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Abstract. Scaling up the size of vision models has been the de facto
standard to obtain more powerful visual representations. In this work,
we discuss the point beyond which larger vision models are not necessary.
First, we demonstrate the power of Scaling on Scales (S?), whereby a pre-
trained and frozen smaller vision model (e.g., ViT-B or ViT-L), run over
multiple image scales, can outperform larger models (e.g., ViT-H or ViT-
G) on classification, segmentation, depth estimation, Multimodal LLM
(MLLM) benchmarks, and robotic manipulation. Notably, S? achieves
state-of-the-art performance in detailed understanding of MLLM on the
V* benchmark, surpassing models such as GPT-4V. We examine the
conditions under which S? is a preferred scaling approach compared to
scaling on model size. While larger models have the advantage of better
generalization on hard examples, we show that features of larger vision
models can be well approximated by those of multi-scale smaller models.
This suggests most, if not all, of the representations learned by current
large pre-trained models can also be obtained from multi-scale smaller
models. Our results show that a multi-scale smaller model has comparable
learning capacity to a larger model, and pre-training smaller models with
S? can match or even exceed the advantage of larger models. We release
a Python package that can apply S? on any vision model with one line
of code: https://github.com/bfshi/scaling_on_scales.
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1 Introduction

Scaling up model size has been one of the key drivers of recent progress in various
domains of artificial intelligence, including language modeling [9,/50L/68], image
and video generation [8,|34,53.(77], etc. Similarly, for visual understanding, larger
models have consistently shown improvements across a wide range of downstream
tasks given sufficient pre-training data [13,/48,/63,/80]. This trend has led to
the pursuit of gigantic models with up to tens of billions of parameters as a
default strategy for achieving more powerful visual representations and enhanced
performance on downstream tasks [13}[18}22,/62].

In this work, we revisit the question: Is a larger model always necessary for
better visual understanding? Instead of scaling up model size, we consider scaling
up image scales, which we call Scaling on Scales (S2). With S?, a pre-trained
and frozen smaller vision model (e.g., ViT-B or ViT-L) is run on multiple image
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scales to generate a multi-scale representation. We take a model pre-trained on
one single image scale (e.g., 2242), interpolate the image to multiple scales (e.g.,
2242 4482, 6722), extract features on each scale by splitting larger images into
sub-images of regular size (224%) and processing each separately before pooling
them and concatenating with features from the original representation (Fig. .

Surprisingly, from evaluations on visual representations of various pre-trained
models (e.g., ViT [21], DINOv2 [48]|, OpenCLIP [13|, MVP [52]|), we show
that smaller models with S? scaling consistently outperform larger models on
classification, semantic segmentation, depth estimation, MLLM benchmarks,
and robotic manipulation, with significantly fewer parameters (0.28x to 0.07x)
and comparable GFLOPs. Notably, by scaling up image scale to 10082, we
achieve state-of-the-art performance in MLLM visual detail understanding on
V* benchmark [72|, surpassing open-source and even commercial MLLMs like
Gemini Pro [65] and GPT-4V [1].

We further examine conditions under which S? is a preferred scaling approach
compared to model size scaling. We find that while smaller models with S?
achieve better downstream performance than larger models in many scenarios,
larger models can still exhibit superior generalization on hard examples. This
prompts an investigation into whether smaller models can achieve the same
level of generalization capability as larger ones. Surprisingly, we find that the
features of larger models can be well approximated by multi-scale smaller models
through a single linear transform, which means smaller models should have at
least a similar learning capacity of their larger counterparts. We hypothesize
that their weaker generalization stems from being pre-trained with single image
scale only. Through experiments of ImageNet-21k pre-training on ViT, we show
that pre-training with S? scaling improves the generalizability of smaller models,
enabling them to match or even exceed the advantages of larger models.

2 Related Work

Multi-scale representation has been a common technique to recognize objects
in a scale-invariant way since the era of feature engineering [17,[19,43| and is later
introduced into convolutional neural networks [37,55,/67,/69] to extract features
with both high-level semantics and low-level details. It has become a default test-
time augmentation method for tasks such as detection and segmentation [15}/73],
albeit at the cost of significantly slower inference speeds and typically limited
image scales (up to 2x). Along with recent progress in vision transformers
(ViT), variants of multi-scale ViTs [10L[23,/35,/76] as well as hierarchical ViTs [41]
57| have been proposed. However, these studies have not explored multi-scale
representation as a general scaling approach as they usually design special
architectures and are not applicable to common pre-trained vision models.

