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1 Detailed Experimental Settings and Full Results

The details of the models and the corresponding results on image classification,
semantic segmentation, and depth estimation are listed in Table 1, 2, and 3, re-
spectively. We use ImageNet-21k pre-trained checkpoints for ViT3,4,5, LVD-142M
pre-trained checkpoints for DINOv26,7,8, and LAION-2B pre-trained checkpoints
for OpenCLIP9,10,11. For each model type (ViT [6], DINOv2 [9], OpenCLIP [3]),
we choose the scales so that the models with S2 have comparable number of
FLOPs with corresponding larger models. For image classification, we train a
linear classifier for 30 epochs with learning rate of 0.0005 and batch size of 512.
For semantic segmentation, we train a Mask2Former decoder [2] following the
configurations here12. For depth estimation, we train a VPD depth decoder [16]
following the configurations here13.

Table 4 and 5 show the model details and full results for V∗, VQA tasks,
and MLLM benchmarks. We use OpenCLIP with large, huge, and big-G sizes,
and also large-size model with (2242), (2242, 4482), (2242, 4482, 6722) scales. We
follow the training and testing configurations in LLaVA-1.514. For evaluations on
certain MLLM benchmarks such as MMMU [15], since it is not supported in the
LLaVA-1.5 repo, we use VLMEvalKit [5] for evaluation15.

3https://huggingface.co/google/vit-base-patch16-224-in21k
4https://huggingface.co/google/vit-large-patch16-224-in21k
5https://huggingface.co/google/vit-huge-patch14-224-in21k
6https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_

pretrain.pth
7https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_

pretrain.pth
8https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_

pretrain.pth
9https://huggingface.co/laion/CLIP-ViT-B-16-laion2B-s34B-b88K

10https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K
11https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s34B-b88K
12https : / / github . com / open - mmlab / mmsegmentation / blob / main / configs /

mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py
13https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vpd/

vpd_sd_4xb8-25k_nyu-512x512.py
14https://github.com/haotian-liu/LLaVA
15https://github.com/open-compass/VLMEvalKit
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https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py
https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py
https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vpd/vpd_sd_4xb8-25k_nyu-512x512.py
https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vpd/vpd_sd_4xb8-25k_nyu-512x512.py
https://github.com/haotian-liu/LLaVA
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Table 6 shows the model details and full results for the robotic manipulation
task of cube picking. We use MVP [10] as the vision backbone and use base and
large size as well as base size with (2242, 4482) scales. The vision backbone is
frozen and extracts the visual feature for the visual observation at each time
step. We train a transformer that takes in the visual features, proprioception and
actions for the last 16 steps and outputs the actions for the next 16 steps. We
train the model with behavior cloning on 120 self-collected demos. We test the
model on 16 randomly selected cube positions and report the rate of successfully
picking up the cube at these positions.

Table 1: Configurations of models and corresponding results on ImageNet classification.

Model Size Scales #Params #FLOPs Acc.

ViT

Base (2242) 86M 17.6G 80.3
Base (2242, 4482) 86M 88.1G 81.1
Base (2242, 4482, 6722) 86M 246.0G 81.4
Large (2242) 307M 61.6G 81.6
Huge (2242) 632M 204.9G 77.3

DINOv2

Base (2242) 86M 22.6G 84.5
Base (2242, 4482) 86M 112.8G 85.2
Base (2242, 4482, 6722) 86M 315.9G 85.7
Large (2242) 303M 79.4G 86.3
Large (2242, 4482) 303M 397.1G 86.6
Giant (2242) 632M 295.4G 86.5

OpenCLIP

Base (2242) 86M 17.6G 76.0
Base (2242, 4482) 86M 86.1G 76.7
Base (2242, 4482, 6722) 86M 241.0G 77.1
Large (2242) 303M 79.4G 80.4
Large (2242, 4482) 303M 397.1G 79.6
Giant (2242) 1012M 263.4G 83.8

2 Derivation of Mutual Information

Denote the features from two models by x ∈ Rdx and y ∈ Rdy which follow the
distribution p(x) and p(y), respectively. We make the simplest assumption that
both the distribution and the conditional distribution of the features are isotropic
gaussian distributions, i.e., p(y) ∼ N (µ̂, σ2I) and p(y|x) ∼ N (f̂(x), σ′2I), where
f(·) is a linear transform. The differential entropy and conditional differential
entropy of y is h(y) = dy log σ + C and h(y|x) = dy log σ

′ + C, where C is a
constant. The mutual information between features of two models is I(x;y) =
h(y)− h(y|x) = dy log σ − dy log σ

′.
When reconstructing the features y from another model’s features x, the

optimal MSE loss would be l = minf
1
dy
E||y − f(x)||22 = 1

dy
E||y − f̂(x)||22 = σ′2.
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Table 2: Configurations of models and corresponding results on ADE20k semantic
segmentation.

