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Abstract. The electronic writing tools, while enhancing convenience,
sacrifice the readability and efficiency of handwritten content. Balanc-
ing high efficiency with readable handwriting poses a challenging re-
search task. In this paper, we propose a method sequence-based models
to beautify user handwritten traces. Unlike most existing methods that
treat Chinese handwriting as images and cannot reflect the human writ-
ing process, we capture individual writing characteristics from a small
amount of user handwriting trajectories and beautify the user’s traces
by mimicking their writing style and process. We fully consider the style
of radicals and components between the content and reference glyphs,
assigning appropriate fine-grained styles to strokes in the content glyphs
through a cross-attention mechanism module. Additionally, we find that
many style features contribute minimally to the final stylized results.
Therefore, we decompose the style features into the Cartesian product of
single-dimensional variable sets, effectively removing redundant features
with limited impact on the stylization effect while preserving key style
information. Qualitative and quantitative experiments both demonstrate
the superiority of our approach.

Keywords: Handwriting font optimization · Few-Shot generation · Cal-
ligraphy imitation · Vector quantization· Chinese character structure

1 Introduction

Handwritten traces are a unique way of personal expression and information
transmission, with each person’s writing style possessing irreplicable personal
characteristics. With the popularization of digital tools, people not only pursue
writing efficiency but also hope for clear and aesthetically pleasing results. There-
fore, handwriting optimization becomes crucial, which is of practical significance
for improving the user experience of modern electronic writing devices.
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Font generation is considered as an image-to-image translation task. Some
methods generate raster font images containing 9,169 characters in an end-to-
end manner [21, 41, 42]. Additionally, some studies use unsupervised learning
to learn separate representations for Chinese font style and content, generating
raster font images for specific style-content combinations [18,23,33,38,47]. How-
ever, existing methods treat characters as images, often resulting in issues such as
incorrect stroke connections and structural errors. Furthermore, some methods
based on sequence generation models treat vector glyphs as sequences of drawing
commands and use RNN [43] or LSTM [10] to encode and decode sequences. Al-
though these methods focus on printing or typesetting fonts, they demonstrate
great potential in gradually generating vector glyph drawing parameters, pro-
viding a new approach for optimizing handwritten traces in a sequence-based
manner.

Unlike printed or typeset fonts, handwritten fonts contain natural irregu-
larities of human writing, posing unique challenges. In recent years, although
many handwriting generation technologies have been developed for alphabetic
languages [6, 15, 28], the large number of Chinese characters and their com-
plex structural and shape diversity pose additional challenges to handwriting
generation. Most models treat handwritten characters as images for processing.
However, handwritten traces typically contain more information [7, 25], such
as stroke coherence, inclination, and stroke spacing. As shown in Figure 1, hu-
mans usually draw characters in a predetermined order step by step, rather than
’generating the image at once. Therefore, modeling handwritten traces using se-
quence models and representing strokes as continuous writing trajectories is a
highly effective strategy [5, 20, 31, 44]. However, these studies randomly select
one or more characters as style reference characters during training, limiting
the model’s ability to accurately extract style features when handling diversified
style reference combinations. Additionally, these methods adopt decomposition
and averaging strategies when handling extracted style features, weakening the
style features due to feature separation and averaging processing.

Our objective is to correct and optimize Chinese handwritten traces while
retaining text content and learning the writer’s style. As shown in Figure 1,
unlike raster images of characters, handwritten trajectories better reflect indi-
vidual writing characteristics due to containing details of the writing process.
Therefore, we separate character content and style features from handwritten
trajectories and gradually generate handwritten trajectories by combining arbi-
trary styles with content. As shown in Figure 2, we match the best style reference
characters for each character based on the structure of Chinese characters. Dur-
ing stylization, we first decompose style features into the Cartesian product of
single-dimensional variable sets to sparsify style features. Then, through a style
aggregation module based on cross-attention, the model effectively learns spa-
tial correspondences at the component level between style and content glyphs,
assigning the correct fine-grained style to each character. The contributions of
this paper are summarized as follows:
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Fig. 1: Illustration of two online hand-
written Chinese characters, with each
color representing a stroke. The increasing
numbers indicate the writing order from
the start to the end.

