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1 Introduction

In our main paper, we have presented Counterfactual Bias-Robust Reasoning
(CoBRa) a novel counterfactual visual reasoning dataset with paired exam-
ples and rich annotations of reasoning processes, and Chain of Counterfactual
Thought (CoCT), a bias-robust chain-of-thought (CoT) method that employs
counterfactual thinking for improved generalizability for large vision-language
models (LVLMs). Both of them address the knowledge bias hidden in LVLMs
and contribute to better generalizability across different scenarios. The supple-
mentary material provides additional experimental results and implementation
details of our proposed work:

1. Sec. 2 details the construction process of the CoBRa dataset, offering insights
into its design, including knowledge representations, knowledge editing rules,
reasoning functions, and the generation of questions, answers, and counter-
factual images.

2. Sec. 3 expands on the implementation details of CoCT, particularly focusing
on training the TLM for predicting bias-robust reasoning processes.

3. Sec. 4 provides additional experimental analyses, including (1) model per-
formance on other comprehensive LVLM benchmarks, (2) impacts of the
number of in-context examples on model performance, and (3) additional
qualitative examples demonstrating the CoCT prompts based on in-context
examples from our CoBRa dataset.

2 CoBRa Dataset Creation

To supplement the main paper’s introduction of CoBRa’s automated generation
pipeline, this section delves into the core components that enable its functional-
ity. These include: (1) a unique knowledge graph representation for both visual
and knowledge features, (2) a set of graph editing rules for manipulating the
knowledge graph to create counterfactuals, (3) reasoning functions that sample
questions based on the graph, (4) a question engine that generates question-
answer pairs, and (5) diffusion models used for inpainting counterfactual images.
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2.1 Knowledge Representations

CoBRa utilizes a unique knowledge graph representation for both visual and
knowledge features. This approach leverages a well-established knowledge base
and explicitly defined symbolic reasoning to create image-question pairs with as-
sured consistency and integrity, enabling precise control over the knowledge dis-
tribution within the dataset. The process consists of the following steps: First, we
curate a diverse set of base images from the established Wikipedia-based Image
Text Dataset (WIT) [15]. Visual knowledge is then extracted from these images
and their accompanying captions. This extraction utilizes an off-the-shelf scene
graph generation method, namely MSDN [9]. The resulting structure is a graph
where each node represents an entity, and the edges depict relationships between
them. Additionally, following [16,17], each element (entity or relationship) within
the graph is enriched with both visual and linguistic features. Auxiliary labels
are attached to provide contextual information, including Part-of-Speech (POS)
tags and Structural labels (TAG) parsed from captions generated by an off-the-
shelf graph-to-caption model (i.e., ASC2C [1]). These tags serve as constraints
used in the knowledge editing to enforce the edited knowledge entities to share
the same POS and TAG as the original ones.

This comprehensive knowledge graph representation empowers CoBRa with
two key capabilities: It enables the use of predefined rules to automatically mod-
ify the knowledge graph, facilitating the creation of counterfactual examples
(e.g ., altering “dog-on-horse” to “horse-on-dog”). In addition, diverse VQA ques-
tions can be generated based on the knowledge graph using pre-defined reasoning
functions (e.g ., “Is the dog larger than the horse?”). Therefore, by controlling the
knowledge representation, CoBRa ensures the generation of counterfactual ex-
amples while maintaining the integrity of the visual scene and the reasoning
processes underlying the question-answering.

2.2 Knowledge Editing Rules

To balance the potentially biased knowledge distributions, our approach involves
generating counterfactual variants of the base images and their correspond-
ing knowledge representations. This deliberate modification, guided by multiple
knowledge editing rules, introduces knowledge shifts, providing a robust training
and evaluation platform for models to develop and assess their resistance to bias.
The following are concrete definitions of the knowledge editing rules.

– addEntity: This rule adds a random entity to the scene.
– addRelationship: This rule randomly selects two entities and adds a valid

relationship between them.
– addProperty: This rule randomly selects an entity and adds a valid prop-

erty to it.
– removeEntity: This rule removes a random entity from the scene.
– removeRelationship: This rule randomly selects two entities and removes

one relationship between them.
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– removeProperty: This rule randomly selects an entity and removes a valid
property of it.

– replaceEntityClass: This rule randomly replaces an entity with an alter-
native one. For example, “dog-on-horse” to “dog-on-wall”.

