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Overview

– Section A: Details of the datasets
– Section B: Implementation details about the hyperparameters and training

schedule
– Section C: Additional ablation for our framework
– Section D: Results on additional splits and tasks.
– Section E: Supportive algorithm and diagrams
– Section F: Detailed comparison with related prior work

A Dataset Details

All datasets used in our study are publicly available. We utilize only the action
class labels from these datasets.
Diving48 [17] includes 48 action classes of diving actions. Each sequence is de-
fined by a combination of takeoff (dive groups), movements in flight (somersaults
and/or twists), and entry (dive positions). We utilize the V2 set of annotations,
which is a cleaner version.
FineGym [22] provides challenging fine-grained action classes of various gym-
nastic events. Some samples from this dataset are shown in Fig. 1. Apart from
FineGym99 and FineGym288 mentioned in the main paper, we also present
results within each of the event subsets, as used in recent work [24].
Vault (VT) [22] contains 6 action classes from the Vault event. Its training/test
split contains 1k/0.5k videos.
Floor (FX) [22] includes 35 action classes from the ‘Floor Exercise’ event. Its
training/test split contains 5.3k/2.2k videos.
UB-S1 [22] comprises 15 action classes covering videos of different types of
circles around the bars. Its training/test split contains 3.5k/1.5k videos.
FX-S1 [22] is a subset of the Floor Exercise (FX) set, covering 11 actions related
to leaps, jumps, and hops. Its training/test split contains 1.9k/0.7k videos.
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FineDiving [29] includes approximately 3k videos covering 52 action classes
from Diving sequences. This dataset focuses on the problem of action quality
assessment, providing annotations for steps and scores. However, we utilize only
the ‘action’ annotations in our work.
Kinetics400 [3] contains more general human actions collected from YouTube.
It covers 400 action classes, with a training/validation split of 240k/20k videos.
Something-Something V2 [12] focuses on actions related to hand-object in-
teractions. We utilize a split from prior work [23, 33], which covers 82k training
and 12k test videos.
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Fig. 1: Samples from the FineGym Dataset. FineGym offers a range of challenging,
fine-grained action classes derived from gymnastic events. This figure showcases three
action classes from the FineGym288 split. Here, each action class differs in the phase
where different numbers of turns are executed.

B Implementation Details

Network Architecture: Alignability Encoder (fA) is a Video Transformer Net-
work (VTN) [19] architecture following prior work [5,31]. For non-linear project
head g(·) we employ a multilayer perception (MLP) following [6]. For Action En-
coder (fE) we utilize the R2plus1D-18 [25] model by default, which is initialized
with SSL pretraining [8] on the given dataset. For the score mapping function
fS we utilize a 2-layer MLP.
Training: SSL pretraining of fA takes place for 100 epochs. Alignability-verification
based metric learning of fA and training of fE takes 100 epochs. In the self-
training steps, the proposed collaborative PL generation each takes place at
every 5th epoch of labeled training, this process runs for 10 training iterations.
Inference For inference, we only consider the video encoder fE , following a
commonly used protocol [25]. We first obtain clip-level predictions from 10 uni-
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formly sampled clips across the video duration and 3 spatial crops, then average
these predictions to derive a video-level prediction.

B.1 Hyperparameters

SSL pretraining of fA For the Gaussian Infused Temporal Distinctiveness
Loss (LGITDL) (Eq. 1), we set the temperature parameter (τ) to 0.1. Addition-
ally, for the Gaussian prior, we use a peak value (κ) of 0.99 and a standard
deviation (σ) of 0.2.

Alignability-based Metric Learning After SSL pretraining of fA, we freeze
the image encoder and continue training only the temporal encoder of the VTN
architecture. For the computation of softDTW, we set the smoothness parameter
(γ) to 0.001. In the case of the Alignability-based Triplet Loss (LAT ), we use
a default margin (m) of 0.1. Our batch size is set to 96, and we employ a
subsampler in the dataloader to ensure that there are at least two instances
from each sampled action class.

