these gaze patterns is crucial for tasks like scene understanding and
image retrieval. Our qualitative observations from Fig. [I] demonstrate GazeX-
plain’s effectiveness in free-viewing scenarios.

We observe GazeXplain’s improved ability to predict and explain fixations on
salient objects. In Fig. [Th, GazeXplain accurately identifies the two people in the
bottom-left corner, mimicking human focus on social elements within a scene.
Similarly, Fig. [[p and Fig. [[k demonstrate the model’s ability to detect people
(a woman and a young boy) that naturally attract human attention during
free-viewing. This alignment with human gaze patterns highlights GazeXplain’s
capability of capturing the semantic-level saliency.

Beyond fixation prediction, GazeXplain also generates accurate explanations
for these fixations. Compared to Gazeformer, GazeXplain offers more precise
and semantically relevant narratives. For instance, Gazeformer makes errors in
all three examples: In Fig. [Th, it mistakenly describes a real sailboat as a “model
of a sailboat.” Similarly, it assigns incorrect genders and objects in Fig. and
Fig.[Ik. In contrast, GazeXplain provides accurate descriptions, demonstrating a
deeper semantic understanding of the scene. This is particularly evident in com-
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Gazeformer GazeXplain Ground Truth
(a) Q: Is there a potted plant in the image? A: Yes.
1: There is a cat is 2: There is a 1: There is a
g sitting on a piano - computer monitor g computer monitor
keyboard. 4 on a desk. 4 on a desk.
2: There is a black 3: There is a 2: There is a small
box with a white potted plant. potted plant.

lid.

Q: Is there a potted plant in the image? A: No.
2: There is a
dining table with
chairs in a living
room.
4: There is a lamp
on a nightstand
next to a bed.

2: There is a desk
with a lamp and a
chair.

1: There is a
brown colored hair
color.

4: There is a white
lamp on a
nightstand next to a
bed.

2: There is a chair
with a book on it.

Q: Is there a fork in the image? A: Yes.

1: There is a
painting of a man
with a hat on.

1: There is a plate
of food on a table.

1: There is a piece
of pineapple on a
plate.

\

3: There is a black
cup with a white
background.

3: There is a fork
on a table.

3: There is a fork
placed on a table.

Q: Is there a fork in the image? A: No.
2: There is a dining

S table with chairs

\ I 2 around it, and a
0 | .
‘.l o ll. Ea‘ vase with flowers
/A ¥

2: There is a
laptop on a table in
a living room.

2: There is a man
sitting at a desk
with a laptop.
on it.

% 5: There is a laptop
| g computer on a

kitchen island.

4: There is a
kitchen with a
microwave.

4: There is a
dining table with
chairs around it.

Fig. 2: Quantitative examples from GazeXplain compared to Gazeformer and the
ground truth on the COCO-Search18 dataset. Each row shows scanpaths and explana-
tions of two key fixations.

plex scenes with multiple people (e.g., Fig. and Fig. )7 where GazeXplain
successfully distinguishes between individuals. These instances highlight Gaz-
eXplain’s success in melding visual exploration with semantic insight to predict
more accurate scanpaths and explanations.

Results on COCO-Search18 Datasets. Fig. [2] presents a qualitative com-
parison on the COCO-Search18 Target-Present and Target-Absent datasets,
which feature an object search task — finding a specific target object within an
image. Our qualitative observations from Fig. [2| demonstrate GazeXplain’s ef-
fectiveness in modeling these gaze patterns.

We observe that GazeXplain accurately predicts fixations on image regions
likely to contain the target object, mimicking human search strategies. For in-
stance, when searching for a potted plant (see Fig. [2a and Fig. ), GazeXplain
focuses on areas where a plant might typically be placed, such as the desk, floor,
table, and nightstand. Similarly, in the search for a fork (see Fig.[2c and Fig. ),
the model actively explores the table, a common location for forks. This align-
ment with human search behavior highlights GazeXplain’s ability to capture the
cognitive process behind object search.

Beyond fixation prediction, GazeXplain’s explanations are semantically aligned
with the fixated objects, providing insight into the model’s reasoning process.
This is in contrast to Gazeformer, which often generates inaccurate descriptions
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(all four examples in Fig. [2). For example, GazeXplain effectively explains its
fixations while searching for the plant (e.g., “desk” in Fig. [2a, or “nightstand” in
Fig. ), whereas Gazeformer makes irrelevant suggestions (e.g. “cat” and “pi-
ano keyboard” in Fig. [2p or “hair” in Fig. ) Similarly, GazeXplain offers clear
explanations during the fork search (e.g., “table” in both Fig. 2k and Fig. 2{),
while Gazeformer struggles (referring to non-existent objects, e.g., Fig. [2c: “a
painting of a man with a hat on” and Fig. 2ld: “a man sitting at a desk with
a laptop,”). These results highlight GazeXplain’s capability to not only predict
search fixations accurately but also to explain the rationale behind them.
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