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Abstract. Real-life applications of action recognition often require a
fine-grained understanding of subtle movements, e.g., in sports analyt-
ics, user interactions in AR/VR, and surgical videos. Although fine-
grained actions are more costly to annotate, existing semi-supervised
action recognition has mainly focused on coarse-grained action recog-
nition. Since fine-grained actions are more challenging due to the ab-
sence of scene bias, classifying these actions requires an understanding
of action-phases. Hence, existing coarse-grained semi-supervised meth-
ods do not work effectively. In this work, we for the first time thoroughly
investigate semi-supervised fine-grained action recognition (FGAR). We
observe that alignment distances like dynamic time warping (DTW) pro-
vide a suitable action-phase-aware measure for comparing fine-grained
actions, a concept previously unexploited in FGAR. However, since reg-
ular DTW distance is pairwise and assumes strict alignment between
pairs, it is not directly suitable for classifying fine-grained actions. To
utilize such alignment distances in a limited-label setting, we propose an
Alignability-Verification-based Metric learning technique to effectively
discriminate between fine-grained action pairs. Our learnable alignability
score provides a better phase-aware measure, which we use to refine the
pseudo-labels of the primary video encoder. Our collaborative pseudo-
labeling-based framework ‘FinePseudo’ significantly outperforms prior
methods on four fine-grained action recognition datasets: Diving48, Fin-
eGym99, FineGym288, and FineDiving, and shows improvement on ex-
isting coarse-grained datasets: Kinetics400 and Something-SomethingV2.
We also demonstrate the robustness of our collaborative pseudo-labeling
in handling novel unlabeled classes in open-world semi-supervised setups.

Keywords: Fine-grained Action Recognition · Semi-supervised learning

1 Introduction

Considering the action recognition problem in practice, many critical applica-
tions demand high precision in classifying subtle movements. For instance, in
analyzing surgical videos to monitor subtle patient movements [52], AR and VR
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Fig. 1: (a) Sample actions from standard coarse-grained action recognition dataset
(UCF101) (b) Sample actions from fine-grained action recognition dataset (Diving48)
(c) For proof-of-concept, we choose a binary classification problem of fine-grained ac-
tions, where the model has to predict whether the pair of videos belong to the same
class or not. We consider Diving48 dataset with 10% training data. We first obtain the
frame-wise video embedding from a pretrained framewise video-encoder model (Details
in Sec. 3.3). The top part of (c) shows that the cosine distance computed at each times-
tamp does not provide a discriminative measure, whereas, DTW-based alignment cost
provides a clear difference in pair of same vs different classes. The bottom part of (c),
shows the performance of the binary classification task in terms of average precision,
where our alignability-score significantly outperforms the other standard distances.

applications [58], require identifying the user’s nuanced movements for a more
responsive interaction, and in sports analytics [27,34], it enables detailed action
quality assessment and injury prevention.

Although fine-grained action recognition (FGAR) allows for wider adoption
of action recognition in real-life applications, research has mainly focused on
coarse-grained action recognition [19,22,28,46,66]. For instance, from Fig. 1(a),
we observe that coarse-grained action covers broader classes, such as ‘Play-
ingGuitar’ vs ‘JavelinThrow’. Subtle human movements are not essential for
classifying these, given their very different motion pattern and inherent scene
bias (i.e., the scene provides substantial cues for identifying action) [13]. Con-
versely, Fig. 1(b) illustrates fine-grained action categories from ‘Diving’, com-
prising action-phases like ‘Take-off’, ‘In-flight’, and ‘Entry into Water’. This
figure demonstrates that even a difference in the ‘Entry’ phase from video-2 to
video-3 alters the action class from class-1 to class-2. This suggests that FGAR
can significantly benefit from learning action-phases.

However, annotating such fine-grained actions poses significant challenges.
Unlike coarse-grained actions, fine-grained actions require extensive, often repet-
itive viewing and expert annotation, making the process time-consuming and
costly. This underscores the need for a semi-supervised learning approach for
FGAR. However, current semi-supervised methods, designed for broader ac-
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tion categories, heavily rely on complex augmentation schemes like strongly
and weakly augmented versions [59], token-mix [55], or actor-cutmix augmen-
tations [68]. These techniques, while successful in standard datasets mainly for
exploiting scene bias, may not be effective for FGAR due to scene uniformity
across actions. Moreover, recent video-level self-supervised methods [18], suc-
cessful in limited data contexts, do not effectively capture frame-level changes
in action phases, which is crucial for recognizing fine-grained actions.