Collaborative Pseudolabeling process To construct the embedding set A
from the labeled dataset, we randomly select ρ = min(15, samples in the class)
samples from each class. For the non-parametric classifier (as detailed in Eq. 8
of the main paper), we set the temperature parameter τ to 0.1. The confidence
threshold θ is established at 0.6.

For our collaborative pseudo-labeling process, only a single forward pass is
sufficient for each video in both Dl and Du to extract their respective features.
Subsequently, the classwise alignability score is computed in parallel on these ex-
tracted features, significantly enhancing the speed of the pseudo-labeling process
and not bottlenecking the speed of the overall PL process.

B.2 Optimization and Training Schedule

To update the parameters of the network, we employ the Adam optimizer [16],
using its default parameters, β1 = 0.9 and β2 = 0.999. For the learning rate
scheduler, we apply a base learning rate of 10−4, accompanied by a linear warmup
over the first 5 epochs, followed by a cosine decay learning rate scheduler.

C Additional Ablations

For additional ablation, we follow the same default setup of the ablation of
the main paper i.e. reporting results on the action recognition task of various
fractions of labeled set of Diving48 dataset with R2plus1D model.
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C.1 Ablation with Triplet Mining Strategies

For our mini-batch sampling, we ensure that each class sampled has at least
two instances. We then calculate the alignment cost (as per Eq. 1 in the main
paper) between each pair of samples within the mini-batch. Samples from the
same class serve as positives, while pairs from different classes are considered
negatives. While all positive pairs are included in our analysis, we explore various
strategies for mining negative pairs in Table 1.

Table 1: Ablation with Triplet loss

Triplet Mining 10% 20%
All Negatives 36.16 58.65
Hard Negatives 37.64 60.40
Hardest Negative only 37.20 60.40

In the first row, where all negative pairs are considered, we observe less
effective learning. This is due to easy negatives (where Dn − Dp < m) that
fail to effectively contribute significantly to the learning process. On the other
hand, mining hard negatives—specifically, considering only those negative pairs
where Dn −Dp > m—and selecting the hardest negative from the mini-batch,
shows improved performance. However, the ‘hardest-negative’ strategy performs
slightly worse than the ‘hard negatives’ in the 10% data scenario, likely due to
the reduced number of available triplets.

C.2 Empirical evidence: suitability of Alignment based distance

We conduct experiments utilizing various distance functions D in Eq. 2 of the
main paper to train fA using our proposed metric learning approach. Given that
our metric learning is centered around a verification task (determining whether a
video pair belongs to the same class), we also report the validation average preci-
sion in Table 2. The findings reveal that the alignment cost(softDTW) markedly
outperforms other distance measures across diverse tasks. Moreover, for fine-
grained action categories, a distance function based on alignment is far more
effective than the standard cosine distance, underscoring our motivation Fig.
1(c) of the main paper.
SSL pretraining of Alignability-encoder fA:

To assess the representation quality of SSL pretraining of fA (Supp. Sec. E),
we conduct additional evaluations on fine-grained video tasks of the PennAction
dataset [32]: Phase Classification and Event Progress, following the protocol
in [11]. These tasks are action-class agnostic and require an understanding of
the action phase.

Results from Table 3 suggest that our proposed Gaussian prior-based frame-
level temporal distinctiveness significantly improves the performance of phase-
level tasks and the overall video-level semi-supervised learning performance on
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Table 2: Ablation of different distance in metric learning

Distance Type AP 10% 20%
cosine- mean 0.57 33.41 53.60
cosine- full seq. 0.48 32.15 52.54
cosine- 4 seg 0.64 34.90 54.51
OTAM [2] 0.68 35.06 56.33
softDTW [7] 0.72 37.64 60.40

Table 3: Ablation: SSL pretraining of fA

SSL PennAction Diving48

Objective Phase Event 10% 20%Classi. Progress
w/o gaussian 0.88 0.87 35.42 58.81
with gaussian 0.93 0.91 37.64 60.40

fine-grained actions. This improvement is attributed to the Gaussian prior, which
enhances temporal coherence (smoothness) in the frame-wise video embedding.

