
1

A Events Generation

The event stream E consists of a set of event e “ px, y, t, pq, where each event is
triggered and recorded when the brightness change at pixel px, yq exceeds a certain
threshold C. The time interval between events is denoted as ∆te, which is a short
period, and the brightness at position x “ px, yq is represented as F px, tq. The
brightness change can be calculated as ∆b “ logpF px, teqq ´ logpF px, te ´ ∆teqq.
The output signal p is determined by Eq. 1.

p “

$

&

%

1, ∆b ą C
0, others

´1, ∆b ă ´C
(1)

B The Encoding Network Structure

The encoder serves as the core component of our architecture, drawing inspiration
from eSL-Net [7]. However, we have made modifications to its structure by
excluding the decoding segment responsible for upsampling. Consequently, we
retain solely the feature extraction module, as illustrated in Fig. 8, and the code
of the encoder is shown in Code (Listing. 1).

The encoder receives inputs, rolling shutter blur image Irsb, and events E.
The image Irsb has the shape of H ˆ W ˆ 1 or H ˆ W ˆ 3, corresponding to
grayscale and RGB image, respectively. Moreover, the event E is transformed
into count images [9], with the shape of H ˆ W ˆ M , where M denotes the
number of temporal divisions within the event stream. The encoder produces a
high-dimensional tensor as output θ, with the shape of H ˆ W ˆ C.

The encoder can be decomposed into two constituent components: data pre-
processing and spatio-temporal information modeling. During the preprocessing
stage, the image undergoes a convolution operation to augment the channel
dimensionality, while the event data is transformed into a high-dimensional Ten-
sor using two convolutions followed by a Sigmoid activation. Subsequently, the
processed tensors from the image and event data are subjected to the sparse
learning module. Within the sparse learning module, both image features and
event features undergo iterative cycles to derive spatio-temporal representations θ.
In contrast to the original approach eSL-Net [7], we aim to incorporate deformable
convolutions [8] into this loop, thereby enhancing the motion estimation and
correction capabilities throughout the iterations.

C More Explanation and Discussion

Due to the constraints of the main paper’s length, this supplementary section
provides additional experimental details and discussions. Specifically, we elaborate
on the following 11 aspects to offer readers a more comprehensive understanding
of our approach:

2

(a) Events (b) Input RS Frame (c) Reconstructed
RS Frame (d) Events (e) Input RS Frame (f) Reconstructed

RS Frame

Fig. 1: Rolling shutter frame reconstruction visualization in the real-world dataset [10].

1 2 3 4 5 6 7 8 9
Different Frame Index

11
13
15
17
19
21
23
25
27
29
31
33

PS
NR

 (d
B)

RS correction, Deblur, and VFI with 9x

UniINR (Gray)
UniINR (Color)
DeblurSR (Gray)
EvUnroll+TimeLens (Color)

Fig. 2: The x-axis corresponds to the subscript of the frame interpolation result
achieved through 9-fold frame interpolation, while the y-axis represents the PSNR value
associated with each frame. A higher PSNR value indicates a higher reconstruction
quality.

C.1 VFI Performance stability:

Fig. 2 illustrates the PSNR values for each frame obtained through various
methods using 9-fold frame interpolation. Our proposed method demonstrates
superior performance. Specifically, the intermediate image attains the highest
quality, while the reconstruction quality diminishes towards both the beginning
and end of the exposure, displaying a symmetrical pattern. To further enhance
image quality across the entire frame, future investigations could explore the
integration of multi-frame algorithms.

C.2 RS Blur Image-guided Integral Loss:

The RS blur image-guided integral Loss enhances PSNR in high interpolation
settings (e.g ., 9ˆ), as shown in Tab. 2. Crucially, we find our model has the
generalization ability to reconstruct RS frames in the real-world dataset, as shown
in Fig. 1. This underscores our method’s adeptness at capturing the temporal
intensity dynamics of each pixel for effective generalization in real-world.