Model Size Scales #Params #FLOPs mIoU

ViT

Base (5122) 86M 105.7G 44.4
Base (2562, 5122, 10242) 86M 474.7G 47.8
Base (2562, 5122, 15362) 86M 926.7G 48.0
Large (5122) 307M 362.1G 44.9
Huge (5122) 632M 886.2G 43.4

DINOv2

Base (5182) 86M 134.4G 54.8
Base (5182, 10362) 86M 671.8G 56.3
Base (5182, 10362, 15542) 86M 1881G 56.9
Large (5182) 303M 460.9G 55.1
Giant (5182) 632M 1553G 55.5

OpenCLIP

Base (5122) 86M 105.7G 49.2
Base (2562, 5122, 10242) 86M 474.7G 52.2
Base (2562, 5122, 15362) 86M 926.7G 52.6
Large (5182) 303M 460.9G 50.3
Huge (5182) 632M 940.2G 51.3

The optimal MSE loss of reconstructing y from a dummy constant vector would
be l0 = minµ

1
dy
E||y − µ||22 = 1

dy
E||y − µ̂||22 = σ2. Then we get the mutual

information between x and y is I(x;y) = dy log σ − dy log σ
′ = −dy

2 log σ′2

σ2 ∝
− log l

l0
.

3 Results on ConvNeXt

To see if convolutional networks have similar behaviors as transformer-based
models, we test ConvNeXt [8] models (per-trained on ImageNet-21k16,17,18) on
three tasks: image classification, semantic segmentation, and depth estimation.
We use ImageNet [11], ADE20k [17], and NYUv2 [12] datasets for each task.
Similarly, we freeze the backbone and only train the task-specific head for all
experiments, using a single linear layer, UPerNet [14], and VPD depth decoder [16]
as the decoder heads for three tasks, respectively. For model size scaling, we test
the base, large, and xlarge size performance of ConvNeXt [8] model on each task.
For S2 scaling, we test three sets of scales including (1x), (0.5x, 1x, 2x), and
(0.5x, 1x, 2x, 3x).

The detailed curves are shown in Figure 1. We can see that in the depth
estimation task (case (c)), S2 scaling from base model significantly outperforms
xlarge model with similar GFLOPs and only 0.25× parameters. In the semantic

16https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
17https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
18https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth

https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth
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Table 3: Configurations of models and corresponding results on NYUv2 depth estima-
tion.

Model Size Scales #Params #FLOPs RMSE

ViT

Base (5122) 86M 105.7G 0.5575
Base (2562, 5122, 10242) 86M 474.7G 0.5127
Base (2562, 5122, 15362) 86M 926.7G 0.5079
Large (5122) 307M 362.1G 0.5084
Huge (5122) 632M 886.2G 0.5611

DINOv2

Base (5042) 86M 134.4G 0.3160
Base (5042, 10082) 86M 671.8G 0.2995
Base (5042, 10082, 15122) 86M 1881G 0.2976
Large (5042) 303M 460.9G 0.2696
Large (5042, 10082) 303M 2170G 0.2584
Giant (5042) 632M 1553G 0.2588

OpenCLIP

Base (5122) 86M 105.7G 0.4769
Base (2562, 5122, 10242) 86M 474.7G 0.4107
Base (2562, 5122, 15362) 86M 926.7G 0.3959
Large (5042) 303M 460.9G 0.4436
Huge (5042) 632M 940.2G 0.3939

Table 4: Configurations of models and corresponding results on V∗ and VQA tasks.