D Additional Results

D.1 Results with ImageNet Pretraining

We additionally present results using the ViT-B backbone, pretrained on Im-
ageNet [10], and apply it to both fine-grained (Diving48) and coarse-grained
(Kinetics400) datasets. These results are presented in Table 4. Our method sur-
passes the performance of the previous approach [27], which employs the same
backbone and pretrained weights.

Table 4: Results with backbone initialization from ImageNet (supervised)

Method Backbone Diving48 Kinetics400
10% 20% 1% 10%

SVFormer-B [27] ViT-B 49.7 71.1 49.1 69.4
Ours ViT-B 54.2 75.7 52.0 71.1

D.2 Results on FineGym subsets

Results on the Standard FineGym99/288 splits, which encompass all four types
of gymnastic events—Vault, Floor Exercise, Balance Beam, and Uneven Bars—are
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Table 5: Comparison with prior work of fine-grained video understanding on Action
Recognition task.

Method % labels Model Init. Data FG99 FG288
D3TW CVPR’19 [4] 100% R(2D+3D)-50 Labeled ImageNet 15.3 14.1
SpeedNet CVPR’20 [1] 100% R(2D+3D)-50 Labeled ImageNet 16.9 15.6
TCN ICRA’18 [21] 100% R(2D+3D)-50 Labeled ImageNet 20.0 17.1
SaL ECCV’16 [18] 100% R(2D+3D)-50 Labeled ImageNet 21.5 19.6
TCC CVPR’19 [11] 100% R(2D+3D)-50 Labeled ImageNet 25.2 20.8
GTA CVPR’21 [13] 100% R(2D+3D)-50 Labeled ImageNet 27.8 24.2
CARL CVPR’22 [5] 100% VTN (R50) Unlabeled ImageNet 41.8 35.2
VSP CVPR’23 [31] 100% VTN (R50) Unlabeled ImageNet 43.1 36.9
VSP-P CVPR’23 [31] 100% VTN (R50) Unlabeled ImageNet 44.6 38.2
VSP-F CVPR’23 [31] 100% VTN (R50) Unlabeled ImageNet 45.7 39.5
Ours(FinePseudo) 5% VTN (R50) Unlabeled ImageNet 41.1 34.4
Ours(FinePseudo) 10% VTN (R50) Unlabeled ImageNet 66.2 56.5

presented. The action classes from these diverse events are semantically dis-
tinct from one another. In our analysis, we treat actions from each event sepa-
rately, adding further complexity to the classification problem. The results are
detailed in Table 6. Initially, we evaluate video self-supervised learning base-
lines: TCLR [8] and VideoMoCo [20]. Subsequently, models initialized with the
weights from [8] are used to assess semi-supervised methods. Our method con-
sistently outperforms previous methods by a significant margin across all splits.
This indicates the superior ability of our semi-supervised approach to distinguish
fine-grained, semantically similar actions within each event set.

Table 6: Results on within set activities of FineGym dataset

Method Vault (VT) Floor (FX) UB-S1 FX-S1
5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

TCLR CVIU’22 [8] 34.2 39.7 41.6 24.0 25.4 57.6 22.5 41.7 60.6 17.9 21.6 34.8
VidMoCo CVPR’21 [20] 32.0 38.9 40.7 22.3 23.6 55.1 19.8 40.3 59.2 14.6 18.9 32.5
PL 34.1 39.9 42.4 23.9 25.7 58.1 22.8 42.3 62.5 17.4 21.5 35.1
TimeBal CVPR’23 [9] 35.7 40.4 43.1 24.6 26.3 59.7 28.6 43.1 63.2 19.2 22.3 35.5
Ours(FinePseudo) 40.8 44.0 47.6 29.2 30.0 63.6 32.4 46.5 67.4 23.5 27.7 39.2