3

1 4 7 10 13 16 19 22 25 28 31
Interpolation Multiple

0

100

200

300

400

Ti
m

e
(m

s)

30.797 2.8019

86.861

177.44

tEU = 42.276

2tEU + tTL=271.32

2tEU + 2tTL=458.08
Inference Time

Ours Total Inference Time
Ours Per Frame Inference Time
EU+TL Total Inference Time
EU+TL Per Frame Inference Time

Fig. 3: Comparison of inference time of our method with EvUnroll + TimeLens. tEU

and tTL represent the respective inference times of EvUnRoll and TimeLens. The axes
represent VFI multiples (1ˆ to 31ˆ) and time. 2TEU and 2tTL means calling EvUnRoll
twice and TimeLens twice.

Table 1: Ablation for position embedding.

Position Embedding PSNR SSIM

1ˆ
Sinusoid 32.46 0.9851
Learning 33.12 0.9881

3ˆ
Sinusoid 30.83 0.9723
Learning 31.11 0.9738

5ˆ
Sinusoid 30.70 0.9678
Learning 30.84 0.9673

9ˆ
Sinusoid 30.51 0.9560
Learning 30.54 0.9579

+1.11 +0.0059

Table 2: Ablation for the loss function.

Lb PSNR SSIM

✗ 33.12 0.9881
1ˆ ✓ 33.14 0.9844

✗ 31.11 0.9738
3ˆ ✓ 31.09 0.9768

✗ 30.84 0.9673
5ˆ ✓ 30.83 0.9784

✗ 30.54 0.9579
9ˆ ✓ 30.61 0.9538

+0.060 +0.0063

C.3 Further Detail on the Dataset:

1) Gev-Orig dataset [10] contains original videos shot by GS high-speed
cameras with 1280ˆ 720 resolution at 5700 fps. However, EvUnroll [10] primarily
focuses on RS correction, and provided by EvUnroll Gev-RS dataset does not
include RS frames with severe motion blur. Therefore, we reconstruct RS frames
with severe motion blur and events from original videos. We initially downsample
the original videos to DAVIS346 event camera’s resolution (260 ˆ 346) [4]. Then,
we employ the event simulator vid2e [2] to synthesize events from the resized
frames. We simulate RS blur frames by first generating RS sharp frames as the
same RS simulation process of Fastec-RS [3] and then averaging 260 RS sharp
frames after gamma correction. We use the same dataset split as EvUnroll [10],
with 20 videos used for training and 9 videos used for testing. The total amounts
of RS blur frames in Gev-RS [10] dataset are 784 in the training set and 441
testing set.

4

2) Fastec-Orig dataset [3] provides the original frame sequences recorded
by the high-speed GS cameras with the resolution of 640 ˆ 480 at 2400 fps. We
use the same settings to resize frame sequences, create events, and RS blurry
frames. Furthermore, we use the same dataset split strategy as Fastec-RS [3]:
56 sequences for training and 20 sequences for testing. Specifically, this dataset
includes 1620 RS blur frames for training and 636 RS blur frames for testing.
3) Real-world dataset [10] currently the sole real dataset accessible, comprises
four videos. Among these, two capture outdoor scenes, while the other two focus
on indoor scenes. Each video pairs rolling shutter frames with events; the events
are derived from DVS346. However, given the absence of ground truth in this
dataset, it can only provide quantitative visualization results.

(a) Events (b) Color (c) Gray (d) EvUnRoll (e) Ours Gray (f) Our Color

Fig. 4: Visualization results in a real-world dataset [10]. (a) is the events visualization
results. (b) (c) are the input RGB and gray images that have clear rolling shutter
distortions. (d) is the output of EvUnRoll. (e) (f) are the outputs of our method.

C.4 Bad case analysis:

Color distortion is due to the input’s heavy blur lacking color details. Since events
only record intensity (gray) changes, without color information, our method
effectively outlines shapes and edges but struggles with color accuracy in this
extreme example.

