
Elegantly Written: Disentangling Writer and
Character Styles for Enhancing Online Chinese

Handwriting

Yu Liu1,2 , Fatimah binti Khalid1 , Lei Wang1 , Youxi Zhang1 , and Cunrui
Wang2

1 Faculty of Computer Science and Information Technology, University Putra
Malaysia, 43400 UPM Serdang, Malaysia

{gs64481,fatimahk,gs68180,gs64680}@upm.edu.my
2 Dalian Chinese Font Design Technology Innovation Center, Dalian Minzu

University, 116600 Dalian, China
wcr@dlnu.edu.cn

A. 1 Reference Selection

In many font generation methods, at each iteration, one or more characters
are randomly selected from the training set as style reference. This makes it
challenging for the model to accurately extract styles from diverse combinations
of style reference sets. Therefore, we introduce a strategy by setting a fixed
style reference set S = {s1, s2, s3, . . . , sn} , which is composed of 500 characters.
Additionally, we design a content-style reference mapping to select a fixed K
style reference characters for each content character.

A. 1.1 Decomposition of Chinese Character Structure

According to the structure decomposition table of Chinese characters, each char-
acter is decomposed into a component set T consisting of explicit components T c

and implicit components Th. An example of character decomposition is shown
in Figure 1. During the decomposition process, it is ensured that the charac-
ter retains the integrity of its components, which are then further subdivided.
The components obtained from the initial decomposition are defined as explicit
decomposition T c = {tc1, tc2, tc3, . . . , tcn}, and those obtained from further decom-
position are defined as implicit decomposition Th =

{
th1 , t

h
2 , t

h
3 , . . . , t

h
n

}
. The

explicit decomposition contains structures that are more easily transferred from
the style reference set to the target set, while the implicit decomposition ensures
that each character can select K reference characters from the style reference
set.

A. 1.2 Content-Style Reference Mapping:

We select 2000 high-frequency commonly used Chinese characters as the con-
tent character set C = {c1, c2, c3, . . . , cn}. Our goal is to map K style references

https://orcid.org/0000-0002-3181-8409
https://orcid.org/0000-0002-5791-065X
https://orcid.org/0009-0007-4187-4037
https://orcid.org/0009-0000-6715-4803
https://orcid.org/0000-0002-0298-0992


2 Y Liu et al.

Conspicuous

 Component

Inconspicuous

 Component

Fig. 1: An example of decomposition into explicit and implicit components according
to the structure of Chinese characters.

Fig. 2: Example of selecting style reference characters based on the component max-
imization principle.

for each content glyph based on the component maximization principle (see
Appendix A.1.4 for more details). In this process, we first obtain the explicit
decomposition T c

ci of the content glyph set ci, then obtain the explicit decompo-
sition T c

sz of each character sz in the style reference set S. In each search step,
we find s for ci with the same explicit decomposition and include it in the style
mapping set. If the style mapping set contains fewer than K glyphs, we search
in the implicit decomposition. After selecting K style reference glyphs for each
content glyph ci, we sort the style reference set S by frequency to ensure cover-
age of each character. Through this process, each content glyph determines the
corresponding K style reference glyphs. An example of style reference character
selection is shown in Fig. 2 . The specific process is as follows algorithm 1.



Elegantly Written 3

Algorithm 1: Content-Style Reference Set Mappings
Input: C = {ci}: High-frequency characters list.

S = {sj}: Style reference character list.
T = {T c;Th}: Chinese character structure component set.
K: Number of style reference characters.

Output: Û : Content-Style Reference Set.