Scaling Vision Models. Training models with an increasing number of parame-
ters has been the default approach to obtaining more powerful representations for
visual pre-training [211|30,42},48|. Previous research has studied how to optimally
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Fig. 1: S2-Wrapper is a simple mechanism that extends any pre-trained
vision model to multiple image scales in a parameter-free manner. Taking
ViT-B as an example, S?>-Wrapper first interpolates the input image to different scales
(e.g., 224% and 448%) and splits each into several sub-images of the same size as the
default input size (4:482 — 4 x 2242). For each scale, all sub-images are fed into the
same model and the outputs (e.g., 4 X 16%) are merged into feature map of the whole
image (32?). Feature maps of different scales are average-pooled to the original spatial
size (16%) and concatenated together. The final multi-scale feature has the same spatial
shape as single-scale feature while having higher channel dimension (e.g., 1536 vs. 768).

scale up vision models in terms of balancing model width, depth, and input resolu-
tion [5,20}/63}[64, 71|, although they are usually limited to convolutional networks
or even specific architectures such as ResNet [30]. Recent work also explores model
size scaling of vision transformers in various settings [3}|13}/18}[541)80]. Others have
incorporated high-resolution images into pre-training [24,41,42,/48], although the
maximum resolution typically does not exceed 5122 due to unbearable demands
of computational resources. Hu et al. |32| study scaling on image scales through
adjusting patch size for Masked Autoencoder (MAE) |29] where scaling is only
applied on pre-training but not on downstream tasks.

3 The Power of Scaling on Scales

As an alternative to the conventional approach of scaling model size, we show
the power of Scaling on Scales (S?), i.e., keeping the same size of a pre-trained
model while running it on more and more image scales. From case studies on
image classification, semantic segmentation, depth estimation, Multimodal LLMs,
as well as robotic manipulation, we observe that S? scaling on a smaller vision
model (e.g., ViT-B or ViT-L) often gives comparable or better performance than
larger models (e.g., ViT-H or ViT-G), suggesting S? is a competitive scaling
approach. In the following, we first introduce S>-Wrapper, a mechanism that
extends any pre-trained frozen vision model to multiple image scales without
additional parameters (Sec. . We then compare S? scaling and model size
scaling in Sec. [3:2)- Sec.
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3.1 Scaling Pre-Trained Vision Models to Multiple Image Scales

We introduce S2.-Wrapper, a parameter-free mechanism to enable multi-scale
feature extraction on any pre-trained vision model. Regular vision models are
normally pre-trained at a single image scale (e.g., 224%). S2-Wrapper extends a
pre-trained model to multiple image scales (e.g., 2242, 4482) by splitting different
scales of images to the same size as seen in pre-training. Specifically, given the
image at 2242 and 4482 scales, S-Wrapper first divides the 4482 image into
four 2242 sub-images, which along with the original 2242 image are fed to the
same pre-trained model. The features of four sub-images are merged back to
the large feature map of the 4482 image, which is then average-pooled to the
same size as the feature map of 2242 image. Output is the concatenation of
feature maps across scales. The whole process is illustrated in Fig. [I] Note that
instead of directly using the 4482 resolution image, we obtain the 4482 image by
interpolating the 2242 image. This is to make sure no additional high-resolution
information is introduced so we can make a fair comparison with model size
scaling which never sees the high-resolution image. For practitioners, directly
using the high-resolution image is recommended.

There are several key designs that make S2-Wrapper efficient, effective, and
easy to scale: (i) splitting the large image into small sub-images, instead of directly
running on the whole large image, avoids quadratic computation complexity in self-
attention and prevents performance degradation caused by position embedding
interpolation [7], (ii) processing individual sub-images instead of using window
attention allows using a pre-trained model that does not support window attention
and avoids training additional parameters (e.g., relative position embedding)
from scratch, (iii) interpolating the large feature map into the regular size makes
sure the number of output tokens stays the same, preventing computational
overhead in downstream applications such as MLLMs. Ablations of the designs
can be found in Appendix. Note that we do not claim the novelty of extracting
multi-scale features. Instead, we simply choose the most efficient and effective
algorithm design and study its scaling property.