– replaceEntityProperty: This rule randomly replaces a property of an en-
tity. For example, from “mouse-hasSize-small” to “mouse-hasSize-large”.

– replaceEntityRelationship: This rule randomly replaces a relationship
between two entities. For example, from “man-drive-car” to “man-pull-car”.

– invertRelationship: This rule inverts the order of the two entities con-
nected by a relationship. For example, from “dog-on-horse” to “horse-on-dog”.

– swapProperty: This rule swaps the property of two entities. For example,
from “mouse-hasSize-small, elephant-hasSize-large” to “mouse-hasSize-small,
element-hasSize-large”)

This comprehensive approach not only enhances dataset diversity by incorpo-
rating multiple sources but also structures modifications to ensure a meaningful
evaluation of model robustness in the face of knowledge shifts and bias.

2.3 Reasoning Functions

To facilitate automatic reasoning over the knowledge graph and the generation
of example questions and answers, we leverage symbolic reasoning functions orig-
inally introduced in XNM [14]. Differently, we extend the attention mechanism
of XNM to operate over visual regions while simultaneously performing logical
operations on the symbolic labels (e.g ., POS and TAG) associated with entities
within the knowledge graph. This approach bridges the gap between implicit
visual-linguistic features and explicit conceptual knowledge.

The following definitions detail the reasoning functions used in our approach.
Functions 1-5 (i.e., Compare, Identify, Describe, Classify, Count) are closely
relevant to question types while Functions 6-11 (i.e., Count, Relate, Filter, Find,
And, Or, Not) are more general intermediate steps. Here, A and B represent
entities, while a, b are properties of A,B, respectively, r indicates the relationship
between two entities, and G symbolizes the knowledge graph.

1. Compare: This function involves comparing two entities based on specified
properties. It randomly selects properties a and b from the entities A and B,
respectively, and generates a question that prompts a comparison between
the selected properties.

2. Identify: This function focuses on checking the presence of specified proper-
ties of an entity. It randomly selects property a from entity A and generates a
question that inquires about the existence of that property within the entity.

3. Describe: This function aims to summarize or describe the property or
relationships of entities. It randomly selects property a from entity A or
a relationship r between two entities, generating a question that solicits a
summary or description of that property or relationship.
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Fig. 1: This example shows a counterfactual scenario. The original image depicts the
Battle of Jackson, Mississippi. However, through image inpainting, the building in the
center has been altered to resemble the White House in Washington D.C. This change
results in a different answer to the question asked: “Did this happen in Mississippi?”

4. Classify: This function involves checking for overlaps or similarities of the
properties between a source entity and multiple target entities. It randomly
selects all the properties {a}i of a source entity A, and properties from
target entity candidates (B,C,D, etc.), generating a question that classifies
the source entity into the most probable target.

5. Count: This function pertains to arithmetic inference and sums over the
number of attended entities in Graph G. It generates a question that re-
quires arithmetic operations on the entities with specified properties or re-
lationships, fostering reasoning involving numerical relationships.

6. Relate: This function introduces relational reasoning by exploring connec-
tions or associations between different properties within an entity or across
entities.

7. Filter: This function involves isolating specific properties or entities based
on certain criteria. It encourages reasoning about selective information ex-
traction, contributing to a nuanced understanding of relevant details in the
scene.

8. Find: This function explores specific entities, properties, or relationships. It
enhances reasoning about the localization of particular elements, contribut-
ing to a more comprehensive assessment of knowledge reasoning skills.

9-11. And / Or / Not: These functions support the logical operations upon the
output of existing functions. It facilitates the generation of questions with
better compositionality.

By employing these reasoning functions and strategically combining them
(as introduced in Sec. 2.4), we enable the generation of diverse questions and
answers that require different reasoning skills.

2.4 Question Generation

This section details our approach to generating questions and answers for both
original and counterfactual examples. We leverage our systematically designed
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reasoning functions and question templates inspired by Zhang et al . [22]. The
core idea lies in strategically matching these question templates with specific pa-
rameters sampled from the knowledge graph. These parameters include entities
(e.g ., “dog,” “house”), their properties (e.g ., “color,” “size”), and the relationships
between them (e.g ., “on,” “in”). By plugging these parameters into the templates,
we generate grammatically correct and semantically meaningful questions that
demand different reasoning abilities.