Style Reference

Conspicuous Component

Inconspicuous Component

(a) (b)

Content Character

Fig. 2: (a) Structural decomposition of
Chinese characters. (b) Example of style
reference character selection.

– We propose a novel method to correct and optimize user handwritten traces.
Users only need to write a small number of character samples, and the model
optimizes user traces by mimicking the user’s writing style and process. The
code is public at: https://github.com/ethanliuyu/ElegantlyWritten

– We match the best style reference characters for each character based on the
principle of maximizing Chinese character components and select a relatively
small set of characters as the style reference set to allow the model to more
effectively learn styles at the component level.

– By using a style aggregation module based on cross-attention, we learn
spatial correspondences at the component level between style and content
glyphs, transferring details from reference traces to target traces.

– Based on the sparsity of style features, style features are vector quantized into
the cartesian product of single-dimensional variable sets, reducing redundant
style features while retaining the main style features.

2 Related Work

2.1 Few-shot Font Generation

Font generation is a typical Image-to-image translation task [2, 4, 12, 13, 27],
where the model learns the mapping function between the source font and the
target font, allowing any character to be transformed into the target style style
[8, 11, 14, 21, 36]. Global feature representation treats the entire character as an
indivisible whole and directly learns the overall mapping relationship from the
source font to the target font [9,33,38,45] . On the other hand, component-based
feature representation methods decompose characters into smaller components
(e.g., strokes, radicals, etc.) and then learn the styles of these components to

https://github.com/ethanliuyu/ElegantlyWritten


4 Y Liu et al.

generate characters of the target style [24,29,37]. However, these methods tend
to perform averaging operations on the style features extracted in the image,
leading to significant weakening of local details due to untangling and averaging
operations. Therefore, we propose representing handwritten text as a continuous
writing trajectory and design a style aggregation module that aims to preserve
the intricate details present in the reference handwriting, leveraging the details
of the writing process to the fullest extent.

2.2 Generative Vector Graphics Model

Vector fonts precisely define glyphs through straight lines and Bezier curves,
providing excellent scalability and editability, and are widely used in the field of
digital media and type design. As sequence models like RNN [43], LSTM [10],
and Transformer [32] continue to advance, vector fonts are modeled as drawing
command sequences. DiffVG [16] makes the vector curve differentiable, estab-
lishes the relationship between vector graphics and bitmaps, and becomes the
theoretical basis for vector shape generation. Im2vec [26] and DualVector [19] fit
glyph contours by adjusting the control points on the contour. DeepVecFont [34]
and DeepVecFont-v2 [35] jointly represent the features of font images and se-
quences, establish the relationship between vector graphics and bitmaps, and
use Transformer’s ability to model long sequences to generate drawing instruc-
tions. Although methods that focus on generating vector drawing parameters for
printed or typesetting fonts show great potential for step-by-step generation of
vector glyphs, they are largely limited to accurately reconstructing raster glyph
images into vector images, without involving learning styles from the handwrit-
ing dynamics process.

2.3 Handwriting Generation

Handwritten fonts, characterized by curved lines and varied character sizes com-
pared to printed or typographic fonts, pose additional challenges for handwritten
font generation. Some of these approaches treat handwriting as an image, which
captures the visual characteristics of handwritten text and thus mimics an indi-
vidual’s writing style to some extent [7, 25]. However, some important dynamic
information will be lost. To overcome these limitations, studies have used se-
quence models to process handwritten handwriting, which not only take into
account the visual features of the handwriting, but also include dynamic infor-
mation during the writing process [1, 5, 30, 46]. However, the stylistic features
extracted by these methods are independent of the character structure, which
can over-smooth the styles of different characters and lose key details. We fully
consider the structure of Chinese characters and capture the styles at the level
of the writer’s writing trajectory during the writing process, thus significantly
improving the performance of handwriting trajectory generation.
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Fig. 3: Overview of the proposed method. The content encoder Ec extracts content
features Fc from the input content handwriting trajectory sequence c. The style en-
coder Er encodes Rs into reference features Fs = {fs

i }Ki=1. Considering the sparsity
of style features Fs, discrete style features Fq are obtained through vector quantiza-
tion. Then, using the style aggregation module based on cross-attention, we learn the
spatial correspondence between the style Fc and content Fq at the component level,
aggregating the style of the components into Fc,r. Finally, the decoder D decodes Fc,r

into handwriting trajectory sequence Ŷc,and optimizes it through cross-entropy loss.