1 Function mapping(ci, T̂):
2 Rci ← ∅; k ← 0;
3 Tci ← T̂ (ci); S ← Sort(S) ↑;
4 for tl ∈ Tci do
5 for sz ∈ S do
6 Tsz ← T̂ (sz);
7 for tm ∈ Tsz do
8 if tl = tm and si /∈ R then
9 Rci ← si; k ← k + 1;

10 S(si)← S(si) + 1;
11 end
12 if k ≥ K then
13 return Rci

14 end
15 end
16 end
17 end
18 return Rci

19 Function Main():
20 R← ∅;
21 for ci ∈ C do
22 Rci ← mapping(ci, T c)
23 if Len(Rci) < K then
24 Rci ← mapping(ci, Th)
25 if Len(Rci) < K then
26 Rci ← random(S,K − k)
27 end
28 end
29 R← Rci

30 end
31 return R



4 Y Liu et al.

x

y

61 79

1
6
4

1
2

4

96

1
3
9

M

L 

L 

L

L 

L 

L

L

L

L

L 

L

79

77

92 

98

101 

101 

96

77

70

65

62 

61

124

123

117 

118

122 

130 

139

160

166

169

169 

164

x y

Drawing Parameters

M

<SOS>

L

L

L

<EOS>

L

...
-1

0
1

2

3
4

5

N-1

N

Index Command Arguments

...

77 

92

98

-1

101

97

-1

124

123

117

118

122

-1 -1

-1 -1

Handwriting Images Handwriting Tensor Data

Fig. 3: Graphical parameter data structure visual description. Take one of the strokes
as an example, the beginning of the drawing instruction is marked by < SOS >, a
command in the upper left cornerM moves the starting point of the drawing, drawing
<SOS>a series of trajectories, and then the < EOS > command indicates the end of
the drawing instruction.

A. 2 Data Structure

We treat the user’s handwriting trajectory as a vector image drawn by Bezier
curves. Bezier curve drawing instructions are used to simulate the dynamic pro-
cess of handwriting. Specifically, the instruction M (MoveTo) indicates when the
user’s pen leaves the writing surface and moves to a new position in the air,
while the instruction L (LineTo) represents the action of the user’s pen touching
down and moving on the paper. In this way, the user’s handwriting process is
transformed into a series of combinations of M and L instructions, accurately
depicting the trajectory of handwriting. This representation preserves not only
the geometric features of the handwriting trace but also captures the dynamic
changes during the handwriting process.

To enable parallel processing, we convert the non-structural drawing pa-
rameters into structural tensor data. Each handwriting trace c consists of N
drawing parameters V . Each drawing parameter vi = (hi, pi) consists of its
drawing instruction type and drawing coordinates. The drawing instruction type
hi ∈ {< SOS >,M,L, < EOS >}, where < SOS > and < EOS > represent spe-
cial markers for the beginning and end of the sequence. The drawing coordinate
parameter pi = (x, y). If the length of the drawing instruction sequence V is less
than N , padding with −1 is used.

Raster images are represented in fixed sizes, while vector images are composed
of unstructured data of drawing parameters. The length of drawing parameters
is influenced by the complexity of the character shape, resulting in the inability
to align parameters of different font shapes. To enable parallel processing of the
model, this paper converts the unstructured drawing parameters into structured
tensor data. An example of a handwriting trace vector image and its tensor
representation is shown in Fig. 3.



Elegantly Written 5

A. 3 Handwriting Feature Embedding

Handwriting traces are discrete data, and we preprocess them using a feature
embedding method similar to natural language processing. For each drawing
parameter sequence V of a handwriting trace, we project it into a continuous
embedding space RN×d.

First, the drawing command type hi is represented using a 4-dimensional
one-hot vector δhi , where only one dimension represents the current instruction
type index. Then, it is mapped to a d-dimensional vector eicmd = Wcmdδhi using
a learnable embedding matrix Wcmd ∈ Rd×4.

eicmd = Wcmdδhi
(1)

Additionally, the drawing coordinate parameters p are embedded. First, each
coordinate pi is represented using a one-hot vector, where only one dimension
represents the current coordinate index. Then, each coordinate is embedded by
a learnable weight matrix Wx ∈ Rd×128, followed by linear layer projection to a
d-dimensional vector eicoord using,

eicoord = Wcoord vec (Wxpi) . (2)

where Vec(·) denotes flattening the matrix into a vector, and Wcoord ∈ Rd×2d.
Each drawing command Si is embedded into ei ∈ Rd. Absolute positional en-
coding eipos ∈ Rd encodes the position and order information of all commands
in a drawing sequence. The command type embedding, coordinate parameter
embedding, and positional embedding of each Si are summed, and their sum is
projected into a vector ei ∈ Rd,

ei = eicmd + eicoord + eipos. (3)