For instance, consider the example in Fig. 1. The question “Did this happen
in Mississippi?” appears simple, but it involves a sequence of reasoning steps
represented by the following parameterized functions:

1. Find (all): Identify all relevant entities.
2. Relate (locationOf): Establish the relationship between the entity and its

location.
3. Identify (Mississippi): Specify the target location.

Matching parameterized reasoning functions with question templates benefits
flexible and controllable question generation: The same function (e.g ., Find) can
be used with different parameters to target various entities within the scene. By
selecting specific functions and parameters, we can tailor the generated questions
to assess specific aspects of the model’s reasoning capabilities. This approach
allows us to move beyond simple question templates and create a rich set of
questions that effectively probe the reasoning skills of models trained on our
CoBRa dataset.

2.5 Answer Generation

Ground-truth answers to the generated questions are derived by directly apply-
ing the corresponding symbolic reasoning functions to the knowledge graph. A
crucial aspect is the mapping between specific reasoning functions and the an-
swer types they produce. For example, the “Identify” function would typically
return an entity as the answer, while the “Compare” function might return a
comparison operator (“taller than” or “smaller than”) or a relative size descrip-
tor (“large” or “small”). This mapping ensures that the generated answers align
with the intended question type. Once the appropriate question type is identi-
fied based on the reasoning functions, the functions are applied to the knowledge
graph [22] to retrieve the answer directly from the relevant knowledge entities.
To guarantee the validity and relevance of the ground-truth answer, we retrieve
entities from the knowledge graph that share the same POS tags (e.g . “noun”,
“verb”) and structural labels (TAG) as those associated with the entities in the
question. This ensures that the answer candidates are semantically compatible
with the context of the question.

2.6 Counterfactual Image Generation

This section presents our approach for generating images, specifically counter-
factual scenarios, that challenge potential biases in LVLMs. Here, we leverage
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Fig. 2: This example demonstrates the limitations of current image generation models
in handling counterfactual scenarios. Even with a detailed description specifying a
“super large mouse” and a “tiny elephant,” the model generates an image with typical
sizes. This highlights the challenge of overcoming inherent biases within these models.

the capabilities of diffusion models while mitigating their limitations in handling
unconventional situations.

Our core image generation technique employs Stable Diffusion 2 [13], a state-
of-the-art diffusion model that excels at creating realistic images based on tex-
tual descriptions. Diffusion models often struggle when generating counterfac-
tual scenes that deviate from their learned prior knowledge. As illustrated in
Fig. 2, even detailed prompts specifying entities, properties, and relationships
might result in “stereotypical” outputs (e.g ., a giant mouse is smaller than a tiny
elephant), highlighting the need for improved handling of diverse scenarios.

To achieve image diversification and counterfactual generation, we incorpo-
rate an inpainting method instead of directly generating the whole image from
the knowledge graph. This involves two key steps: First, in the original image,
we localize the object or relationship to replace, using a high-performance object
detection model (i.e., YOLOv8 [6]). Based on the detected objects, depth maps
are estimated to provide the diffusion model with spatial information about the
scene [12]. Next, once the target elements are identified, we retrieve the edited
facts from the knowledge graph with the information about the desired modifi-
cations (e.g ., replacing a small dog with a large one), and compose a detailed
prompt that guides the diffusion model in generating the counterfactual sce-
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nario. The prompt is composed of multiple phrases depicting the class, property,
and relationships to neighboring objects, e.g ., white house, surrounded by
trees, grayscale for Fig. 1.

To further diversify the generated images and explore a broader range of vi-
sual possibilities, we optionally incorporate multiple image-to-image style trans-
fer models such as NNST [5]. These models allow us to modify the style of the
image, independent of their content. This enables the generation of visually dis-
tinct outputs while maintaining the core counterfactual elements specified in the
prompt.

By combining diffusion models with inpainting and optional style transfer,
our approach tackles the challenges of bias, instability, and limited diversity in
image generation from scene descriptions. This comprehensive strategy allows us
to create counterfactual scenarios that challenge biases in LVLMs and facilitate
the development of reasoning capabilities robust to such biases.

3 Translation Language Model (TLM)

In the main paper, we introduced CoCT, a CoT method leveraging TLMs to
generate bias-robust reasoning processes. Here, we delve deeper into the specific
architecture and training objectives employed by the TLM within our proposed
CoCT.