3 Method Description

3.1 Problem Statement and Method Overview

Our goal is to learn the style of the writer from a small number of user handwrit-
ing trajectory samples and refine and beautify the writing trajectory. We employ
the powerful sequence modeling architecture transformer [32] as our backbone
network. Given the handwriting trajectories C = {ci}Li=1 with content i, and
K style reference handwriting trajectories Rs = {si}Ki=1 ∈ S selected based
on the component maximization principle, we stylize and optimize the user’s
handwriting based on the style reference traces. During training, we simulta-
neously perform style transfer and trace optimization tasks. The style transfer
task enables the model to convert handwriting fonts from any user into the style
of a specific user, while the trace optimization task focuses on optimizing and
reconstructing the current user’s handwriting trace.

3.2 Reference Selection

In many font generation methods, at each iteration, one or more characters
are randomly selected from the training set as style reference. This makes it
challenging for the model to accurately extract styles from diverse combinations
of style reference sets. Therefore, we introduce a strategy by setting a fixed style
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Fig. 5: The sparsity of the attention
weight matrix reveals a key phenomenon:
not all style features are equally impor-
tant for the stylization result.

reference set S, composed of 500 characters. Additionally, we design a content-
style reference mapping to select a fixed K style reference characters for each
content character (see Appendix A.1 for more details). An example of style
reference character selection is shown in Figure 2 .

3.3 Data Structure and Feature Embedding

We treat the user’s handwriting trajectory as a vector image drawn by Bezier
curves. Specifically, the instruction M (MoveTo) indicates when the user’s pen
leaves the writing surface and moves to a new position in the air, while the
instruction L (LineTo) represents the action of the user’s pen touching down
and moving on the paper.

To enable parallel processing, we convert the non-structural drawing param-
eters into structural tensor data. Each handwriting trace consists of N draw-
ing parameters V . Each drawing parameter vi = (hi, pi) consists of its draw-
ing instruction type hi ∈ {< SOS >,M,L, < EOS >} and drawing coordinates
pi = (x, y). An example of a handwriting vector image and tensor is shown in
Figure 4 (see Appendix A.2 for more details).

Handwriting traces are discrete data, and we preprocess them using a feature
embedding method similar to natural language processing. For each drawing
parameter sequence V of a handwriting trace, we project it into a continuous
embedding space e ∈ RN×d (see Appendix A.3 for more details).

3.4 Style and Content Encoder

As shown in Figure 3. The content encoder consists of six layers of Transformer
modules with multi-head self-attention. For a content vector glyph Vc consisting
of N drawing parameters, its feature embedding results in an embedding matrix
ec ∈ Rd×N . This embedding matrix is input to the sequence encoder to obtain
the content feature Fc = Ec (ec).
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For the K style reference glyphs Vs of the content character c, they are first
embedded to obtain the embedding matrix es ∈ Rd×N×K . This embedding ma-
trix is then input to the style encoder, which consists of six layers of Transformer
modules with multi-head self-attention, to extract the style feature Fs = Es (es).

3.5 Style Feature Sparsification

As shown in Figure 5, the sparsity of the attention weight matrix reveals a
key phenomenon: not all style features are equally important for the styliza-
tion result. This implies that feature compression can be used to simplify the
model [39,40]. With this sparsity, we adopt a method that decomposes the multi-
dimensional space into a series of single dimensions.

Specifically, we define a latent space Z = ×log2 P
i=1 Zi, mapping the style ref-

erence features to this latent space. The latent space Z is constructed from the
Cartesian product of sets of single-dimensional variables Zi. Each Zi is a set of
single-dimensional variables. In information theory, log2 represents the two states
of a binary system, and log2 P represents how many single-dimensional variables
Zi are needed to represent P different states. Therefore, log2 P represents the
number of Zi needed to construct Z.