5

C.5 Extended Discussion on Inference Speed:

Fig. 3 illustrates the inference time of our method with a wide range of inter-
polation multiples spanning from 1ˆ to 31ˆ, including the total inference time
and the average inference time per frame. Importantly, the total inference time
increases gradually as the frame interpolation multiple increases. For instance,
when going from 1ˆ to 31ˆ frame interpolation, the total inference time only
increases from 30.8 ms to 86.9 ms. This signifies a mere 2.8-fold increase in
time despite a 31-fold increase in the interpolation multiple. Additionally, it is
notable that the average inference time per frame decreases with higher frame
interpolation multiples. At 31ˆ frame interpolation, the average time per frame
is a mere 2.8 ms.

Our method exhibits distinct advantages over the EvUnRoll [10] and Time-
Lens [6] cascade approaches, particularly in terms of computational efficiency.
Specifically, when the focus is solely on RS frame correction and deblurring,
the inference time for EvUnRoll is measured at 42.3 ms, while our approach
necessitates only 72% of that time. This computational advantage becomes even
more pronounced during high-magnification frame interpolation. For instance, in
scenarios requiring N -times interpolation, the cascading strategy calls for two
invocations of EvUnRoll and pN ´ 2q of TimeLens, with the latter having a
time cost of ptTL “ 186.76 msq. Consequently, our method offers a significant
advantage in high-magnification frame interpolation scenarios. It is crucial to note
that our inference time calculations are restricted to GPU-based computations,
intentionally omitting the time required for data loading and storage. In practical
applications, the EvUnRoll and TimeLens cascade introduces additional disk I/O
overhead, thereby further exacerbating its time consumption.

C.6 Additional Insights into the Real-World Dataset:

The visualization results for the real-world dataset can be seen in Fig. 4. The
input frame, which displays a rolling shutter pattern, is characterized by clear
distortions in dynamic scenes. For example, the palette’s edges are curved, and
the building windows tilt. In contrast, events display global shutter characteristics,
as evidenced by the lack of distorted edges in the event visualizations. Both our
method and EvUnRoll effectively correct the rolling shutter distortion, whether
it’s the distortion of the palette’s edge or the deformation of building windows.
However, due to the absence of ground truth, quantitative analysis remains
unattainable. It’s worth noting that while EvUnRoll exhibits some artifacts in the
palette scenarios, our method remains artifact-free. By concurrently addressing
RSC, Deblur, and VFI, our method avoids accumulating errors, leading to a
more artifact-free outcome.

C.7 More Operations in Exposure Time Embedding

We perform more experiments on Gev-RS dataset [10] to validate the effect of
element-wise addition, multiplication. The quantitative result is shown in Tab.

6

Table 3: More operation studies for exposure time embedding. (Gray blur frame as
inputs in 1, 3, 5, 9 times frame interpolation).

Time Embedding Type PSNR SSIM

Add 33.12 0.9881
1ˆ Multiplication 33.15 0.9757

Concat 33.15 0.9876
Add 31.11 0.9738

3ˆ Multiplication 31.10 0.9635
Concat 31.14 0.9710
Add 30.84 0.9673

5ˆ Multiplication 30.96 0.9684
Concat 30.89 0.9632
Add 30.54 0.9579

9ˆ Multiplication 30.74 0.9592
Concat 30.77 0.9538

3, and we find that concatenation and multiplication have higher PSNR than
element-wise addition.

C.8 Analysis of PSNR and SSIM Across Different Interpolation
Multiples:

In Tab. ?? of the main manuscript, we observe an intriguing discrepancy in
the PSNR and SSIM metrics for 3ˆ and 5ˆ color frame interpolations, regis-
tering values of 28.36 and 0.9062, and 28.41 and 0.9062, respectively. Contrary
to conventional wisdom, which posits that an increase in frame rate interpola-
tion should correspondingly degrade PSNR and SSIM metrics when the model
architecture remains constant, our findings deviate from this expectation. We
attribute this anomaly to the network’s varying predictive accuracy across the
temporal spectrum. Specifically, edge frames pose a greater challenge for the
network compared to those situated centrally. As illustrated in Fig. 2, for a 3ˆ

frame insertion, the terminal global shutter sharp frames contribute to 2{3 of the
overall weight. Conversely, for a 5ˆ frame insertion, the terminal frames account
for only 2{5 of the weight.