To build a solution tailored for fine-grained action recognition, we conduct a
preliminary study to better understand the efficacy of different distance metrics
in differentiating fine-grained videos. Let’s take the example of binary classi-
fication of fine-grained actions, shown in Fig. 1(c). Here, the goal is to ver-
ify whether the two videos belong to the same or different class utilizing the
embeddings from a frame-wise video encoder (fA) in a limited labeled data
setting. Our experiments demonstrate that standard feature distances like co-
sine distance are inadequate for this classification task. Particularly, we notice
that computing cosine-distance over the temporally pooled features loses the
temporal-granularity whereas computing cosine distance on the temporally un-
pooled features is suboptimal since different action phases take different amounts
of time, e.g., phases in video-1 and video-2 of Fig. 1(b). Therefore, a better way
to compute the distance between a pair of fine-grained actions should be done by
making phase-to-phase comparisons. One way to obtain such phase-aware dis-
tance is by aligning the phases of the video embeddings. Hence, we hypothesize
that alignability (i.e., whether two videos are alignable or not) based verification
can provide a better phase-aware solution to differentiate fine-grained actions.

One way to achieve such phase-aware distance is through alignment distance
- dynamic time warping (DTW) optimal path distance. We see a significant
boost in class-discrimination capability over regular cosine distances as shown
in Fig.1(c) bar chart. This observation has not been explored before to solve
FGAR in the limited labeled setting. At the same time, standard DTW distance
is not an ideal class-discriminative measure as its optimal path assumes strict
alignment between two videos and the final distance depends on the length of
the video and frame-level similarities. Based on this observation, we propose
an alignability-verification-based metric learning technique to learn from the
labeled data and produce a learnable alignability score for a pair of videos. In
the chart Fig.1(c), we see that our learnable alignability score improves the
class-discriminative capability of DTW and provides a better distance measure
for discriminating a pair of fine-grained videos.

Once such limited-labeled training is completed, we can utilize this alignabil-
ity metric for pseudo-labeling (PL) by producing class-wise alignability-scores.
These temporal aliganbility based pseudo-labels provide complementary infor-
mation to the standard pseudo-labels generated from output confidence scores.
To benefit from these complementary sets of pseudo-labels, we employ a collab-
orative pseudo-labeling process for semi-supervised fine-grained action recogni-
tion. Particularly, we combine the class predictions from frame-wise encoder, fA,
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and finetuned video encoder, fE , to get a refined pseudo-label. We update these
pseudo-labels iteratively and conduct training in a self-training framework.
The major contributions of this work are summarized as follows:

– Our work is the first to thoroughly study the problem of fine-grained semi-
supervised action recognition. We present FinePseudo, a co-training frame-
work where we utilize temporal-alignability to improve the pseudo-labeling
process of unlabeled fine-grained videos.

– To learn effectively from the limited labeled fine-grained videos, we propose
a alignability-verification-based metric learning technique.

– For collaborative pseudo-labeling, we design a non-parametric classifier-based
prediction from the learnable alignability scores to refine output predictions.

– We evaluate our method on 4 fine-grained action recognition datasets: Div-
ing48, FineGym99, FineGym288, and FineDiving, where our method signif-
icantly outperforms prior semi-supervised action recognition methods. Our
method also performs competitively against the prior methods on coarse-
grained datasets like Kinetics400 and Something-SomethingV2.

– We demonstrate the robustness of our collaborative pseudo-labelling method
in handling novel unlabeled classes in open-world semi-supervised setups.

2 Prior Work

Semi-supervised Action Recognition Semi-supervised learning is still a
growing area of research for action recognition compared to the image do-
main [1,2,6,12,39,42,43,53,61,64,67]. To exploit the additional temporal dimen-
sion, various methods have employed additional modalities, including temporal
gradients [54], optical-flow [56], and P-frames [50]. Concurrently, interesting aug-
mentation schemes have been proposed, such as slow-fast streams [51], strong-
weak augmentations [59], CutMix [68], and token-mix [55]. While [18] shows
the potential of self-supervised video representations (videoSSL) in leveraging
the unlabeled videos for semi-supervised setup.