3.2 Scaling on Image Scales Can Beat Scaling on Model Size

S2-Wrapper enables S? scaling, i.e., keeping the same size of a pre-trained model
while getting more and more powerful features by running on more and more
image scales. Here we compare the scaling curve of S? to the regular approach of
scaling up model size and show that S scaling is a competitive, and in some cases,
preferred scaling approach. To get a holistic analysis of two scaling approaches,
we test their scaling curves on three representative tasks (image classification,
semantic segmentation, and depth estimation) which correspond to the three
dimensions of vision model capability [46], as well as on MLLMs and robotic
manipulation which reflect the comprehensive ability of visual understanding.

Case study: image classification, semantic segmentation, and depth
estimation. We use ImageNet [56], ADE20k [85], and NYUv2 59| datasets for
each task, respectively. We test on three families of pre-trained models (ViT [21],
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Fig. 2: Comparison of S? scaling and model size scaling on three models
(ViT, DINOv2, and OpenCLIP) and three tasks (ImageNet classification, semantic
segmentation, and depth estimation). For each model and each task, we test base, large,
and huge/giant model for model size scaling (plotted in gray curve). For S? scaling
(plotted in green curve), we test three sets of scales from single-scale (1x) to multi-scale
(up to 3x), and we adjust each set of scale so that it matches the GFLOPs of the
respective model size. Note that for specific models and tasks, we test S? scaling on both
base and large models (plotted in light green and dark green curves separately). We can
see that in (a), (d), (e), (f), (g), and (i), base model with S? scaling already achieves
comparable or better performances than larger models with similar GFLOPs and much
smaller model size. For (b), (h), S? scaling from large model is comparable with giant
model, again with similar GFLOPs and fewer parameters. The only failure case is (c),
where S? scaling on either base or large model does not compete with model size scaling.
One possible reason is the model is scaled up to larger images after pre-training but
not during pre-training, which may affect its generalizability. In Sec. [£-3] we show that
pre-training with S? can further improve performance.
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DINOv2 [48], and OpenCLIP [13]), spanning pre-training with different datasets
(ImageNet-21k, LVD-142M, LAION-2B) and different pre-training objectives
(supervised, unsupervised, and weakly-supervised). To see if the same observation
holds for convolutional networks, we also test on ConvNeXt |42] (See Appendix).
To fairly evaluate the representation learned from pre-training, we freeze the
backbone and only train the task-specific head for all experiments. We use a
single linear layer, Mask2former [11], and VPD depth decoder [83] as decoder
heads for three tasks, respectively. For model size scaling, we test the performance
of base, large, and huge or giant size of each model on each task. For S? scaling,
we test three sets of scales including (1x), (1x, 2x), (1x, 2x, 3x). For example,
for ViT on ImageNet classification, we use three sets of scales: (224%), (2242,
448?%), and (2242, 4482, 6722), which have the comparable GFLOPs as ViT-B,
ViT-L, and ViT-H, respectively. Note that the scales for specific models and
tasks are adjusted to match the GFLOPs of respective model sizes. The detailed
configurations for each experiment can be found in Appendix.

The scaling curves are shown in Fig. 2] We can see that in six out of nine
cases ((a), (d), (e), (f), (g), (i), S? scaling from base models gives a better scaling
curve than model size scaling, outperforming large or giant models with similar
GFLOPs and much fewer parameters. In two cases ((b) and (h)), S? scaling
from base models has less competitive results than large models, but S? scaling
from large models performs comparatively with giant models. The only failure
case is (c¢) where both base and large models with S? scaling fail to compete
with the giant model. Note that ViT-H is worse than ViT-L on all three tasks
possibly due to the sub-optimal pre-training recipe |61]. We observe that S?
scaling has more advantages on dense prediction tasks such as segmentation and
depth estimation, which matches the intuition that multi-scale features can offer
better detailed understanding which is especially required by these tasks. For
image classification, S? scaling is sometimes worse than model size scaling (e.g.,
multi-scale DINOv2-B vs. DINOv2-L). We hypothesize this is due to the weak
generalizability of base model feature because we observe that the multi-scale
base model has a lower training loss than the large model despite the worse
performance, which indicates overfitting. In Sec. [I.3] we show that this can be
fixed by pre-training with S? scaling as well.