Given a style reference feature fs ∈ RN×d, its dimensionality is first reduced
to f̂s ∈ RN×log2 P using a linear layer Lq ∈ Rd×log2 P . For any f̂r = {f̂s}Ni=1, its
quantized representation q(f̂r) is obtained as follows:

q
(
f̂r
i

)
= Zi,j , where j = argmin

p

∥∥∥f̂r
i − Zi,p

∥∥∥ , (1)

where, Zi,j is the j-th value in Zi. When the elements of Zi only contain −1 and
1, the quantization process can be simplified using the sign function. Specifically,
for each feature f̂r

i , the sign (positive or negative) of f̂r
i is used to determine

whether to choose −1 or 1.

q
(
f̂r
i

)
= sign

(
f̂r
i

)
= −1

{
f̂r
i ⩽ 0

}
+ 1

{
f̂r
i > 0

}
. (2)

During training, we add entropy loss to encourage the model to output con-
fident predictions,

Lentropy = E[H(q(f̂r))]−H[E(q(f̂r))], (3)

where H(q(f̂r)) =
∑log2 P

i=1 H
(
q
(
f̂r
i

))
, H(·) denotes entropy. The first term

E[H(q(f̂r))] encourages uncertainty in the quantized output to promote confi-
dent predictions. The second term H[E(q(f̂r))] encourages the model to utilize
the codebook more comprehensively during the quantization process.

Additionally, commitment loss is added to reduce the gap between the en-
coder output and the quantized vector, thus improving the accuracy of the quan-
tization process,

Lcommit =
∥∥∥f̂r − q

(
f̂r

)∥∥∥2
2
. (4)
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During inference, the index of each style reference feature is stored, allowing
the style encoder computations to be skipped for efficiency. The token index t
of q(f̂r) is obtained by the following formula:

Index(f̂r) =

log2 P∑
i=1

argmin
p

∥∥∥f̂r
i − Zi,p

∥∥∥ i−1∏
b=0

|Zb| =
log2 P∑
i=1

2i−1
1

{
f̂r
i > 0

}
. (5)

During inference, features are reconstructed based on the token index t,

q
(
f̂r
i

)
= 1

{⌊
t

2i

⌋
mod 2 > 0

}
, (6)

where
⌊

t
2i

⌋
represents the floor division of t

2i , and mod 2 denotes the modulo op-

eration. The style feature after vector quantization, q
(
f̂s

)
, is transformed back

to the original dimensionality Fs ∈ RN×d using a linear layer Lr ∈ Rlog2 P×d.

3.6 Style Aggregation Module

To aggregate style from K characters in the style reference set and incorporate
it into the fine-grained style representation of a given content image, we employ
M cross-attention blocks with M heads. We learn a Query map Qm from the
content feature Fc and a Key map Km from the style feature Fs, resulting in
a spatial correspondence matrix Am between Qm and Km. This matrix Am is
then multiplied with the Value map V m to aggregate local styles into the target
style Sm.

For the m-th head, the content feature map Fc is first passed through a
linear layer Lm

q ∈ Rd×dm

to obtain the query matrix Qm ∈ Rdm×N . For the
K style reference characters’ features Fq ∈ Rd×N×K , they are first reshaped to
F̂s ∈ Rd×(K×N) and then passed through two linear layers Lm

k , Lm
v ∈ Rd×dm

to
obtain the key map Km and the value map V m.

Next, we compute the spatial correspondence matrix Am, where each element
Am(u, v) represents the pairwise feature correspondence between position u in
the content features and position v in the reference features

Am =
Qm⊤Km

√
dm

∈ RN×(K×N), (7)

where 1/
√
dm is used to prevent the dot product from growing too large. By

applying scaled dot-product attention, we obtain the aggregated style Sm

Sm = softmax (Am)V m⊤, (8)

where Sm ∈ Rdm×dm

. After obtaining Sm for each head, they are concatenated
along dm and passed through a linear layer Ls ∈ R(dm×M)×d to get the aggre-
gated style feature S ∈ Rd×N .
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The content feature Fc is transformed to F̂c through a linear layer, and
then combined with the aggregated style feature S through another linear layer
Fcs = L(F̂c+S) to produce a feature Fcs that contains both content information
and incorporates stylistic characteristics.