D.3 Comparison with fine-grained video methods

Additionally, we compare our results with previous methods that specialize in
video fine-grained intra-video tasks, as shown in Table 5. Without the need for
extra data, our method surpasses these prior approaches by leveraging only 10%
of the labeled data.
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D.4 Results on Class-agnostic Fine-grained tasks

While our primary focus is on semi-supervised action recognition, we also present
the performance of our alignability encoder fA on class-agnostic fine-grained
tasks such as Phase Classification, Kendall’s Tau, and Event Progress, as pro-
posed by [11]. We evaluate fA directly following SSL pretraining, without the
use of any labeled data. The results, detailed in Table 7, demonstrate that our
method performs favorably compared to those specialized in these tasks. It also
shows the effectiveness of our GITDL-based SSL pretraining in capturing tasks
that are based on intra-video dynamics, such as action-phases.

Table 7: Results on fine-grained tasks of PennAction dataset [32].

Method Label Phase Kendall’s Event
Used Classi. Tau Progress

TCC CVPR’19 [11] Action 0.744 0.641 0.591
GTA CVPR’21 [13] Action - 0.748 -
LAV CVPR’21 [14] Action 0.786 0.684 0.625
SaL ECCV’16 [18] None 0.682 0.474 0.390
TCN ICRA’18 [21] None 0.681 0.542 0.383
CARL CVPR’22 [5] None 0.931 0.985 0.918
VSP CVPR’23 [31] None 0.931 0.986 0.923
Ours (fA) None 0.932 0.992 0.911

D.5 Complementary behavior- VideoSSL methods

To substantiate the claims, we analyze two distinct types of video SSL methods:
(1) TCLR, which focuses on learning video-level representations for high-level
semantic tasks such as action recognition, and (2) CARL, oriented towards learn-
ing frame-level video representations for low-level intra-video tasks like phase
classification.

In our analysis, we utilize publicly available Kinetics400 pre-trained weights
for both TCLR and CARL. We then evaluate their performance on intra-video
tasks using the PennAction dataset [32] and on the video-level action recognition
task with the Diving48 dataset [17], as detailed in Table 8. This comparison
reveals distinct behavioral patterns of the two video SSL methods across these
tasks.

E Method

E.1 SSL pretraining of Alignability encoder

Given the limited scale of labeled data (Dl), our primary objective is to effectively
utilize the extensive scale of unlabeled data (Du) to facilitate the learning of
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Table 8: Complementary behavior of VideoSSL methods.

Method PennAction Diving48
Phase Class. Kendall’s Tau 10% 20%

CARL [5] 0.931 0.985 26.8 47.1
TCLR [8] 0.799 0.821 33.1 53.7

frame-wise video representations in fA, which can useful to identify the action
phase.

Recent advancements in clip-level video self-supervised methods, have shown
promising results in learning powerful representations within a single video in-
stance by employing a temporal-distinctiveness objective [8, 9]. In the stan-
dard clip-level temporal-distinctiveness formulation, within a video instance,
temporally-aligned clips are treated as positive, while temporally-misaligned
clips are considered negative. However, this approach treats each misaligned
timestamp equally negative, regardless of their temporal distance from the an-
chor clip. In the context of frame-level video representations, treating negative
equally loses the frame-wise temporal coherence (smoothness). As established
by prior work [5, 11, 13, 14, 31], it is crucial for capturing intra-video dynam-
ics, such as action phases. To address this and achieve temporal coherence in
learning frame-wise temporal-distinctiveness, we introduce a gaussian kernel to
the negative timestamps. This modification ensures that the weight of a nega-
tive instance increases smoothly (due to gaussian) and proportionally with its
timestamp difference from the anchor.