Case study: Multimodal LLMs. We compare S? scaling and model size scaling
on MLLMs. We use a LLaVA [39]-style model where LLM is a Vicuna-7B [14]
and the vision backbone is OpenCLIP. We keep the same LLM and only change
the vision backbone. For model size scaling, we test vision model sizes of large,
huge, and big-G. For S? scaling, we keep the large-size model and test scales
of (2242), (2242, 448?), and (2242, 4482, 8962). For all experiments, we keep
the vision backbone frozen and only train a projector layer between the vision
feature and LLM input space as well as a LoRA [31] on LLM. We follow the same
training recipe as in LLaVA-1.5 |38|. We evaluate three types of benchmarks:
(i) visual detail understanding (V* [72]), (ii) VQA benchmarks (VQAv2 [27],
TextVQA [60], VizWiz [28]), and (iii) MLLM benchmarks (MMMU [79], Math-
Vista [44], MMBench [40], SEED-Bench [36], MM-Vet [78]).
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Fig. 3: Comparison of S? scaling and model size scaling on MLLM. S? scaling
has comparable and even better scaling curve than model size scaling on all three types
of benchmarks. Notably, S? scaling significantly improves the detailed understanding
capability of MLLM, boosting the accuracy on V* benchmark by over 6%. Overall,
using large image scales consistently gives better performance while using larger model
can degrade model performance in certain cases.

A comparison of the two scaling approaches is shown in Fig. [3| We report
the average accuracy on each type of benchmarks. We can see that on all three
types of benchmarks, S? scaling on large-size model performs better than larger
models, using similar GFLOPs and much smaller model size. Especially, scaling
to 8962 improves the accuracy of detailed understanding by about 6%. On all
benchmarks, larger image scales consistently improve performance while bigger
models sometimes fail to improve or even hurt performance. These results suggest
S? is a preferable scaling approach for vision understanding in MLLMs as well.

We also observe that LLaVA-1.5, when equipped with S? scaling, is already
competitive or better than state-of-the-art open-source and even commercial
MLLMs. Results are shown in Table |1} Here we use OpenAI CLIP [49] as the
vision model for fair comparison. On visual detail understanding, LLaVA-1.5 with
S? scaling outperforms all other open-source MLLMs as well as commercial models
such as Gemini Pro and GPT-4V. This is credited to the highly fine-grained
features we are able to extract by scaling image resolution to 10082. A qualitative
example is shown in Figure 4, We can see that LLaVA-1.5 with S? is able to
recognize an extremely small object that only takes 23 x 64 pixels in a 2250 x 1500
image and correctly answer the question about it. In the meantime, both GPT-4V
and LLaVA-1.5 fail to give the correct answer. More qualitative examples are
shown in Appendix. On VQA and MLLM benchmarks, S? consistently improves
the model performance as well. In contrast to previous experiments, here we
directly use the high-resolution image instead of interpolating from the low-
resolution image in order to compare with the state of the arts. Note that despite
the large image scale, we keep the same number of image tokens as baseline
LLaVA-1.5 since we interpolate the feature map of the large-scale images to the
same size as that of the original image (see Section . This makes sure the
context length (and thus the computational cost) of LLM does not increase when
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Table 1: Results on MLLM. We evaluate three types of benchmarks: visual detail
understanding (V* [72]), VQA benchmarks (VQAv2 [27], TextVQA [60], VizWiz [28]),
and MLLM benchmarks (MMMU [79], MathVista [44], MMBench [40|, SEED-Bench [36],
MM-Vet [78]). Notably, S? significantly improves the detailed understanding capability
on V* benchmark, outperforming commercial models such as GPT-4V.