3.7 Decoder and Loss Functions

The aggregated style feature Fcs and the target handwriting trajectory feature
Y are passed through a decoder consisting of six layers of Transformer modules
with multi-head self-attention to obtain F̂ ∈ Rd×N ,

F̂ = D (Fcs, F ) . (9)

The predicted drawing instruction types Ĥ =
[
ĥ0, ĥ1, . . . , ĥN

]
and drawing

coordinate parameters P̂ = [p̂0, p̂1, . . . , p̂N ] are then obtained through two MLP
layers,

Γ = Fmlp(F̂ ), (10)

Ŷc =
(
Ĥ, P̂

)
∼ Γ. (11)

During the training stage, the loss between the input drawing parameters and
the generated drawing parameters is calculated, and the model is optimized by
minimizing the difference between them. The loss between the generated drawing
parameters and the corresponding ground truth is defined as:

Lrec =

N∑
i=1

λcmdℓCE

(
hi, ĥi

)
+ λcoordℓCE (pi, p̂i) , (12)

where ℓCE denotes the cross-entropy loss, λcmd represents the loss weight for
predicting command types, and λcoord represents the loss weight for control
point coordinate parameters. Unused parameters are masked.

We find that supervising the alignment of Bezier curves solely based on their
control points is not sufficient. Therefore, we extract more points during each
Bezier curve segment. For two control points p0 and p1, a Bezier curve of degree
one is expressed as B = (1− r)p0 + rp1. The Bezier curve alignment loss can be
calculated as:

Lbezier =
∑
r∈rp

(
B̂(r)−B(r)

)2

, (13)

where rp = {0.25, 0.5, 0.75} represents the parameters of the sampled auxiliary
points. The overall training objective of this paper combines all four loss func-
tions,

Lloss = λrecLrec + λentropyLentropy + λcommitLcommit + λbezierLbezier. (14)
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4 Experiments

4.1 Datasets and Evaluation Metrics

Handwriting dataset. We utilize the CASIA-OLHWDB (1.0-1.2) dataset [17]
for model training and testing. The training set comprises approximately 3.7
million online handwriting Chinese characters from 1,020 writers. The test set
contains characters from the 60 writers, each providing 3,755 of the most com-
monly used GB2312-80 characters (see Appendix A.4 for more details).
Data augmentation. Data augmentation is performed using two methods:
interpolation and translation. Handwriting traces are considered as first-degree
Bezier curves, with each segment having two control points p0 and p1. The
segment of the handwriting trace is represented by the Bezier curve formula
B(t) = (1 − t)p0 + tp1. By fixing the control point p0 and selecting a value
t ∈ {0.9, 1.0, 1.1}, we calculate the value of B(t) to replace p1. This method
slightly adjusts the end position of the original trajectory to produce a slightly
changed writing trajectory.

In addition, we introduce offsets to the x and y coordinates of points p in
the handwriting trace V . Specifically, we add an offset ∆x to the x coordinate,
where ∆x ∈ [−5, 5]. Similarly, we add offsets to the y coordinates. By adding
these offsets to the drawing coordinates, the vector image of the handwriting
trace is translated horizontally and vertically, thereby augmenting the data.
Evaluation metrics. The generated handwriting trajectory sequences are variable-
length sequences. We use Dynamic Time Warping (DTW) [3] elastic matching
technology to calculate the distance between generated and real handwriting
trajectory sequences , allowing for nonlinear alignment. Content and style scores
of the generated traces are evaluated using content recognizers and style recog-
nizers, respectively [30]. Additionally, a user preference study is conducted to
quantify the subjective quality of the output characters.