However, these approaches mainly address semi-supervised action recogni-
tion problems focusing on coarse-grained actions with significant scene bias [13],
where the scene context provides substantial cues for action recognition. For fine-
grained actions, which typically occur within the same scene, methods tailored
for scene-bias datasets may not be fully applicable. For instance, augmentations
like token-mix or CutMix might lose their effectiveness in uniform scene en-
vironments. Similarly, some methods may be partially ineffective, such as the
appearance branch of [56], or the temporally-invariant teacher of [18]. While
approaches like [47] have shown results on [24], their application has not been
thoroughly explored beyond human-object interaction, leaving a gap in address-
ing diverse human actions.

Motivated by these gaps, we propose, for the first time, a dedicated semi-
supervised action recognition framework that not only achieves state-of-the-art
performance for fine-grained action classes but also performs comparably or bet-
ter in standard coarse-grained action recognition. Categorically, our method
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is a pseudo-label-based technique building upon existing videoSSL represen-
tations. Our method introduces a novel approach for pseudo-label generation
using temporal-alignability-verification-based decisions, which provides a fresh
perspective in the semi-supervised action recognition domain. Additionally, our
method demonstrates increased robustness to open-world problems, a dimension
not previously explored in semi-supervised action recognition. This robustness
further distinguishes our approach from the constrained focus of prior work.
Fine-grained Video understanding There is another line of work that specif-
ically focuses on intra-video dynamics for learning class-agnostic downstream
tasks like action-phase classification, Kendall’s tau [21], Aligned Phase Agree-
ment [16] etc. Some recent works have demonstrated the learning of powerful fine-
grained intra-video representations in a weakly-supervised manner [3,21,25,26]
and even on unlabeled data utilizing intra-video self-supervised techniques like
[10,17,32,44,65].

Interestingly, some of these works use alignment-based training objectives
to resolve class-agnostic tasks [9, 25, 26, 60]. However, they strictly assume that
videos are ‘alignable’ (from the same action class) and do not explore leveraging
the alignment property across video classes to learn data-efficient fine-grained
action classification. In contrast to the typical ‘alignment’ objective, we opt for
an ‘alignability’ objective, where we decide if an unlabeled video belongs to a
fine-grained class based on how well it aligns with the limited labeled samples.
To the best of our knowledge, we are the first to leverage ‘alignability’-based
intra-video representations in the video-level action recognition task in a semi-
supervised setup. For a detailed comparison with prior work, refer Supp. Sec.F.

3 Method

In semi-supervised action recognition, a limited labeled set Dl = {(v(i),y(i))}Nl
i=1

comprising video instances and their associated action labels is employed along-
side a significantly larger unlabeled set Du = {v(i)}Nu

i=1. The goal is to leverage
both these sets to enhance the performance of action recognition.

Our framework, FinePseudo, is a pseudo-labeling-based co-training approach,
as depicted in the schematic diagram in Fig. 3. It mainly consists of two branches:
(1) Action encoder fE responsible for learning high-level video-semantics features
such as actions and (2) Auxiliary alignability-encoder fA which is a frame-wise
video encoder - video transformer network (VTN) [35], to focus on learning the
low-level intra-video representations stemming from action phases.

In this section, we provide more method details of our framework. First, fA is
trained through alignability-verification-based metric learning from the labeled
data (Sec.3.1). Then, for pseudo-labeling from the unlabeled data, the trained
fA is utilized to provide learned alignability scores for each class, which are
passed through a non-parametric classifier to obtain classwise predictions. This
alignability-based prediction from fA is combined with the prediction from the
regular video encoder fE to obtain a collaborative pseudo-label, which is used
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Fig. 2: Alignability-Verification based Metric Learning is proposed to is pro-
posed to decide how well two video instances are alignable and produce an ‘alignabil-
ity score’ for effective learning from a limited labeled set Dl. Our approach employs
a triplet loss (LAT ), considering videos from identical action classes as positive and
those from different classes as negative. We selectively mine hard-negatives from the
sampled minibatch based on alignment distance, presenting a challenging learning task
for the model fA. Additionally, we incorporate a matching loss Lscore to quantify the
alignment between videos, serving as a verification task to determine whether a video
pair belongs to the same class (i.e. alignable or target label = 1) or different classes
(i.e. non-alignable or target label = 0). Further details are provided in Sec. 3.1.

for the self-training process (Sec.3.2). A complete algorithm for our FinePseudo
training is provided in Sec. 3.3.