Detail VQA MLLM Benchmarks
Model Res. #Tok Vi Vi, VQAY2VQAT Viz |MMMU Math MMB SEED Vet
Commercial or proprietary models
GPT-4V [1] - - 51.3 60.5 |77.2 78.0 - 56.8 49.9 758 71.6 67.6
Gemini Pro [65] - - 40.9 59.2 |71.2 746 - 47.9 45.2 73.6 70.7 64.3
Qwen-VL-Plus [66] - - - - - 78.9 - 45.2 43.3 - - -
Open-source models
InstructBLIP-7B |16] 224 - 25.2 474 |- 50.1 34.5 |- - 36.0 - 26.2
QwenVL-7B |2| 448 1024 - - 78.8 63.8 35.2 |- - 38.2 - -
QwenVL-Chat-7B |2] 448 1024 - - 782 61.5 38.9 |- - 60.6 - -
CogVLM-Chat [70] 490 1225 - 82.3 704 - 41.1 345 77.6 T72.5 51.1

LLaVA-1.5-7B [38] 336 576 43.5 56.6 |78.5 58.2

- S$2 Scaling 1008 576 51.3 61.8 |[80.0 61.0
LLaVA-1.5-13B [38] 336 576 41.7 55.3 |80.0 61.3
- 2 Scaling 1008 576 50.4 63.2(80.9 63.1

50.0 (36.2 25.2 64.3 65.7 30.5
50.1 |37.7 25.3 66.2 67.9 324
53.6 |36.4 27.6 67.8 68.2 354
56.0 |37.4 27.8 67.9 68.9 364

using larger image scales, allowing us to use much higher resolution than the

baselines.

Case study: robotic manipulation. We
compare S? and model size scaling on a robotic
manipulation task of cube picking. The task
requires controlling a robot arm to pick up
a cube on the table. We train a vision-based
end-to-end policy on 120 demos using behav-
ior cloning, and evaluate the success rate of
picking on 16 randomly chosen cube positions,
following the setting in [51]. We use MVP [52]
as the pre-trained vision encoder to extract vi-
sual features which are fed to the policy. Please
refer to Appendix for the detailed setting. To
compare S? and model size scaling, we eval-
uate base and large model with single scale
of (224?), as well as multi-scale base model
with scales of (2242, 4482). Results are shown
in Figure [5} Scaling from base to large model
improves the success rate by about 6%, while
scaling to larger image scales improves the suc-
cess rate by about 19%. This demonstrates the

MVP - Cube Picking

U o ~
e e .

Success Rate

N
e

2.5x 10! ‘ C10?
GFLOPs (log scale)

Fig. 5: S? vs. model size scaling
on cube picking task. S? scaling
on base-size model improves the
success rate by about 19% while
scaling from base to large model
improves by about 6%.

advantage of S% over model size scaling on robotic manipulation tasks as well.
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Q: What is the color of the water bottle? Q: What is the color of the cart?

GPT-4V: LLaVA-1.5: LLaVA-1.5-S% GPT-4V: LLaVA-1.5: LLaVA-1.5-S%
The water The color of The color of The color of The color of The color of
bottle on the the water the water the cart in the the cart is gray. the cart is
ground is blue. bottle is blue. bottle is red. image is green. green.

Fig. 4: LLaVA-1.5 with S? scaling is able to recognize extremely fine-grained
details in an image, e.g., the color of a water bottle which lives in only 23x64 pixels
of a 2250 x 1500 image.

3.3 The Sweet Spot Between Model Size Scaling and S? Scaling

While S? scaling outperforms model size scaling on a wide range of downstream
tasks, a natural question arises: on which model size should we perform S2
scaling? We show that it depends on different pre-trained models. For certain
models, S? scaling from a large-size model gives an even better scaling curve
when S? scaling from base model already beats larger models. As an example,
we compare S? scaling from base and large models on semantic segmentation
for ViT, DINOv2, and OpenCLIP. Results are shown in Fig. [f] We can see that
for ViT and OpenCLIP, S? scaling from base model is better than from large
model when the amount of computation is less than that of giant-size model.
These two curves eventually converge after going beyond the GFLOPs of giant
model. This means S? scaling from large model has no significant benefit than
from base model. On the other hand, for DINOv2 we observe a clear advantage
for S? scaling from large model. When reaching the same level of GFLOPs as
giant-size model, S? scaling from large model beats S? scaling from base model
by about 1 mIoU. These results indicate the optimal balancing between model
size scaling and S? scaling varies for different models.