A. 4 Character Dataset

We decompose Chinese characters into sets of components consisting of domi-
nant components based on the Chinese character structure decomposition table.
Based on the coverage between components, we filter out components that can
cover commonly used characters. And 500 characters were screened as style ref-
erence characters based on the combination of these components. In addition,
another 2000 Chinese characters were selected as content characters based on the
frequency of use of Chinese characters in the "List of Commonly Used Characters
in Modern Chinese".

A. 5 Visualization of Style Aggregation Module

To further demonstrate the effectiveness and high flexibility of the style aggre-
gation module, we reveal how the module deeply aggregates features of style and



6 Y Liu et al.

Fig. 4: Feature fusion effect of the style aggregation module under multiple
style reference characters.

Fig. 5: Special case style reference character in the Style Aggregation module.

content through attention feature maps. In Fig. 4, three style reference characters
are selected for each character, among which the third style reference character
maintains very little visual similarity with the content character. Specifically, in
Fig. 5, we select the same content character and style character, and addition-
ally choose two other style reference characters with very little similarity. Such
selection strategies aim to demonstrate the effectiveness and flexibility of the
style aggregation module. The results show that the style aggregation module
can flexibly select style reference characters based on the structure of content
characters. Even when there is very little similarity between style and content
characters, the module can still accurately capture and transfer those subtle yet
crucial style features.

A. 6 More Online Generation Results

Figure 6 shows the results of our proposed method in beautifying handwriting
traces. For the same input handwriting trace, we apply transformations to verify
the ability of our method in online handwriting trace beautification. Two best
matching style reference characters are selected for each character of the user’s
handwriting based on the principle of maximizing components. Our method
improves the aesthetic appeal of characters while preserving the user’s unique
writing style. Importantly, the model does not directly learn style from style
reference characters but learns the average style from all characters, resulting in
significant improvement in the overall aesthetic appeal of the generated hand-
writing fonts.



Elegantly Written 7

Reference ReferenceInput Output Input Output

Fig. 6: Generation results of handwriting characters corrected by content-reference
mapping.

Table 1: Comparisons with state-of-the-art methods on Chinese dataset. Unseen writ-
ing style seen characters.

Method Style Score ↑ Content Score ↑ DTW ↓ User Prefer.(%) ↑

Drawing [5] 33.38 64.56 1.6021 8.42
FontRNN [4] 39.04 70.21 1.4531 10.23
DeepImitator [6] 52.88 87.18 1.3011 16.62
WriteLikeYou [3] 76.21 94.255 1.1101 47.53
SDT [1] 85.31 95.71 0.9554 55.24
Ours 89.10 96.04 0.8135 59.12

A. 7 Quantitative Comparison

We use two settings, Unseen Writing Style Seen Characters (USSC) and Unseen
Writing Style Unseen Characters (USUC), to test these methods. USSC refers
to the 2000 characters in the training set, while USUC refers to characters not
in the training set. Table 1 shows the performance of our method and com-
pared methods in USSC setting. Due to DeepImitator [6], WriteLikeYou [3], and
SDT [1] learning style features across multiple images, all evaluation metrics are
superior to FontRNN [4] and Drawing [5].

As shown in Table 2, except for our method and SDT [1] , other methods
experience a significant decrease in performance in the USUC setting, indicating
the generalization capability of our method to new characters. Although these
methods perform well in evaluation metrics, human perception is sensitive to
minor differences, and humans can easily detect the effects of these differences.
Our method significantly outperforms previous SOTA methods, indicating out-
standing style imitation performance of the proposed method.



8 Y Liu et al.

Table 2: Comparisons with state-of-the-art methods on Chinese dataset. Unseen writ-
ing style unseen Characters.