3.1 Alignability-Verification based Metric Learning

The underlying hypothesis is that video instances from the same action class are
more alignable compared to those from different classes (as seen in Fig. 1(c)).
The objective of this training stage is to solve the alignability verification task,
which determines how well two videos are alignable. This knowledge is critical
for producing a reliable ‘learnable alignability score’ for a pair of labeled and un-
labeled video instances, subsequently aiding in the improvement of pseudo-label
quality through a non-parametric classifier within the self-training paradigm.

In our approach, class labels are utilized in learning the alignability-verification
task which is a binary classification problem, distinct from the regular multi-class
classification setting [7]. This strategy encourages the network to focus on dif-
ferentiating pairs from the same or different classes based on their alignment
distance, promoting the learning of more class-agnostic intra-video features.
Alignment Cost: Consider a pair of videos U and V , each with T frames. To
compute the alignment cost between these videos, they are processed through the
fA network, yielding frame-wise video embeddings u and v, each of shape T ×F ,
where F represents the output feature size of fA. An element-wise cost matrix
C ∈ RT×T is constructed, with each element computed using the cosine distance:
C(i, j) = h(u(i),v(j)). To identify the optimal alignment path, softDTW [14],
a differentiable variant of the dynamic time warping algorithm [4], is utilized.
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The softDTW distance, D(u,v), is then calculated using the following recursive
formula:

D(u,v) = C(i, j) + γ-smooth-min(Πcost(i, j)) (1)

The function γ-smooth-min performs a differentiable minimum operation of the
possible costs Πcost(i, j) from the point (i, j) along the paths (i, j−1), (i−1, j),
and (i − 1, j − 1). Now, we utilize this alignment-cost as the distance to build
our metric learning training objective.
Alignability-verification Triplet loss: For a labeled instance V(i) of class
y(i) = cK , we select another instance V(j) of the same class as positive and
an instance V(k) from a different class as negative. After obtaining the video-
embeddings, the alignability-based triplet loss is computed as follows:

LAT =

N∑
i=1

[
D(v(i),v(j))−D(v(i),v(k)) + m

]
(2)

where D denotes the softDTW distance, m is the margin of the triplet loss,
and N is the number of samples in the mini-batch B. Hard-negative mining
is employed from the same mini-batch B for constructing these triplets, with
further analysis in Supp. Sec. C.
Learnable Alignability Score: Finally, to determine the alignability of video
pairs based on their alignment cost, we propose a normalized scale ranging from
0 (not alignable) to 1 (fully alignable). The computed distance D is mapped
through a non-linear scaling function fS and passed through a sigmoid activation
(ς) to yield a learnable Alignability-score S between any sequence embeddings
u and v.

S(u,v) = ς(fS(D(u,v))) (3)

To train this scaling function, a binary cross-entropy loss function is employed:

LScore = −[yA log(S(u,v)) + (1− yA) log(1− S(u,v))] (4)

Where yA label is assigned 0 for the negative pair and 1 for the positive pair. The
overall training objective for our alignability-verification-based metric learning
can be expressed as:

LAV = LAT + ωLScore (5)

where, ω hyperparameter is the relative weighting factor.
While the alignability encoder (fA) is trained through the alignability-verification

training from the labeled set Dl, the action encoder (fE) is trained through reg-
ular cross-entropy loss as shown in the equation below:

L(i)
CE = −

Nc∑
c=1

y(i)
c logp(i)

c (6)

Where Nc is the number of classes, y(i)c is the ground-truth class and pc is the
classwise prediction by classification head of fE .
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Fig. 3: Collaborative Pseudo-labeling: The unlabeled instance u(i) undergoes pro-
cessing by both video encoders (fE and fA). For the Action Encoder fE , its predic-
tion (pE) is derived via its classification head. For the Alignability Encoder fA, the
embedding of u(i) computes class-wise alignability scores against a gallery of labeled
embeddings A. These scores are then used to generate a class-wise prediction pA using
the non-parametric classifier ϕA. As these predictions stem from distinct supervisory
signals—pE from video-level and pA from alignability-based supervision—they offer
complementary insights, resulting in a refined collaborative pseudo-label.

