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1 Implemantation Details

1.1 Stage 1: GaussianVolume Fitting

In this stage, we precisely fit each object using 96 uniformly rendered images,
capturing various poses. The initial 72 images are rendered with camera poses
uniformly distributed around a camera-to-world-center distance of 2.4 units. The
remaining 24 images are rendered from a closer distance of 1.6 units to provide
a more detailed view. We set the volume resolution at N = 32 and the spherical
harmonics (SH) order at 0, resulting in each Gaussian point having a feature
channel number C = 14.

The fitting volume is assumed to be a cube with a side length of 1 world unit,
centered within the global coordinate system. Inside this cube, Gaussian points
are uniformly distributed to ensure a comprehensive coverage of the volume.
Initially, the offset for each Gaussian point ∆µ is set to zero. To optimize each
instance, we conduct training against a white background for 20,000 iterations. A
densification strategy is employed from iteration 500 to 15,000, with subsequent
operations executed every 100 iterations to incrementally enhance the model’s
density. After this densification phase, we periodically clip features to predefined
ranges every 100 iterations to maintain consistency and prevent outliers. We
refrain from resetting the opacity of each Gaussian point during the training
process. This decision is made to avoid introducing instability into the model’s
learning and adaptation phases.

For weights selection in Lfitting, we set λ1 = 0.8, λ2 = 0.2, λ3 = 20.0, and
the offsets threshold as 1.5 voxel distances. Mathematically, this is expressed as
ϵoffsets = 1.5

32−1 , signifying the calculated distance between adjacent grid points
in our defined volume space. For other parameters, we adhere to the default
configurations in 3D Gaussian Splatting [3].

1.2 Stage 2: Text-to-3D Generation

Data Pre-processing In the generation phase, we first preprocess Gaussian-
Volume data to improve the stability and convergence of the learning process.

First, we standardize the decomposition of the covariance matrix by imposing
an ordering constraint on the scaling vector s ∈ R3 of each Gaussian, ensuring
they are arranged in ascending order. This organization, while maintaining the
orthogonality of the eigenvectors, does not modify the resultant covariance ma-
trix. The rotation vector q ∈ R4 is also adjusted to align with the sequence of
transformations introduced by scaling. Secondly, we represent quaternions using
spherical coordinates. This conversion reduces the rotation vector q to a three-
dimensional representation, enhancing the uniqueness and consistency of each
Gaussian’s parameters. By normalizing quaternions in this manner, we ensure
that identical shapes are represented by identical parameters. Finally, we nor-
malize each feature channel individually based on its mean and variance. This
normalization process equilibrates the scales across different channels.
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Fig. 1: Visual Results of Generated Assets in Explorational Experiments.

Model Architecture and Training In the generation phase of Gaussian Den-
sity Fields (GDF), we utilize a 3D U-Net modified from [2]. The text condition
is 77 × 768 embeddings extracted with CLIP ViT-L/14 [6] text encoder, and it
is injected into the 3D U-Net using cross-attention mechanisms. An additional
MLP layer is employed to bridge the inter-modal gap. The architecture of the
prediction model mirrors the 3D U-Net, with adjustments including a modifica-
tion in the input channel number and the omission of timestep blocks.

When training the generative model predicting GDF, we only use MSE loss
L3D as the supervision. For training the prediction model, we set λ = 0.2 for
the rendering loss L2D through the whole process. Then, for the total loss L =
λ3DL3D+λ2DL2D, we set λ3D = 1.0, λ2D = 0 for the first 100 epochs, providing
a robust initialization that focuses solely on 3D consistency. Subsequently, the
weights are adjusted to λ3D = 0.2 and λ2D = 0.8, shifting the focus towards
optimizing 2D rendering and further refining.

2 Explorational Experiments

In our early exploration, we investigated the efficacy of various generative mod-
els, initially training three unconditional models: a point cloud diffusion model,
and a primal 3D U-Net-based diffusion model, and compared them with our full
model. We specifically utilized 8 fitted GaussianVolumes belonging to the chair
LVIS-category as our training data and trained each model for 4,000 epochs.
The qualitative results are shown in Fig. 1.