The core of CoCT’s TLM is based on the architecture originally proposed for
bilingual translation with limited parallel data [7,8]. This encoder-decoder archi-
tecture allows languages from both the source and target domains to be projected
into a shared latent space, facilitating reasoning across different modalities. In
CoCT, we formulate the explicit prediction of reasoning functions and param-
eters from the visual-linguistic input as two unsupervised machine translation
tasks. Specifically, we treat the visual-linguistic embeddings as a language in the
source domain, and the functions/parameters as languages in the target domain.
Following conventional TLM training settings, our training adheres to two key
objectives [8]:

Denoising Auto-Encoding Loss. In CoCT, both source domain (visual-
linguistic input) and target domain (reasoning functions and parameters) se-
quences are trained to reconstruct themselves from corrupted versions. Assume
S and T are the sequences from the source and target domain, with a noisy
model C(·) that randomly drops or swaps a token, the denoising auto-encoding
loss is defined as

Lae = Ex∈S [− logPs→s(x|C(x)] + Ey∈T [− logPt→t(y|C(y)], (1)

where Ps→s and Pt→t are the combination of encoder and decoder that operates
on the source and target domain, respectively.
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Back-Translation Loss. The unsupervised problem is converted into a su-
pervised one through iterative back-translation. A naive model [8] is used to
initialize the translation between the source and target domains (e.g ., visual-
linguistic embedding to reasoning functions/parameters, and vice versa). These
models are iteratively optimized, enhancing the overall TLM’s ability to trans-
late between the two domains.

Given the inferred translation from the source language u(x) and that from
the target language v(y), the back-translation loss is defined as

Lbt = Ex∈S [− logPt→s(x|u(x)] + Ey∈T [− logPs→t(y|v(y)], (2)

where Ps→t and Pt→s are the TLM that translates sequences between the source
and target domain. With both losses, we iteratively train a TLM from a naive
encoder-decoder network in an unsupervised manner.

3.1 Combination with Bias-Robustness Loss.

As introduced in the main paper, the final objective function is defined as the
combination of the denoising auto-encoding loss Lae, the back-translation loss
Lbt, and the bias-robust loss Lbr (see Section 4.1 in the main paper):

L = Lbr + Lae + Lbt. (3)

This combined loss function ensures that CoCT prioritizes generating bias-
robust reasoning processes while maintaining the core functionalities of the TLM,
transforming it from a naive encoder-decoder network into a system capable of
extracting bias-robust reasoning processes directly from the input.

4 Supplemental Results

In the main paper, our experimental analyses have focused on demonstrating the
effectiveness of CoCT and its various components in achieving robust reasoning
performance across different scenarios. Here, we extend our analyses by pre-
senting additional experimental results, including (1) a performance comparison
on comprehensive LVLM benchmarks, (2) an ablation study on the number of
in-context examples, and (3) qualitative examples of the CoCT prompts. These
supplemental findings solidify the effectiveness of CoCT in promoting bias-robust
reasoning within LVLMs.

4.1 Results on Comprehensive LVLM Benchmarks

Mitigating knowledge bias is essential for enhancing LVLMs’ reasoning capabili-
ties. As an extension to the evaluations in the main paper, we assess CoCT’s per-
formance on additional datasets: MM-Vet [18], MME [4], MMMU [19]) datasets.
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Table 1: Comparison of model performance on benchmarks that evaluates compre-
hensive reasoning capabilities (i.e., knowledge, compositionality, recognition, etc.).

Method MM-Vet MME MMMU

LLaVA-1.5 31.1 1510.7 37.4
+ AutoCoT [23] 35.9 1534.8 38.5
+ AP [3] 39.4 1519.6 39.3
+ DDCoT [24] 41.8 1568.9 40.6
+ Ours (GQA) 40.8 1556.3 37.6
+ Ours 44.5 1572.9 42.1

GPT-4V 56.8 1409.4 56.8
+ AutoCoT [23] 58.5 1459.2 57.0
+ AP [3] 58.7 1453.2 57.2
+ DDCoT [24] 58.8 1484.5 57.2
+ Ours (GQA) 58.6 1472.8 56.9
+ Ours 59.0 1478.1 57.4