3.2 Collaborative Pseudo-Labeling

Once both action encoder fE and alignability encoder fA is trained with the
Dl, they are utilized to generate pseudo-labels for the videos of unlabeled set
Du. Before we start pseudo-labeling, we first construct a set A by obtaining
embedding of video of Dl by passing it through encoder fA. This process is
formalized as A = {fA(v(i))}Nl

i=1

For an unlabeled video U ∈ Du, its embedding u is obtained by passing it
through the alignability encoder fA. The alignability score for each class c in
the labeled dataset is computed by randomly sampling ρ embeddings from A
corresponding to class c, denoted as Aρ

c . The average alignability score S̄c for
class c is calculated as:

S̄c =
1

ρ

∑
a∈Aρ

c

S(u,a) (7)

For computing the class prediction pA for the unlabeled video U using the soft-
max function with a temperature parameter τ . This function is applied to the
alignability scores, yielding the class prediction as:

pA(c) =
exp(S̄c/τ)∑
j exp(S̄j/τ)

(8)

The denominator in Eq. 8 sums over all classes j in Dl, producing a probabil-
ity distribution over the classes and indicating the predicted likelihood of the
unlabeled video U belonging to each class. Since there is no parameter involved
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in getting the prediction pA we can call it non-parametric classifier ϕA of the
alignability encoder.

The same unlabeled video U is passed through fE and its classifier head
to obtain its class prediction pE . The overall final prediction p for a video U is
obtained by adding the predictions from both classifiers: p = pA+pE . We apply
a confidence threshold θ to each prediction p. If the highest confidence score in
the prediction p exceeds the threshold θ, the sample is considered for generating
a hard pseudo-label; otherwise, the sample is discarded. In this way, we achieve
refined pseudo-labels and they are used for the next iteration of labeled training
for both fA and fE .

3.3 Algorithm

Let’s consider the action encoder model fE and the alignability model fA, param-
eterized by θE and θA, respectively. In our semi-supervised training framework,
firstly we employ our novel GITDL-based self-supervised pretraining (Details in
Supp. Sec. E) on the unlabeled dataset Du to learn frame-wise video represen-
tations focusing on intra-video dynamics, and secondly, leveraging both labeled
Dl and pseudo-labeled data in a collaborative self-training process. These steps
are put together in Algorithm 1, which outlines the complete process for our
FinePseudo framework for semi-supervised action recognition.

4 Experiments

4.1 Datasets and Metrics

Diving48 [31] is a fine-grained dataset on competitive diving, with 48 distinct
patterns across roughly 18k videos. Each class underscores the intricacies of a
diver’s movements, stressing the need for detailed temporal analysis to capture
subtle differences in takeoff, flight, and entry phases.
FineGym [45] is a large-scale, fine-grained action recognition dataset that pro-
vides hierarchical annotations for four different gymnastic events: Vault, Floor
Exercise, and Balance Beam. It comprises two main splits: FineGym99 with 99
actions from 29k videos, and FineGym288 with 288 actions from 32k videos.
FineDiving [57] dataset comprises diverse diving events, covering 52 action
classes across 23 difficulty degrees.
Kinetics400 [8] encompasses 400 human action classes across approximately
260k videos sourced from YouTube.
Something-SomethingV2 [24] is another large dataset with clips that are
object class agnostic, focusing on a wide range of 174 hand-object interactions.
For further dataset details, refer Supp. Sec. A.
Evaluation Metric: Following standard protocols in prior work [18, 59], we
evaluate 3 independent label splits and report the mean Top-1 accuracy.
For implementation details, refer Supp. Sec. B
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Algorithm 1: FinePseudo Training Algorithm
1 Inputs:
2 Datasets: Du, Dl

3 #Epochs: max_epoch_ssl, max_epoch_labeled, max_iter, max_epoch_st
4 Learning Rates: αA, αE

5 Hyperparameters: Confidence threshold θ
6 Output: Action Encoder model θE
7 SSL Pretraining on Unlabeled Set Du:
8 for e0 ← 1 to max_epoch_ssl do
9 θA ← θA − αA∇LGITDL(θA) (Refer Supp. Eq. 1)

10 end
11 Training from the Labeled Set Dl:
12 for e0 ← 1 to max_epoch_labeled do
13 θE ← θE − αE∇LCE(θE) (Refer Eq. 6)
14 end
15 for e0 ← 1 to max_epoch_labeled do
16 θA ← θA − αA∇LAV (θA) (Refer Eq. 5)
17 end
18 Self-Training through Collaborative Pseudo-Labeling:
19 for iter ← 1 to max_iter do
20 for each sample in Du do
21 Obtain combined class-prediction p = avg(pA,pE)
22 Predicted class ŷ
23 if confidence of ŷ > θ then
24 Add (sample, predicted label ŷ) to Dl

25 end
26 end
27 for epoch0 ← 1 to max_epoch_st do
28 θE ← θE − αE∇LCE(θE)
29 θA ← θA − αA∇LAV (θA)