Our initial foray involved adapting the point cloud diffusion model, inspired
by prior work [4], to facilitate the generation of 3D Gaussians. Unfortunately,
this approach struggled with convergence issues, yielding unsatisfactory results.
The inherent limitations of point cloud diffusion models in capturing and gen-
erating the nuanced structures of 3D Gaussians became apparent, prompting us
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Fig. 2: GSGEN [1] Results Initialized with Our Method and Point-E [5].
The left column represents rendering results initialized with different methods, and the
right column stands for rendering results after optimization with GSGEN.

to explore alternative strategies. Employing a primal one-stage diffusion model
offered a glimpse into generating basic 3D structures. However, this model pre-
dominantly produced coarse outputs characterized by spiny shapes, highlighting
the need for a more nuanced generation technique to achieve plausible 3D geom-
etry. Our full model, incorporating a coarse-to-fine generation pipeline, demon-
strated significant improvements in generating 3D Gaussians. This approach not
only simplified the generation process but also empowered the model to produce
instances with more accurate and realistic 3D geometry. By sequentially refining
the generated outputs, the coarse-to-fine pipeline effectively addresses the limi-
tations observed in the earlier models, showcasing its superiority in generating
complex 3D structures.
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Fig. 3: Visual Results of Rendered Images and Positions of The Gaussian
Center. The fitted assets are optimized with different offsets threshold ϵoffsets.

3 Application

To demonstrate the superiority of our method, we show GVGEN’s capability
to integrate with optimization-based methods, like GSGEN [1], for further re-
finement (see Fig. 2). Using the generated GaussianVolume1 as initialization to
replace point clouds from Point-E with random colors. This shift enables GS-
GEN to further optimize 3D Gaussians, achieving better alignment with the text
descriptions in both texture and geometry. This enhancement stems from avoid-
ing the adverse impact of color attributes from Point-E on GSGEN’s utilization,
as the features produced by GVGEN are more compatible and beneficial for the
optimization process.

1 We filter low-opacity Gaussian points for GSGEN initialization.
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Table 1: Quantitative results for different offsets threshold selection.

Metrics PSNR ↑ SSIM ↑ LPIPS ↓

0-dist 18.189 0.859 0.176
1.5-dist 30.437 0.966 0.046
3-dist 30.395 0.969 0.038
∞-dist 30.007 0.969 0.034

Table 2: Quantitative Results for Different Settings of GaussianVolume Resolution.

Metrics PSNR ↑ SSIM ↑ LPIPS ↓ Num of Gaussians Time(s)

16-res 23.079 0.887 0.122 4,096 169
32-res 30.437 0.966 0.046 32,768 179
64-res 30.395 0.972 0.032 262,144 195
3DGS 29.789 0.969 0.030 175,532 191

4 Additional Ablation Studies on GaussianVolume
Fitting Stage

4.1 Effects of offsets threshold ϵoffsets

In Tab. 1 and Fig. 3, we present the effects of varying the offset threshold, ϵoffsets
during GaussianVolume fitting. The term "0-dist" indicates the absence of an
offsets term, whereas "∞-dist" denotes the omission of offsets regularization.
Our observations reveal that minimal regularization leads to improved rendering
performance. However, this comes at the cost of Gaussian points within the
volume becoming more unstructured and deviating from grid points. Without
this regularization, the offset term becomes overly flexible, making it challenging
for the network to learn effectively. To strike a balance between flexibility and
maintaining a well-defined structure, we have selected ϵoffsets =

1.5
32−1 , equivalent

to a 1.5 voxel distance, as our optimal threshold.

4.2 Effects of GaussianVolume Resolution

We present a comparison of rendering results and quantitative metrics in Tab. 2
and Fig. 4, utilizing the "Chunky knight" asset from the Objaverse dataset. An
increase in resolution N -res of the GaussianVolume correlates to a higher number
of Gaussian points, N3. To accommodate the varying volume resolutions N ,
adjustments are made to the initialization and the offsets threshold, specifically
ϵoffsets =

1.5
N−1 . The term "3DGS" denotes the process of fitting the object using

the original 3D Gaussian Splatting [3], with iteration settings matched to ours
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Fig. 4: Qualitative Comparisons among different GaussianVolume resolution set-
tings and original 3DGS.

and other parameters set to default. The analysis reveals that a greater number of
Gaussian points leads to improved fitting quality under identical settings, albeit
at the expense of increased memory usage. Notably, even when utilizing fewer
Gaussian points, our method delivers comparable visual quality to the original
3DGS approach and achieves higher PSNR values in a structured representation.
This underscores the efficiency and effectiveness of our method in reconstructing
high-quality, memory-efficient representations.

5 Failure Cases

As illustrated in Fig. 5, some of the objects generated by our model suffer from
blurred textures and imprecise geometry. This phenomenon largely stems from
the relatively small size of our training dataset, which comprises around 46,000
instances. Such a dataset size limits the model’s capacity to produce varied
outputs in response to a broad spectrum of text inputs. In the future, our work
will focus on two main avenues: improving the model architecture and enhancing
the data quality. By addressing these aspects, we aim to scale up the model for
application in large-scale scenarios, which is expected to improve the generation
diversity and lead to better-rendered results.

6 Additional Qualitative Results

We provide more visual results in Fig. 6 and Fig. 7.
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Fig. 5: Failure Cases.
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Fig. 6: More Qualitative Results.
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Fig. 7: More Qualitative Results.