4 The (Non)Necessity of Scaling Model Size

Results from Sec. |3| suggest S? is a preferred scaling approach than model size
scaling for various downstream scenarios. Nevertheless, larger vision models seem
still necessary in certain cases (such as Fig. c)) where S? scaling cannot compete
with model size scaling. In the following, we first study the advantage of larger
models and show they usually generalize better on rare or hard instances than
multi-scale smaller models (Sec. . Then, we explore if smaller models with S2
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Fig.6: Which model size should we scale up image scales on? The answer
varies for different pre-trained models. For ViT and OpenCLIP, S? scaling from base or
large model gives similar performances under computation budget beyond huge-size
model while the former performs better under similar GFLOPS as large-size model. For
DINOv2, S? scaling from large size model has better performance than scaling from
base size, especially under the same level of computation budget as giant-size model.

scaling can achieve the same capability. We find that features of larger models
can be well approximated by features of multi-scale smaller models, which means
smaller models can learn what larger models learn to a large extent (Sec. [4.2)).
Based on this observation, we verify that multi-scale smaller models have similar
capacity as larger models, and pre-training with S? scaling endows smaller models
with similar or better generalization capability than larger models (Sec. .

4.1 Larger Models Generalize Better on Hard Examples

We use image classification as a testbed to understand the advantage of larger
models. We conduct a qualitative analysis of what kinds of images are recognized
better by a larger model but not by using more image scales. Specifically, we
find samples in ImageNet that a larger model (ViT-L) improves the most over
a smaller model (ViT-B) but a multi-scale model (ViT-B-S?) fails to improve,
as shown in Fig. [7] For each sample, we also find two easy samples (which two
models both recognize correctly) from the same class as a comparison. We can
see that there are mainly two types of images that larger models have advantages
on. The first type is rare samples. For example, a television or a flute but in
the form of a sculpture instead of regular ones (Fig. a)). Larger models have
larger capacity to learn to classify these rare examples during pre-training. The
second type (Fig. [fb)) is ambiguous examples, where the object can belong
to either category (e.g., lotion and soap dispenser), or there are two categories
co-existing in the same image and both labels should be correct (e.g., airship and
traffic light). In this case, despite multiple correct labels, the large model is able
to remember the label presented in the dataset during pre-training. While the
second type is due to the flawed labeling process of ImageNet which makes it an
unfair comparison and does not imply any disadvantage of multi-scale smaller
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(a)

ViT-Large: Television Television Television Flute Flute Flute
ViT-Base-S Television Television Chestplate % Flute Flute Triceratops ¥

(b)

ViT-Large: Lotion Lotion Lotion Airship Airship Airship
ViT-Base-S2: Lotion Lotion Soap Dispenser ? Airship Airship Traffic light ?

Fig. 7: Types of samples that ViT-L improves the most but ViT-B-S? does
not. (a) Rare cases. These samples clearly belong to the class but are hard to classify
due to the rare appearance (e.g., sculptures of television and flute). (b) Ambiguous
cases. These samples have ambiguous labels. For example, the lotion could also be
soap dispenser due to their high similarity, or the label could be either airship or traffic
light when these two objects co-exist.

models |§|,, the first type indicates larger model can generalize better on rare
or hard cases.

4.2 Can Smaller Models Learn What Larger Models Learn?

Is the advantage of larger models due to some unique representation they have
learned that smaller models cannot learn? We design experiments to study how
much of the representation of larger models is also learned by multi-scale smaller
models. Surprisingly, our preliminary results suggest that most, if not all, of the
representation of larger models is also learned by multi-scale smaller models.
To quantify how much of the representation of a larger model (e.g., ViT-L)
is also learned by a multi-scale smaller model (e.g., ViT-B-S?), we adopt a
reconstruction-based evaluation, i.e., we train a linear transform to reconstruct
the representation of a larger model from that of a multi-scale smaller model.
Intuitively, low reconstruction loss means the representation of larger model
can be equivalently learned by the multi-scale smaller model (through a linear
transform) to a large extent. More formally, the reconstruction loss reflects the
mutual information between two sets of representations. If we use MSE loss
for reconstruction, the mutual information equals I = —log(l/ly), where [ is
the reconstruction loss and [y is the loss of vanilla reconstruction where the
large model representation is reconstructed by a dummy vector (See Appendix).
This quantifies how much information in the larger model representation is
also contained in the multi-scale smaller model. We use a linear transform
for reconstruction to (i) account for operations that keep the representation
equivalence (e.g., channel permutation), (ii) measure the information that is
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Table 2: Reconstructing representation of larger models from representation
of regular or multi-scale smaller models. We test three classes of models (ViT,
OpenCLIP, and MAE), and for each class we test base, multi-scale base (Base-S?), and
huge or giant model. We report results on both training and test set of ImageNet-1k,
and for each we report the reconstruction loss, the amount of information reconstructed,
and the percentage of information reconstructed compared to huge or giant model.