4.2 Comparison with Other Methods

We compare our proposed method with state-of-the-art handwriting trace gen-
eration methods, including Drawing [44], FontRNN [31], and WriteLikeYou [30],
which model handwriting traces as sequential data. DeepImitator [46] and SDT
[5] transform handwriting traces into images to generate stylized handwriting
trace sequences. To ensure consistency among the compared methods, improve-
ments are made to the Drawing [44] and FontRNN [31] models by adding a style
encoder, enabling them to generate characters in arbitrary styles.

Qualitative comparison. The results generated by different methods are vi-
sualized, as shown in Figure 6. Since FontRNN [31] and Drawing [44] use a single
style reference as input, they struggle to accurately identify and reproduce sub-
tle features when the style features in the reference image are not prominent.
DeepImitator [46], WriteLikeYou [30] , and SDT [5] learn styles from multi-
ple images, which may reveal different aspects of style features, thus improving
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Target

Content

Drawing

FontRNN

DeepIm.

WriteLi.

SDT
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Fig. 6: A qualitative comparison with the state-of-the-art online Chinese trace genera-
tion methods is presented. Green boxes indicate the details comparison between target
characters and generated characters, while red boxes denote failures in style imitation.

Table 1: Comparisons with state-of-the-art methods on Chinese dataset.

Method Style Score ↑ Content Score ↑ DTW ↓ User Prefer.(%) ↑

Drawing [44] 28.38 58.52 1.9331 3.03
FontRNN [31] 34.04 62.01 1.8217 6.07
DeepImitator [46] 46.88 81.28 1.6022 10.07
WriteLikeYou [30] 72.21 94.24 1.2623 41.32
SDT [5] 82.23 94.61 1.0089 58.24
Ours 87.50 95.04 0.8814 64.12

the model’s understanding and reproduction capability of complex styles. Our
proposed method extracts style features from K best style reference characters’
handwriting trace sequences, utilizing a style aggregation module based on cross-
attention to better leverage spatial correspondence at the character component
level.

Quantitative comparison. Table 1 presents the performance of our pro-
posed method compared to the contrasted methods. DeepImitator [46], Write-
LikeYou [30], and SDT [5] , which learn style features from multiple images,
outperform FontRNN [31] and Drawing [44] on all evaluation metrics. Our pro-
posed method surpasses the contrasted methods, indicating outstanding style
imitation performance of the proposed approach. However, human perception is
sensitive to minor differences, and individuals may still perceive subtle distinc-
tions between synthesized handwriting and real handwriting (see Appendix A.7
for more details).
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Reference

 Style

Input

Output

Target

Fig. 7: Generation results of distorted handwriting characters corrected by content-
reference mapping.

Fig. 8: Visualization of the style aggregation mod-
ule. The bright spots in the figure indicate signifi-
cant contributions of corresponding features in the
reference feature map.

Fig. 9: Effect of the number
of style reference characters on
model performance.

4.3 Analysis

Handwriting correction. We distort handwritten characters to three different
degrees to verify the ability of our method to correct handwriting. As depicted
in Figure 7, the readability of characters is enhanced, eliminating some irregular
distortions present in the original handwriting font while preserving the user’s
unique writing style (see Appendix A.6 for more details).

Visualization of style aggregation module. To demonstrate the effective-
ness of the style aggregation module, attention feature maps are shown in 8.
Specifically, given a spatial point q in the content feature map as a query, the
relevance of the corresponding style feature from the spatial correspondence ma-
trix A, denoted as Aq, is obtained, and attention maps are constructed through
visualization. The proposed style aggregation module enables the model to focus
on the correct component-level styles in style reference characters and extract
fine-grained local style features for the handwriting content trace (see Appendix
A.5 for more details).

Size of potential space. To assess the influence of the size of the potential
space Z on the stylization of handwriting traces, five different sizes of potential
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Table 2: Quantitative
evaluation of the influence
of the size of the potential
space on the stylization of
handwriting fonts.

Size Style Score ↑ DTW ↓

N/A 76. 42 1.2123
210 80.63 1.0515
211 83.41 0.9218
212 87.50 0.8814
213 88.14 0.8791
214 88.65 0.8701

Table 3: Comparative quantitative analysis of the im-
pact of fixed versus random selection of style reference
characters on style learning capability.