0 1 2 3 4 5 6 7 8 9 10

4 5 6 7

2 4 6 8

Video

Sparse Samping Dense Sampling

Global Clip

Local Clip

Fig. 2: Clip Sampling in the Proposed GITDL Framework. From a full video V(i), we
sample two types of clips: a global clip G(i), which is sparsely sampled (skip rate =
2), and a local clip L(i), which is densely sampled (skip rate = 1) within the temporal
range of G(i).

Consider a video instance i from which we sample a global clip G and a local
clip L, with L being a subset of G. Both clips are sampled to have exactly T
frames - G through sparse sampling and L through dense sampling (Visual Aid
in Fig. 2). These clips are then fed into the alignability encoder fA and a non-
linear projection layer g(·), resulting in their frame-wise video representations
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{ḡi
t}Tt=1 and {̄lit}Tt=1. Next, we subsample these representations to retain only the

frame-ids present in both clips. This results in temporally corresponding repre-
sentations with T frames {gi

t}Tt=1 and {lit}Tt=1. Our novel objective, Gaussian
Infused Temporal Distinctiveness Learning(GITDL), is formulated as follows:

L(i)
GITDL=−

T∑
t1=1

log
h(l

(i)
t1 ,g

(i)
t1 )∑T

t2=1
t2 ̸=t1

(1− κe−
(t1−t2)2

2σ2 )h(l
(i)
t1 ,g

(i)
t2 )

(1)

Where h(u1,u2) = exp
(

u1
Tu2

∥u1∥∥u2∥τ

)
denotes the function for computing the

similarity between the vectors u1 and u2, and includes a temperature parameter
τ . κ and σ denote the peak value and variance of the gaussian kernel.

We also present an ablation study on phase classification and overall action
recognition in Supp. Sec. C.

E.2 Open-World Semi-Supervised Learning

Standard Semi-Supervised Framework: In the standard semi-supervised
action recognition framework, the dataset consists of two sets:

– Labeled Set (Dl): Includes video instances v(i) and their corresponding
action labels y(i), from a set of predefined classes C.
Formally, Dl = {(v(i),y(i))}Nl

i=1.
– Unlabeled Set (Du): Contains unlabeled video instances that are assumed

to belong to the same set of classes C.
It is defined as Du = {v(i)}Nu

i=1.

Open-World Extension: In the open-world semi-supervised learning frame-
work, we introduce the presence of novel action classes within the unlabeled
data:

– Labeled Set: Remains unchanged, with instances from the known classes
C.

– Unlabeled Set (D′
u): Now includes instances from both the known classes

C and additional novel classes Cnovel. Thus, samples in D′
u may belong to

either C or Cnovel. Represented as D′
u = {v(i)}N

′
u

i=1.

The objective is to improve action recognition for classes in C using both
Dl and D′

u, while effectively handling the label noise from novel class instances
Cnovel in D′

u.
Experimental Setup: For our experiments (Sec 4.4 of main paper) with the
Diving48 dataset, 40 classes are designated as known classes C and the remain-
ing 8 as novel classes Cnovel. This setup tests the model’s ability to not only
accurately recognize actions from the known classes using the available data but
also adapt to the presence of novel class instances.
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F Detailed Comparison to Prior Work

F.1 Utilization of Alignment-Based Objective in Limited Labeled
Setup

To the best of our knowledge, the work most closely related to ours in terms
of utilizing an alignment cost is [2], which employs alignment cost directly to
match queries with a support set in few-shot procedural video classification.

Our approach, however, differs from [2] significantly in several key aspects:

1. Focus on Temporally Fine-Grained Actions: We target temporally
fine-grained actions where learning action phases is crucial, as opposed to
procedural videos. Additionally, our semi-supervised framework leverages a
substantial amount of unlabeled data, whereas [2] confines itself to a few-
shot learning setup without using unlabeled data.