Method Style Score ↑ Content Score ↑ DTW ↓ User Prefer.(%) ↑

Drawing [5] 18.38 42.52 2.6241 1.52
FontRNN [4] 27.42 54.01 2.2185 3.19
DeepImitator [6] 40.24 71.79 1.8123 5.48
WriteLikeYou [3] 64.21 90.24 1.3923 37.54
SDT [1] 80.31 93.51 1.1954 50.23
Ours 85.10 94.12 0.8978 56.32

Table 3: Quantitatively evaluated on Japanese and Korean datasets.

Datasets Methods Style Score ↑ DTW ↓

Japanese

Drawing [5] 74.45 1.3598
FontRNN [4] 80.23 1.2173
DeepImitator [6] 87.24 0.9532
WriteLikeYou [3] 90.18 0.8142
SDT [1] 94.12 0.7412
Ours 95.12 0.7034

Korean

Drawing [5] 68.42 1.4032
FontRNN [4] 76.12 1.2941
DeepImitator [6] 84.32 0.9931
WriteLikeYou [3] 88.21 0.8823
SDT [1] 93.81 0.7571
Ours 94.50 0.7271

A. 8 Applications to Other Languages

For Japanese handwriting font generation tasks, experiments were conducted on
the TUAT HANDS [2] database. A Korean skeleton was extracted as a Korean
handwriting sample using a skeleton extraction algorithm. Random style refer-
ence characters were chosen for each content character in the experiment. Table
3 validate the effectiveness of our method in Japanese and Korean handwriting
font generation, demonstrating outstanding performance in multilingual scenar-
ios. Due to the fewer and simpler strokes of characters in Korean and Japanese
Hiragana handwriting fonts compared to Chinese, they are easier to imitate.

References

1. Dai, G., Zhang, Y., Wang, Q., Du, Q., Yu, Z., Liu, Z., Huang, S.: Disentangling
writer and character styles for handwriting generation. In: CVPR. pp. 5977–5986.
IEEE (2023). https://doi.org/10.1109/cvpr52729.2023.00579

2. Matsumoto, K., Fukushima, T., Nakagawa, M.: Collection and analysis of on-line
handwritten japanese character patterns. In: Proceedings of Sixth International

https://doi.org/10.1109/cvpr52729.2023.00579
https://doi.org/10.1109/cvpr52729.2023.00579


Elegantly Written 9

Conference on Document Analysis and Recognition. pp. 496–500. IEEE (2001).
https://doi.org/10.1109/ICDAR.2001.953839

3. Tang, S., Lian, Z.: Write like you: Synthesizing your cursive online chinese hand-
writing via metric-based meta learning. Computer Graphics Forum 40(2), 141–151
(2021). https://doi.org/10.1111/cgf.142621

4. Tang, S., Xia, Z., Lian, Z., Tang, Y., Xiao, J.: Fontrnn: Generating large-scale
chinese fonts via recurrent neural network. Computer Graphics Forum 38(7), 567–
577 (2019). https://doi.org/10.1111/cgf.13861

5. Zhang, X.Y., Yin, F., Zhang, Y.M., Liu, C.L., Bengio, Y.: Drawing and recognizing
chinese characters with recurrent neural network. PAMI 40(4), 849–862 (2017).
https://doi.org/10.1109/tpami.2017.2695539

6. Zhao, B., Tao, J., Yang, M., Tian, Z., Fan, C., Bai, Y.: Deep imitator: Handwriting
calligraphy imitation via deep attention networks. Pattern Recognition 104, 107080
(2020). https://doi.org/10.1016/j.patcog.2019.107080

https://doi.org/10.1109/ICDAR.2001.953839
https://doi.org/10.1109/ICDAR.2001.953839
https://doi.org/10.1111/cgf.142621
https://doi.org/10.1111/cgf.142621
https://doi.org/10.1111/cgf.13861
https://doi.org/10.1111/cgf.13861
https://doi.org/10.1109/tpami.2017.2695539
https://doi.org/10.1109/tpami.2017.2695539
https://doi.org/10.1016/j.patcog.2019.107080
https://doi.org/10.1016/j.patcog.2019.107080

	Elegantly Written: Disentangling Writer and Character Styles for Enhancing Online Chinese Handwriting