30 end
31 end

4.2 Evaluation on Fine-grained datasets

In order to maintain comparability across methods, we utilize the R2plus1D-18
network. We compare various baselines such as video self-supervised methods [11,
15, 36–38], classical semi-supervised learning baselines [29, 41], and state-of-the-
art video semi-supervised methods [18, 54, 68] in Table 1. In the first section
of Table 1, we study video self-supervised methods by taking their publicly
available Kinetics400 self-supervised weights and fine-tuning them for the fine-
grained action recognition task under limited labeled data. We observe that
the methods [15] and [11], which explicitly promote temporal distinctiveness,
perform better than other video self-supervised methods.

Based on this observation, we use the best-performing SSL weights [15] for
all semi-supervised methods in the second part of Table 1. Firstly, we note
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Table 1: Comparison with state-of-the-art semi-supervised methods on Fine-grained
Action recognition datasets under various % of labeled data setting. Highlighted Red
shows the best results and Blue shows second best results. All results are reported on
R2plus1D-18 utilizing the exact same amount of training data.

Method Diving48 FineGym99 FineGym288 FineDiving
5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

TCLR CVIU’22 [15] 14.3 33.1 53.7 43.2 64.2 74.9 36.0 56.8 67.2 23.2 42.3 65.2
VidMoCo CVPR’21 [37] 12.6 31.4 52.5 41.6 62.8 73.8 34.2 55.8 66.8 21.9 40.6 64.8
GDT ICCV’21 [38] 12.2 31.7 51.8 42.0 62.0 73.3 35.3 56.0 66.6 21.2 40.9 64.3
AVID CVPR’21 [33] 10.0 30.4 51.5 40.3 60.3 72.7 32.5 55.6 64.5 20.6 39.6 62.7
RSPNet AAAI’21 [11] 14.0 33.0 53.7 43.4 64.0 75.2 36.8 56.4 67.1 23.0 42.5 65.1

PL ICML’13 [30] 14.4 33.4 54.0 43.2 64.4 75.1 34.9 55.5 67.1 23.5 42.0 66.1
UPS ICLR’21 [41] 14.6 33.6 54.1 - - - - - - - - -
ActorCM CVIU’22 [68] 14.7 33.8 54.7 43.8 65.0 75.9 36.5 56.9 67.7 - - -
TG-FM CVPR’21 [54] 16.0 33.8 54.4 44.1 64.9 75.7 36.9 56.6 67.6 - - -
TimeBal CVPR’23 [18] 15.8 33.7 56.3 44.4 65.9 76.1 37.3 57.8 68.6 25.1 43.9 67.5
Ours (FinePseudo) 20.9 37.6 60.4 49.2 69.9 80.0 41.7 62.5 73.4 28.4 46.8 71.9

that classical semi-supervised baselines, namely PL and UPS, do not perform
as well compared to video semi-supervised methods. Our method consistently
outperforms all prior methods by an absolute 4-5% in terms of top-1 accuracy.

Evaluating with Transformer architecture Since the AIM-ViTB architec-
ture [62] achieves state-of-the-art performance on the Diving48 dataset in a fully-
supervised setting, we find it interesting to base our comparisons. In this archi-
tecture, the ViT-B backbone [20] is kept frozen and initialized with the CLIP [40]
visual encoder, and spatio-temporal adaptor layers are trained.

Table 2: Results with AIM model on
Diving48 dataset

Method 5% 10% 20%
Supervised 37.28 55.33 75.36
PL [29] 37.33 55.40 75.42
UPS [41] 37.70 55.61 75.56
SVFormer [55] 38.00 56.02 76.20
TimeBal [18] 38.12 55.80 76.01
Ours 43.02 60.79 80.02

Firstly, using this architecture (Ta-
ble 2), we observe a significant improve-
ment compared to Table 1. Next, exam-
ining the results of recent semi-supervised
methods [18, 55], it becomes evident that
token-mix augmentations from [55] are
not as effective in fine-grained datasets
as in coarse-grained ones. Similarly,
videoSSL-based semi-supervised methods
like [18] also underperform due to the
ineffectiveness of some components like
temporally-invariant teacher in fine-grained datasets. Our method achieves a
clear improvement of 4-5%, demonstrating its potential to further enhance the
strong foundational model pretraining for fine-grained action recognition in a
limited labeled setting.
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Table 3: Results on standard Coarse-grained Action recognition datasets at various
% of labeled set. Highlighted Red shows the best and Blue shows second best results.