Tab. 1 summarizes the comparative results of various CoT methods applied
to LLaVA-1.5 and GPT-4V. Our method surpasses all CoT-based approaches
on both LVLMs, achieving the best performance on 5 out of 6 benchmarks. It is
only outperformed by DDCoT [24] with GPT-4V on MME, likely due to its ex-
posure to more language tasks during fine-tuning with SQA [11]. These findings
highlight the critical role of bias-robust reasoning in improving the overall rea-
soning abilities of LVLMs. The results also demonstrate the benefits of prompt-
ing with pairs of original and counterfactual in-context examples for reasoning
tasks. The combination of CoBRa and CoCT consistently outperforms the GQA
counterpart, exhibiting the most significant improvement on the MMMU bench-
mark (e.g ., 37.6→42.1 with LLaVA-1.5). This suggests that exposing LVLMs
to diverse scenarios, achieved through counterfactual prompts with step-by-step
reasoning processes, strengthens their ability to reason and mitigates potential
biases learned from internet data.

4.2 Results on C-VQA and VCR

Tab. 2 shows the model performance on VCR [20] and the newly released C-
VQA [21] on query-contemplated counterfactual scenarios. Our CoCT(CoBRa)
significantly improves LLaVA-1.5-7B and GPT-4V performance on VCR and C-
VQA, validating its bias-mitigation and reasoning capabilities in more general
settings.

4.3 Ablation Study on Number of In-Context Examples

To optimize CoCT’s performance, we present an ablation study focusing on the
number of in-context examples used during prompting. This section analyzes how
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Table 2: Comparison of model performance on VCR and C-VQA dataset.

Dataset VCR C-VQA

Method Q→A QA→R Q→AR Num-D. Num-I. Bool

LLaVA-1.5-7B 86.2 88.9 76.1 -23.9 -24.8 -27.7
+CoCT(CoBRa) 86.8 89.3 77.9 -20.7 -24.2 -27.1

GPT-4V 97.6 89.2 77.9 -35.8 -16.1 -17.9
+CoCT(CoBRa) 97.8 89.3 78.2 -33.4 -14.6 -17.4

Table 3: Impacts of different numbers of in-context examples.

# of Examples CoBRa-O CoBRa-C ∆ ↓ HB Bingo SQA

4 68.5 27.1 41.4 29.4 18.8 67.9
8 70.2 30.0 40.2 29.9 18.8 68.7
16 73.8 34.2 39.6 30.8 23.4 70.4
24 76.4 38.3 38.1 32.0 29.8 71.3

this hyperparameter affects the reasoning performance of LVLMs. We evaluate
model performance on CoBRa, HB [10], and Bingo [2] and SQA [11] datasets.

The results of this ablation study are presented in Tab. 3, revealing a general
trend: incorporating more in-context examples can improve reasoning on coun-
terfactual examples. This is likely because a larger number of examples provides
the model with a richer pool of information and reduces the influence of poten-
tial biases within individual examples. However, processing a larger prompt with
more examples naturally takes more computational resources. Besides, many
LVLMs have limitations on the maximum number of tokens allowed in a sin-
gle prompt. To balance these factors, CoCT adopts a setting of 24 in-context
examples. This choice prioritizes achieving good performance while maintaining
reasonable inference time and adhering to common prompt length limitations
within the CoT literature [3, 23]. For a consistent comparison across all experi-
ments, the results presented throughout this work are all based on 24 in-context
examples (12 original-counterfactual pairs).

4.4 Qualitative Examples

In the main paper, we have introduced CoCT’s methodology and its effective-
ness in mitigating bias. Here, we delve deeper with two qualitative examples
(presented in Tab. 4 and Tab. 5) to illustrate how CoCT reasons through chal-
lenging questions.

The example shown in Tab. 4 revisits an example from the methodology
section (Section 4) of the main paper, focusing on the question “Is the baby a
teacher?”. Here is a breakdown of CoCT’s reasoning process: First, CoCT explic-
itly predicts the reasoning process required to answer the question. In this case,
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it identifies the two steps: “Find(baby)” followed by “Relate(teacher)”. Based on
the predicted reasoning process, CoCT finds pairs of original and counterfactual
examples that share similar reasoning functions in diverse scenes (e.g ., a man
holding a basketball vs. a soccer ball, a diesel train vs. a steam train). By ana-
lyzing these diverse scenarios, CoCT combats the potential bias that babies are
primarily associated with learning rather than teaching.