Model Size Scales #Params #FLOPs V∗
Att V∗

Spa VQAv2 VQAT Viz

OpenCLIP

Large (2242) 304M 79.4G 36.5 50.0 76.6 53.8 51.6
Large (2242, 4482) 304M 389.1G 40.0 50.0 77.8 55.9 55.2
Large (2242, 4482, 6722) 304M 1634G 35.7 63.2 77.9 56.5 55.3
Huge (2242) 632M 164.6G 37.4 50.0 76.0 54.0 53.3
big-G (2242) 1012M 473.4G 32.2 48.7 76.2 54.0 53.5

segmentation task (case (b)), S2 scaling from base model has less competitive
result than larger models, while S2 scaling from the large model outperforms
the xlarge model with more GFLOPs but a smaller number of parameters. The
ImageNet classification task (case (a)) is a failure case where S2 scaling from
both base and large model fail to compete with the xlarge model. From the
observation above, we see that the convolutional networks show similar properties
as transformer-based models: S2 scaling has more advantages than model size
scaling on dense prediction tasks such as segmentation and depth estimation
while S2 scaling is sometimes worse in image classification. This is possibly due to
base and large model are not pre-trained with S2 (see Section 4.3 of the paper).

4 Ablations of Model Design

We conduct the ablations on several designs of S2-Wrapper. Specifically, (i) we first
compare running vision model on sub-images split from the large-scale image with
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Table 5: Configurations of models and corresponding results on MLLM benchmarks.

Model Size Scales #Params #FLOPs MMMU Math MMB SEED MMVet

OpenCLIP

Large (2242) 304M 79.4G 35.4 24.0 64.2 65.5 31.6
Large (2242, 4482) 304M 389.1G 37.6 24.2 64.5 66.0 33.0
Large (2242, 4482, 6722) 304M 1634G 37.8 24.5 64.0 66.3 32.8
Huge (2242) 632M 164.6G 36.1 25.2 64.2 65.6 30.7
big-G (2242) 1012M 473.4G 35.6 25.2 64.8 65.1 32.8

Table 6: Configurations of models and corresponding results on robotic manipulation.

Model Size Scales #Params #FLOPs Success Rate

MVP
Base (2242) 86M 17.5G 43.8
Base (2242, 4482) 86M 87.9G 62.5
Large (2242) 307M 61.6G 50.0

running on the large-scale image directly, and then (ii) we compare concatenating
feature maps from different scales with directly adding them together.

Results for (i) are shown in Table 7. We evaluate S2-Wrapper with or without
image splitting on ADE20k semantic segmentation. We test base and large
baselines, as well as multi-scale base model with (1x, 2x) and (1x, 2x, 3x) scales
separately. We can see that for (1x, 2x) scales, image splitting has better results
than no splitting, which is due to image splitting makes sure the input to the model
has the same size as in pre-training, and avoids performance degradation caused
by positional embedding interpolation when directly running on large images.
However, note that even running directly on large images, multi-scale base model
still has better results than base and large models, which indicates the effectiveness
of S2 scaling. Furthermore, image splitting enjoys higher computational efficiency
because it avoids the quadratic complexity of self-attention. Notice that without
image splitting, the training will run in OOM error when using (1x, 2x, 3x) scales.

Table 7: Ablation of splitting large-scale images. We compare splitting the
large-scale image into regular-size sub-images vs. running the model directly on the
large image. We evaluate on ADE20k semantic segmentation. We can see that S2 scaling
with image splitting consistently outperforms directly running on the large image while
being more compute-efficient.

Model Scales Splitting mIoU

Base 5182 54.8
Large 5182 55.1
Base-S2 5182, 10362 ✗ 55.7
Base-S2 5182, 10362 ✓ 56.3
Base-S2 5182, 10362, 15542 ✗ OOM
Base-S2 5182, 10362, 15542 ✓ 56.9
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Fig. 1: Comparison of S2 scaling and model size scaling on ConvNeXt.
We evaluate three tasks: ImageNet classification, semantic segmentation, and depth
estimation. For S2 scaling (plotted in green curve), we test three sets of scales from
single-scale (1x) to multi-scale (up to 3x), and we adjust each set of scale so that it
matches the GFLOPs of the respective model size. Note that for specific models and
tasks, we test S2 scaling on both base and large models (plotted in light green and dark
green curves separately).

Results for (ii) are shown in Table 8. We compare S2-Wrapper with con-
catenating features from different scales with directly adding the features. We
evaluate on ADE20k semantic segmentation with DINOv2 and OpenCLIP. On
both models, concatenating, as done by default in S2-Wrapper, has consistently
better performance than adding the features.