2. Application of Alignability Score: Instead of directly using the align-
ment cost for classification, we introduce a learnable alignability score to
address a binary classification problem, encouraging a focus on intra-video
features. Our concept of ‘alignability’ (determining if two clips are alignable)
contrasts with the approach in [2], which applies alignment cost for multi-
class classification.

3. Temporal Context and Encoder Design: [2] relies on a frame-level
encoder and attempts frame-level alignment without temporal context. In
contrast, our approach employs a frame-wise video encoder, pretrained with
GITDL to grasp action phases before computing the alignment cost, thereby
integrating temporal context into the model.

4. Variant of DTW in [2]: The study in [2] introduces an interesting variant
of Dynamic Time Warping (DTW) with relaxed boundary conditions to find
the optimal path of alignment. We explore this variant in our ablation study
(Table 2). While it proves effective for procedural videos, in our context of
temporally fine-grained actions, we observe that it performs less effectively
than the regular DTW.

F.2 SSL Pretraining - GITDL

To utilize the unlabeled set Du for learning a frame-wise video encoder fA that
focuses on intra-video dynamics such as action phases, we introduce the Gaussian
Infused Temporal Distinctiveness Loss (GITDL). The most closely related SSL
pretraining methods to our GITDL are [5] and [31].

Table 9: Different SSL Objectives for Alignability encoder

SSL pretraining of fA 10% 20%
CARL 36.2 59.3
GITDL 37.6 60.4
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Key differences include:

1. Temporal Distinctiveness in GITDL vs. Temporal Invariance in
CARL: Our GITDL aims to learn explicit ‘temporal distinctiveness’, con-
trasting with the SSL objective of CARL, which promotes ‘temporal invari-
ance’. Mathematically, our loss (Eq. 1) considers only temporally-aligned
frames as positives, whereas [5] treats all frames as positives (Eq. 1 of [5]),
thereby fostering temporal invariance. Moreover, we apply a Gaussian prior
to the negatives of the anchor, while CARL treats all negatives uniformly.
Video as a Process in VSP: VSP( [31]) views videos as a process and
learns through a Brownian bridge with a triplet loss, which differs from our
GITDL.

2. Global and Local Clip Views: Our approach incorporates both global
and local views of a clip, providing more temporal context compared to the
fixed-length clips in [5] and [31]. This global perspective better suits the sub-
sequent learning stages, particularly the video-level alignability-verification
objective using labeled data.

We have integrated the publicly available code of CARL ( [5]) into our frame-
work for comparative analysis, shown in Table 9. Although CARL yields im-
pressive results on class-agnostic intra-video tasks (Table 7), it is slightly less
effective in video-level semi-supervised tasks. Our conjecture is that this is due
to the absence of global temporal context in [5] pretraining.

F.3 Training Cost Comparison with Prior Work

Our method only utilizes the single RGB modality, in contrast to methods like
[26, 28], which employ additional modalities such as optical flow or temporal
gradients. These extra modalities lead to a significant increase in training time
due to two main factors: (1) the extended preprocessing time required to compute
flow or temporal gradients, and (2) increased I/O overhead for loading both RGB
and flow/gradient data. For example, computing optical flow for the Kinetics400
dataset can span several days and requires 3-5 terabytes of additional storage
space. Conversely, our method efficiently operates on RGB-only videos, avoiding
these extensive computational demands.

In terms of memory requirements, our framework is notably more efficient.
Each branch of our model (fE and fA) is trained independently, thereby reduc-
ing the overall memory consumption. This is in stark contrast to training frame-
works like [15,30], which necessitate running both teacher and student branches
in training mode simultaneously, significantly increasing the memory footprint.
Additionally, our approach does not require high-capacity teacher models. For
instance, [30] employs a 3D-ResNet50-4x width as a teacher, whereas [9, 30]
use two 3D-ResNet50 teachers. In comparison, our model efficiently utilizes only
one teacher, further enhancing our method’s resource efficiency.
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