Thie example in Tab. 4 demonstrates CoCT’s ability to answer counting
questions while mitigating bias. The question is “How many cows are there in
the image?” and here is how CoCT tackles this challenge: It first predicts the

Table 4: The CoCT-generated prompt for the question “Is the baby a teacher?” using
two pairs of in-context examples.

Please mimic these examples to answer the test question.

V: Q: Is he shooting a basketball? K: man-shoot-basketball
R: man-wear-red shirt
1. Find(man) shirt-locationOf-text
2. Relate(shoot) basketball-has-“Wilson”
3. Identify(basketball) background-include-spectator
A: Yes spectator-sit in-bleacher

gymnasium-locationOf-indoor
man-play-basketball game

V: Q: Is he shooting a basketball? K: man-hold-soccer ball
R: man-wear-red shirt
1. Find(man) shirt-locationOf-text
2. Relate(shoot) soccer ball-has-colorful pattern
3. Identify(basketball) background-include-spectator
A: No spectator-sit in-bleacher

gymnasium-locationOf-indoor
man-play-sport

V: Q: What is the type of this K: diesel locomotive-has-“9724”
train, diesel or steam? railway track-is-straight
R: train-composedOf-cargo
1. Find(train) locomotive-paintedIn-red/yellow
2. Relate(poweredBy) cargo-load-materials
3. Identify(diesel) building-locationOf-gabled roof
A: Diesel Train building-locationOf-railway track

people-locationOf-train
mountain-behind-tree
trees-line-railway tracks
sky-above-scene

V: Q: What is the type of this K: steam locomotive-emit-smoke
train, diesel or steam? railway track-is-straight
R: train-on-railway track
1. Find(train) train-paintedIn-black and yellow
2. Relate(poweredBy) trees-line-railway tracks
3. Identify(diesel) building-locationOf-gabled roof
A: Steam Train building-locationOf-railway track

people-standOn-train
mountain-behind-tree
sky-above-scene

V: Q: Is the baby a teacher?

GPT-4V: Yes

R:
1. Find(baby)
2. Relate(teacher)
3. Identify()
A:
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Table 5: The CoCT-generated prompt for the question “Is the baby a teacher?” using
two pairs of in-context examples.

Please mimic these examples to answer the test question.

V: Q: How many frogs are there K: frog1-leftOf-frog2
in the image? frog1-topOf-frog3
R: frog3-leftOf-frog4
1. Find(frog) frog2-topOf-frog4
2. Count() frog3-topOf-frog5
A: 6 frog5-leftOf-frog6

frog4-topOf-frog6

V: Q: How many frogs are there K: frog1-leftOf-frog2
in the image? frog1-topOf-frog3
R: frog3-leftOf-frog4
1. Find(frog) frog2-topOf-frog4
2. Count() frog3-topOf-frog5
A: 6 frog5-leftOf-snake

frog4-topOf-snake
frog3-hasColor-light green

V: Q: How many butterflies are there K: butterfly1-leftOf-butterfly2
in the image? butterfly1-topOf-butterfly3
R: butterfly3-leftOf-butterfly4
1. Find(butterfly) butterfly2-topOf-butterfly4
2. Count()
A: 4

V: Q: How many butterflies are there K: butterfly1-leftOf-butterfly2
in the image? butterfly1-topOf-maple leaves
R: maple leaves-leftOf-butterfly4
1. Find(butterfly) butterfly2-topOf-butterfly4
2. Count() maple leaves-hasColor-red
A: 3

V: Q: How many cows are there

GPT-4V: 1

in the image?
R:
1. Find(cow)
2. Count()
A:

reasoning process as “Find(cow)” by “Count()” for the target object (cow). CoCT
then selects in-context examples requiring the reasoning process of identifying
and counting similar objects (e.g ., frogs and butterflies) amidst distractions. By
scrutinizing the examples and observing how the model differentiates between
target objects and distractions, CoCT learns to focus on the relevant objects
and avoid biases that might lead to miscounting due to the presence of other
objects.

These examples demonstrate two important aspects of CoCT’s role in pro-
moting bias-robust reasoning: It effectively identifies in-context examples similar
to the test examples in terms of the reasoning process, and combats potential
biases by exposing the model to diverse counterfactual examples.
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