Train Set Test Set
Loss  Info Ratio (%) Loss Info Ratio (%)

Base 0.1100 0.440 82.9% 0.0994 0.524  87.6%
ViT Large Base-S® 0.1040 0.521 98.1% 0.0942 0.601 100.5%
Huge 0.1033 0.531 100%  0.0944 0.598 100%

Base 0.0013 7.460 97.3% 0.0010 7.840 96.0%
MAE Large Base-S® 0.0011 7.694 100.3% 0.0009 7.972 97.6%
Huge 0.001  7.669 100% 0.0008 8.169 100%

Base 0.3693 1.495 92.7% 0.3413 1.723  90.7%
OpenCLIP Large Base-S? 0.3408 1.611 99.9% 0.3170 1.830 96.3%
Giant 0.3402 1.613 100%  0.3022 1.900 100%

Base 0.3926 1.407 83.2% 0.4231 1.413 80.8%
OpenCLIP Huge Base-S? 0.3670 1.504 88.9% 0.3970 1.505 86.0%
Giant 0.3221 1.692 100% 0.3354 1.749 100%

Model Class Target Source

useful for downstream tasks considering the task decoders are usually light-weight
modules such as a single linear layer |75].

Moreover, in practice we find the reconstruction loss is usually nowhere near
zero. We hypothesize this is because part of the feature is non-reconstructable by
nature, i.e., feature that is not relevant to the pre-training task and is learned
due to randomness in weight initialization, optimization dynamics, etc., thus
cannot be reconstructed from another model’s feature. To this end, we use an
even larger (e.g., ViT-G) model to reconstruct the large model features as a
comparison. Its reconstruction loss and corresponding mutual information are
denoted by I* and I* = —log(l*/ly). If we assume that, when pre-trained on the
same task and the same dataset, any task-relevant feature learned by a smaller
model can also be learned by a larger model, then all the useful features in a
large-size model should be reconstructable by a huge or giant model as well. This
means [*, the amount of information reconstructed from a huge or giant model,
should serve as an upper bound of I. We empirically find this is indeed the case
(see below). Therefore, we use the reconstruction ratio I/I* to measure how much
representation in a larger model is also learned by a multi-scale smaller model.

We evaluate three classes of models: (i) ViT |21] pre-trained on ImageNet-21k,
(ii) OpenCLIP [13| pre-trained on LAION-2B, and (iii) MAE [29] pre-trained
on ImageNet-1k. Reconstruction loss is averaged over all output tokens and
is evaluated on ImageNet-1k. Results are shown in Tab. [2] Compared to base
models, we observe that multi-scale base models consistently have lower loss and
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Table 3: Training loss on instance Table 4: Pre-training with S2. Ap-
memorization and image classification. plying S? on a already pre-trained
Base model with S? scaling has similar mem- base model has sub-optimal perfor-
orization and classification loss, which im- mance compared to large model,
plies it has at least the same level of model while pre-training with S? makes base
capacity as large model. model better than large model.

Cls. Loss  Cls. Loss Model Pre-train w/ S? Acc.