Method Backbone
Params

(M)
ImgNet

init?
#F

Kinetics400 S. SomethingV2
1% 5% 10% 1% 5% 10%

MT NeuRIPS’17 [49] TSM-ResNet18 13 ✗ 8 6.8 23.0 - 7.3 20.2 30.2
S4L ICCV’19 [63] TSM-ResNet18 13 ✗ 8 6.3 23.3 - 7.2 18.6 26.0
MM NeuRIPS’19 [5] TSM-ResNet18 13 ✗ 8 7.0 21.9 - 7.5 18.6 25.8
FM NeuRIPS’20 [48] TSM-ResNet18 13 ✗ 8 6.4 25.7 - 6.0 21.7 33.4
TCL CVPR’21 [47] TSM-ResNet18 13 ✗ 8 11.6 31.9 - 9.9 31.0 41.6
TG-FM CVPR’21 [54] 3D-ResNet18 13.5 ✗ 8 9.8 - 43.8 - - -
MvPL ICCV’21 [56] 3D-ResNet18 13.5 ✗ 8 5.0 - 36.9 - - -
CMPL CVPR’22 [59] 3D-ResNet18 13.5 ✗ 8 16.5 - 53.7 - - -
TimeBal CVPR’23 [18] 3D-ResNet18 13.5 ✗ 8 17.1 - 54.9 - - -
Ours (FinePseudo) 3D-ResNet18 13.5 ✗ 8 18.6 43.2 56.1 13.1 34.3 45.4

FM NeuRIPS’20 [48] SlowFast-R50 60 ✗ 8 10.1 - 49.4 6.5 25.3 37.4
MvPL ICCV’21 [56] 3D-ResNet50 31.8 ✗ 8 17.0 - 58.2 - - -
CMPL CVPR’22 [59] 3D-ResNet50 31.8 ✗ 8 17.6 - 58.4 - - -
TimeBal CVPR’23 [18] 3D-ResNet50 31.8 ✗ 8 19.6 - 61.2 - - -
SVFormer CVPR’23 [55] T.Former(ViT-S) 30.7 ✗ 16 17.2 42.3 58.1 9.9 31.7 42.9
Ours (FinePseudo) 3D-ResNet50 31.8 ✗ 8 21.4 47.5 62.6 13.4 34.7 46.1

4.3 Evaluation on Coarse-grained action datasets

Although the focus of our work is on the evaluation of fine-grained actions,
we also evaluate coarse-grained action datasets as shown in Table 3. For com-
parability, results are presented using two backbones: 3D-ResNet18 and 3D-
ResNet50 [23], with an input resolution of 224 × 224 and 8-frame clips. Our
learnable-alignability score-based approach shows favorable or slightly improved
performance over prior best methods across both backbones. This demonstrates
that our approach, not reliant on a strict alignment criterion, generalizes well for
generic coarse-grained human actions and is not confined to fine-grained actions.

4.4 Evaluation on Open-World setting

Table 4: Results with open-world
setting on Diving48 dataset. All
models are R2plus1D-18.

Method 10% 20%
Supervised 39.60 50.23
Pseudo-labeling 38.29 49.41
UPS [41] 38.93 49.56
TimeBalance [18] 39.90 50.88
Ours 42.21 55.37

In previous evaluations, it was assumed that
the unlabeled data belonged to one of the
classes in the labeled set. However, in practi-
cal scenarios, an unlabeled sample could orig-
inate from any novel (unknown) action class.
Refer to Supp. Sec. E for more details about
this protocol.

To explore the open-world setting, we uti-
lize the Diving48 dataset, where 40 classes are
randomly selected as known classes and the
remaining 8 classes are designated as novel classes. For this protocol, we consider
the R2plus1D-18 model with SSL initialization from Kinetics400 from [15], and
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Table 5: Ablation with different components of framework

Action
Encoder

fE

Alignability Encoder fA Top-1 Accuracy
SSL (DU) Metric Learning (DL) 10% 20%LGITDL LAT LScore

(PL) ✓ - - - 33.40 54.00
(a) ✓ - - - 33.10 53.70
(b) ✗ ✓ ✓ ✓ 32.82 51.05
(c) ✓ ✓ ✗ ✗ 33.50 53.76
(d) ✓ ✓ ✓ ✗ 33.73 55.67
(e) ✓ ✓ ✗ ✓ 36.11 59.32
(f) ✓ ✗ ✓ ✓ 35.23 58.64