C.9 Detailed Comparisons with Other Methods:

In this section, we will explain the motivations for comparing EvUnroll [10] (event-
guided RS correction) in the experiment that outputs a single GS sharp frame
and comparing EvUnroll + Timelens [6] (event-guided video frame interpolation)
in the experiment that outputs a sequence of GS sharp frames. Fig. 7 (I) shows
the process of generating a sequence of global shutter sharp (GS) frames from a
rolling shutter (RS) blur image and paired events by deblur and RS correction.
However, the deblur module in EvUnroll recovers the midpoint of the exposure

7

(b) Outputs (a sequence of global shutter sharp frame)(a) Inputs (a rolling shutter blur image and events)
Rolling Start 𝑡! Rolling End 𝑡"

Exposure Time
𝑡"#$

Rolling shutter blur frame Events
𝐻

Time 𝑇𝑖𝑚𝑒

H
Global Shutter Sharp Frames

Rolling Start 𝑡! Rolling End 𝑡"

(d) Outputs (a sequence of global shutter sharp frame)(c) Inputs (a rolling shutter sharp image and events)
Rolling Start 𝑡! Rolling End 𝑡"

Rolling shutter sharp frame Events
𝐻

Time 𝑇𝑖𝑚𝑒

H
Global Shutter Sharp Frames

Rolling Start 𝑡! Rolling End 𝑡"

Exposure Time
𝑡"#$

(I) Long exposure time frame as input. (Rolling shutter correction, Deblur and VFI)

(II) Short exposure time frame as input. (Rolling shutter correction and VFI)

Fig. 5: The schematic diagram elucidates the methodologies for correcting and inter-
polating rolling shutter (RS) frames under varying exposure durations. Subfigure (I)
delineates the procedure for long-exposure RS frames, where the presence of blur is a
significant factor to be addressed. In contrast, Subfigure (II) outlines the approach for
short-exposure RS frames, thereby eliminating the necessity for deblurring.

time of each row [10], as shown in Fig. 7 (b); furthermore, EvUnroll can only
recover the GS sharp frames between the rolling start time tms and rolling end
time tme of the reconstructed RS sharp frame, which can not output the arbitrary
GS sharp frames during the whole exposure time of the RS blur frame. Therefore,
in the joint task of deblur and RS correction, EvUnroll can not realize arbitrary
frame interpolation as shown in Tab. 4 and we combine EvUnroll and Timelens
in the experiment outputting a sequence of GS sharp frames. Specifically, we
first generate two GS sharp frames with EvUnroll at the midpoint of the whole
exposure time texp from two RS blur frames and paired events, and then we use
TimeLens to generate latent GS sharp frames with the input of two GS sharp
frames and events, as shown in Fig. 7 (II).

Compared with the latest research VideoINR [1], our work differs in two
aspects. a) Different research questions: While VideoINR tackles space-time super-
resolution in the global shutter by introducing implicit neural representation
(INR), our proposed method first simultaneously realizes RS correction, deblurring,
and frame interpolation with INR. b) Different methodologies: i. VideoINR
consists of SpatialINR and TemporalINR, which are sequentially used to transfer
the frame feature according to the spatial-temporal coordinate to achieve super-
resolution and frame interpolation. However, SpatialINR, and TemporalINR
cannot handle motion blur and rolling shutter distortion in the input frames.
ii. In contrast, our approach develops a unified INR to simultaneously realize