Model Mem. Loss

(DINOv2) (OpenCLIP)

Base 80.3
Base 1.223 3.855 4.396 Large 81.6
Large 1.206 3.350 3.735 Base-S? X 81.1
Base-S?  1.206 2.921 3.754 Base-S? v 82.4

reconstructs more information of large model representation (e.g., 0.521 vs. 0.440
for ViT). More interestingly, we find that the amount of information reconstructed
from a multi-scale base model is usually close to that of a huge or giant model,
although sometimes slightly lower but never exceeding by a large margin. For
example, while OpenCLIP-Base reconstructs 92.7% of the information, the multi-
scale base model can reconstruct 99.9%. For other models, the reconstruction
ratio of Base-S2 model is usually close to 100% while never exceeding by more
than 0.5%. This implies (i) huge/giant models are indeed a valid upper bound of
feature reconstruction, and (ii) most part of the feature of larger models is also
learned by multi-scale smaller models. The only exception is when we reconstruct
OpenCLIP-Huge feature, the reconstruction ratio is 88.9%. Although it’s not
near 100%, it is still significantly better than the base-size model which means
at least a large part of the huge model feature is still multi-scale feature. These
results imply smaller models with S? scaling should have at least a similar level
of capacity to learn what larger models learn. On the other hand, we also notice
that there exists a gap between train and test set, i.e., the reconstruction ratio
on test set can be lower than train set (e.g. 96.3% vs. 99.9% on OpenCLIP-L).
One possible reason is we only apply S? after pre-training and the base model
feature pre-trained on single image scale has weaker generalizability.

4.3 Pre-Training With S?2 Makes Smaller Models Better

Given that most of the representation larger models have learned is also learned
by multi-scale smaller models, we conjecture smaller models with S? scaling have
at least similar capacity as larger models. Since larger capacity allows memorizing
more rare and atypical instances during pre-training when given sufficient data
and thus improves generalization error [4,]12]25]/26}45], we further speculate
smaller models can achieve similar or even better generalizability than larger
models if pre-trained with S? scaling as well. We verify these in the following.

Multi-scale smaller models have similar capacity as larger models. To
measure the model capacity, we use two surrogate metrics: (i) memorization
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capability, and (ii) training loss on a specific task. For memorization capability,
given a dataset (e.g., ImageNet), we regard each image as a separate category
and train the model to classify individual images, which requires the model
to memorize every single image. The classification loss reflects how well each
instance is memorized and thus how large the model capacity is [81]. We adopt
the training pipeline from [74]. For training loss, we report classification loss on
the training set of ImageNet-1k for DINOv2 and OpenCLIP. Lower loss means the
model fits the training data better, which implies a larger model capacity. Results
are shown in Tab. [3] For instance memorization, we can see that ViT-B with S?
scaling (2242 and 448?) has a similar loss as ViT-L. For ImageNet classification,
ViT-B-S? has a similar training loss as ViT-L for OpenCLIP, and an even lower
loss for DINOv2. These results suggest that multi-scale smaller models have at
least comparable model capacity as larger models.

Pre-training with S2 makes smaller models better. We evaluate ImageNet
classification of a base model scaled with S? either during pre-training or after pre-
training. We pre-train the model on ImageNet-21k, using ViT image classification
as the pre-training objective. We compare both models with single-scale base and
large model. Results are shown in Tab. [4 We can see that when the base model
is trained with single image scale and only scaled to multiple image scales after
pre-training, it has sub-optimal performance compared to large model, which
aligns with our observation in Sec. However, when adding S? into pre-training,
multi-scale base model is able to outperform the large model, which confirms
smaller models pre-trained with S? can match the advantage of larger models.

5 Discussion

In this work, we ask the question is a larger model always necessary for better
visual understanding? We find that scaling on the dimension of image scales,
which we call Scaling on Scales (S?), instead of model size usually obtains better
performance on a wide range of downstream tasks including image classification,
semantic segmentation, depth estimation, as well as on MLLM benchmarks and
robotic manipulation tasks. We find that although larger models generalize better
on rare or hard instances compared to smaller models, smaller models with S?
can learn most of the representation learned by larger models, and pre-training
smaller models with S? can further improve the performance and match or even
exceed the advantage of larger models. S? has a few implications for future work,
including (i) scale-selective processing, i.e., not every scale at every position
in an image contains equally useful features, and depending on image content
and high-level task, it is much more efficient to select certain scales to process for
each region, which resembles the bottom-up and top-down selection mechanism
in human visual attention [33}[58l/84], (ii) parallel processing of single image,
i.e., in contrast with regular ViT where the whole image is processed together
at once, the fact that each sub-image is processed independently in S? enables
parallel processing of different sub-images for a single image, which is especially
helpful for scenarios where latency on processing single large image is critical [82].
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