Method
Random style

reference characters
Fixed style

reference characters

Style
Score ↑ DTW↓ Style

Score ↑ DTW ↓

Drawing [44] 28.18 2.0213 30.21 1.9132
FontRNN [31] 33.21 1.9721 35.68 1.7722
DeepImitator [46] 45.79 1.6180 51.64 1.3545
WriteLikeYou [30] 71.89 1.2911 75.21 1.0891
SDT [5] 81.13 1.1171 84.31 0.9912
Ours 82.34 1.0676 87.41 0.8871
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Fig. 10: The effect of incorrect stroke order on the
beautification of handwriting traces. Colored num-
bers represent the sequence of strokes written, while
black numbers indicate the writing order of each
stroke.

Target

Drawing

FontRNN

DeepIm.

WriteLi.

SDT

Ours

Fig. 11: Qualitative comparison
in Japanese and Korean hand-
writing font generation.

space are set, P ∈ {210, 211, 212, 213, 214}. This simulates different granularities
of feature mapping and corresponding information loss. As shown in Table 2,
potential spaces of 210 and 211 levels result in less refined stylization due to
significant information loss. In contrast, models in potential spaces of 213 and
214 levels can represent very fine-grained style features. However, compared to
212, larger potential spaces sacrifice computational efficiency for minimal perfor-
mance gains. In addition, since the style character set is fixed, storing indexes
incurs a lower memory cost than storing feature vectors.

Effect of different number of style inputs. The number of style reference
characters K evidently affects the model’s performance. As shown in Figure 9,
with an increase in the number of input style reference characters, the style
score also increases, indicating that the synthesized handwriting encompasses
richer style information. However, when the number of style reference characters



14 Y Liu et al.

is too large, the model struggles to capture consistent style features due to the
instability of handwriting traces. Therefore, in other experiments, the number
of style reference characters is set to K = 3.

Effect of incorrect stroke order. In handwriting recognition and correction
techniques, considering the stroke order of Chinese characters is crucial. Ensuring
accurate correction of characters even when the user’s stroke order is incorrect
is essential. We input handwriting with the stroke order shuffled into the model.
Experimental results, as shown in Figure 10, demonstrate that even with incor-
rect stroke order, our method can identify the correct sequence of traces and
adjust strokes accordingly to restore highly readable writing.

Effect of different style inputs. To validate the effectiveness of the proposed
style-content reference mapping in improving style learning and content preser-
vation capabilities, a quantitative comparison is conducted between fixed style
reference characters and randomly selected style reference characters. As shown
in Table 3, compared to randomly selected style reference characters, fixed style
reference characters perform better in all evaluation metrics. The fixed style ref-
erence character set provides the model with a stable and representative set of
style samples, facilitating more effective learning of style features by the model.

Applications to other languages. For Japanese handwriting font generation
tasks, experiments were conducted on the TUAT HANDS [22] database. A Ko-
rean skeleton was extracted as a Korean handwriting sample using a skeleton
extraction algorithm. Random style reference characters were chosen for each
content character in the experiment. Figure 11 validate the effectiveness of our
method in Japanese and Korean handwriting font generation, demonstrating
outstanding performance in multilingual scenarios (see Appendix A.8 for more
details).

5 Conclusion

In this paper, a novel method is proposed to enhance the handwriting trace of
users. Users only need to provide a small amount of character samples, and the
model beautifies the user’s trace by mimicking their handwriting style and the
human writing process. We maximally utilize the spatial correspondence between
the components of style and content glyph shapes by adopting a style aggrega-
tion module based on cross attention. This transfers the details of the reference
trace to the target trace. Additionally, style features are mapped to a latent
space constructed by the Cartesian product of single-dimensional variables to
achieve sparse processing of style features. Numerous experiments demonstrate
that our method outperforms other methods significantly in both objective and
subjective similarity aspects. Negative Impact: Although it is possible that
this method can be used to mimic handwriting, human experts can still find
differences between the generated and real handwriting.
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