(g) ✓ ✓ ✓ ✓ 37.64 60.40

the results are reported in Table 4. The supervised baseline, which only utilizes
the labeled data from the 40 classes, is established for comparison. The reg-
ular pseudo-label setting degrades the performance of the supervised baseline,
as the novel unlabeled samples introduce noise during self-training. The prior
best semi-supervised method [18] also fails to show noticeable improvement over
the supervised baseline, as its teacher model categorizes the unlabeled sample
into one of the known classes before distillation to a student. In contrast, our
approach, with its non-parametric classification in PL generation, effectively fil-
ters out unknown classes based on low alignability scores, thereby achieving
improvement over other methods. For additional results, refer Supp. Sec. D.

4.5 Ablation Study

We demonstrate the ablation experiments on Diving48 dataset with R2plus1D-
18 network by default. Additional ablations and detail in Supp. Sec. C.
Evaluating Contributions of Training Components: In Table 5, we study
the effect of each training step in our framework: SSL pretraining on Du and
Alignability-based metric learning on Dl.

– When using individual video encoders (Rows a, b), fE performs better than
fA, however, it is significantly suboptimal compared to their collaborative
use in (g). Row (PL) shows regular PL baseline [29] for the fE which helps
only by a small margin. The Alignability-Verification-based metric learn-
ing significantly help to improve the capability of recognizing fine-grained
actions.(Row c vs Row g).

– Row d,e vs Row g suggest that both alignability-triplet loss and score loss
contribute towards the final performance. Since LAT provides a more chal-
lenging task with hard triplets and margin, it helps significantly compared
to the simpler binary classification objective of LScore.

– Proposed GITDL self-supervised pretraining for fA helps 2% on the final
performance (Row f vs Row g).
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Pseudo-Label Refinement Strategies: We examine the impact of various
pseudo-labeling (PL) strategies on the Diving48 dataset with a limited labeled
split, as shown in Table 6. Alongside the final performance, we also report the
number of pseudo-labels (PLs) that surpass the threshold and their accuracy, as
determined by comparison with the ground truth in the fully labeled set.

Table 6: Psuedo-Label refinement methods.

Pseudo-Labelling(PL)
Method

PL statistics Results
Count Acc. 10% 20%

Regular- Conf. based 4813 85.4 33.40 53.95
Uncertainty based 3565 87.9 33.58 54.07
Label verification 1981 97.0 37.09 59.57
Non-Parametric Classif. 4558 96.4 37.64 60.40

In the first section, we ex-
plore standard pseudo-labeling
methods based on the model’s
class prediction confidence and
uncertainty. We find that in-
corporating uncertainty with
confidence (as shown in the
second row) enhances PL ac-
curacy but reduces the quan-
tity of PLs. Because of this re-
duction, the improved PL accuracy does not translate into a noticeable gain in
final performance.

In the third row, we introduce an alignability-score based PL verification
strategy. After a class prediction by fE clears the confidence-based threshold,
we calculate the alignability score for its predicted class. If this score exceeds
an alignability-score threshold (set at 0.6), we accept the PL for self-training;
otherwise, it is discarded. This alignability-based score verification significantly
improves PL accuracy and consequently enhances overall performance.

Finally, in the last row, we present results using our combined class pre-
diction approach, which incorporates a prediction pA obtained through a non-
parametric (NP) classifier (as detailed in Sec. 3.2). This method substantially
increases the count of PLs over the verification-based PL approach and improves
the overall results.

5 Conclusion and Future Work

We present FinePseudo, a novel co-training-based semi-supervised framework
tailored for fine-grained action recognition. Our framework effectively utilizes
the strengths of a coarse-level video encoder dedicated to high-level action un-
derstanding, alongside a frame-wise video encoder focusing at capturing low-
level intra-video dynamics, particularly action phases. Notably, FinePseudo im-
proves existing state-of-the-art video SSL methods and foundational models
when trained for semi-supervised learning for fine-grained action recognition.
The efficacy of our collaborative pseudo-labeling process is further validated in
open-world semi-supervised scenarios.

For future work, exploring multi-modal temporal-alignability, such as video
and audio integration, could enhance the efficiency of semi-supervised action
recognition. Additionally, the potential of FinePseudo extends to other video
understanding tasks requiring fine-grained temporal understanding, like action
quality assessment etc.
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