Table 8: Ablation of how to merge features from different scales. We compare
concatenating features with adding features from different scales. Concatenating has
consistently better performance.

Model Scales Merging mIoU

DINOv2-Base-S2 5182, 10362, 15362 add 55.7
DINOv2-Base-S2 5182, 10362, 15362 concat 56.9
OpenCLIP-Base-S2 2562, 5122, 10242 add 51.4
OpenCLIP-Base-S2 2562, 5122, 10242 concat 52.5

5 Throughput of Models with S2

Previously we use FLOPs to measure the computational cost of different models.
Since FLOPs is only a surrogate metric for the actual throughput of the models,
here we compare the throughput of different models and verify if it aligns with
FLOPs. Table 9 shows the results. We report the FLOPs and throughput put of
DINOv2 model with base, large, and giant size, as well as base size with scales
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of (1×), (1×, 2×), and (1×, 2×, 3×). We test on base scales of 2242 and 5182.
We can see that in general, the throughput follows the similar trends as FLOPs.
For example, the base model with scales of (2242, 4482, 6722) has the similar
throughput as the giant model with scale of (2242). The base model with scales
of (2242, 4482) has the about 0.8× throughput as the large model with scale of
(2242). On base scale of 5182, the multi-scale base models with scales of (1×, 2×),
and (1×, 2×, 3×) have about 0.7× throughput as the large and giant models,
respectively.

Table 9: Comparison of FLOPs and Throughput.

Model Size Scales #FLOPs Throughput
(image/s)

Base (2242) 17.6G 138.5
Base (2242, 4482) 88.1G 39.5
Base (2242, 4482, 6722) 246.0G 16.5
Large (2242) 61.6G 54.5
Giant (2242) 204.9G 17.2

Base (5182) 134.4G 34.9
Base (5182, 10362) 671.8G 7.7
Base (5182, 10362, 15542) 1881G 2.7
Large (5182) 460.9G 11.8
Giant (5182) 1553G 3.8

6 Additional Qualitative Results on V∗

We show more qualitative results on the V∗ benchmark. We compare the perfor-
mances of LLaVA-1.5 with S2 scaling, original LLaVA-1.5 [7], and GPT-4V [1] on
several examples in visual detail understanding (V∗ [13]). Similarly, for LLaVa-1.5
with S2 scaling, we use Vicuna-7B [4] as LLM and OpenAI CLIP as the vision
backbone and apply S2 scaling on the vision backbone.

In Figure 2, we see various examples that demonstrate the capabilities of
different MLLMs. For instance, in example (f), the query is about the color of
the flowers, which only occupy around 670 pixels in the 2550× 1500 image. Here,
LLaVA-1.5-S2 correctly identifies the color as ’white’. However, LLaVa-1.5 fails to
capture the correct color and recognizes it as ’red’, which is actually the color of
the flowerpot. On the other hand, GPT-4V recognizes the color as ’a mix of red
and white’, indicating that it cannot distinguish the subtle differences between
the flowerpot and flowers.

In another example (c), the query is about the color of the woman’s shirt.
Here, the size of the woman’s figure is small, and the purple color of the shirt is
very similar to the dark background color. In this case, LLaVA-1.5-S2 correctly
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identifies the color of the shirt as ’purple’, while both LLaVA-1.5 and GPT-4V
mistakenly identify the color of the shirt as ’black’ or ’blue’, which is the color of
the background.

The above examples highlight the difference in performance between LLaVA-
1.5-S2, LLaVA-1.5 and GPT-4V. LLaVA-1.5-S2 distinguishes itself through its
heightened sensitivity and enhanced precision in visual detail understanding. This
advanced level of detail recognition can be attributed to the S2 scaling applied
to its vision backbone, which significantly augments its ability to analyze and
interpret subtle visual cues within complex images.
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(a) What is the color of the chair? (b) What is the color of the water bottle?

(c) What is the color of the woman’s shirt? (d) What color of shirt is the man by the pool
wearing?

(e) What is the color of the cart? (f) What is the color of the flower?

Fig. 2: Examples of LLaVA-1.5 with S2 scaling on the V∗ benchmark, demon-
strating its extreme ability in recognizing fine-grained details of an image.
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