8

H

(a) Outputs 1×

𝑇𝑖𝑚𝑒

Global Shutter Sharp Frames

Rolling Start 𝑡! Rolling End 𝑡"

H

(b) Outputs 3×

𝑇𝑖𝑚𝑒

Global Shutter Sharp Frames

Rolling Start 𝑡! Rolling End 𝑡"

H

(c) Outputs 5×

𝑇𝑖𝑚𝑒

Global Shutter Sharp Frames

Rolling Start 𝑡! Rolling End 𝑡"

H

(d) Outputs 9×

𝑇𝑖𝑚𝑒

Global Shutter Sharp Frames

Rolling Start 𝑡! Rolling End 𝑡"

Fig. 6: Schematic diagram of frame insertion at different magnifications

Table 4: Comparison of our method with prior works.

Methods Publication Frames Color Events Deblur RS Correction VFI

JCD CVPR 2021 3 ✓ ✗ ✓ ✓ ✗

eSL-Net ECCV 2020 1 ✗ ✓ ✓ ✗ ✗

eSL-Net* ECCV 2020 1 ✗ ✓ ✓ ✓ ✗

EvUnroll CVPR 2022 1 ✓ ✓ ✓ ✓ -
TimeLens CVPR 2021 2 ✓ ✓ ✗ ✗ ✓

E-CIR CVPR 2022 1 ✗ ✓ ✓ ✗ ✓

VideoINR CVPR 2022 2 ✓ ✗ ✗ ✗ ✓

EvShutter CVPR 2023 1 ✗ ✗ ✓ ✓ ✗

DeblurSR AAAI 2024 1 ✗ ✓ ✓ ✗ ✓

NEIR Arxiv 2023 1 ✓ ✓ ✓ ✓ ✓

Ours - 1 ✓ ✓ ✓ ✓ ✓

RS correction, deblurring, and frame interpolation. Especially, according to the
principle of RS and GS images, we design Exposure Time Embedding enabling
the generation of RS and GS images given the specific exposure time information,
which is a feat unachievable by VideoINR due to its inconsideration towards RS
distortion and blur.

C.10 Visualization of Temporal Dimension Gradients:

Fig. 10 depicts the visualization of the gradients in the temporal dimension,
demonstrating the successful training of the function F px, t, θq. Both the gradient
visualization and events exhibit a similar intensity trend for F px, t, θq at the
specified time t. However, the gradient visualization appears smoother with
more continuous edges. This observation confirms that our method is capable
of learning the high temporal resolution of intensity changes present in events,
simultaneously filtering out noise.

9

(b) Outputs (a rolling shutter sharp frame
at the midpoint of Exposure time 𝑡!"#)

(a) Inputs (a rolling shutter blur image
and events)

Rolling Start 𝑡! Rolling End 𝑡"

Exposure
Time 𝑡"#$

Rolling Shutter Blur Frame Events
𝐻

𝑇𝑖𝑚𝑒 𝑇𝑖𝑚𝑒

H

Rolling Start 𝑡!% Rolling End 𝑡"%
𝑇𝑖𝑚𝑒

Global Shutter Sharp Frames

Rolling End 𝑡"%

Rolling Shutter Sharp Frame

Deblur

Rolling Start 𝑡!%

RSC

(c) Outputs (a sequence of global sharp
frame at [𝑡$%, 𝑡!%])

(b) Outputs (two global shutter sharp frames
at the midpoints of Exposure time 𝑡!"#)

(a) Inputs (two rolling shutter blur
images and events)

Rolling Start 𝑡! Rolling End 𝑡"

Exposure
Time 𝑡"#$

Rolling Shutter Blur rame Events𝐻

𝑇𝑖𝑚𝑒 𝑇𝑖𝑚𝑒

H

𝑇𝑖𝑚𝑒

Deblur
&
RSC VFI

(c) Outputs (a sequence of global sharp
frames from two global shutter sharp frames

and events)

Global Shutter Sharp Frames

Exposure
Time 𝑡"#$

Global Shutter Sharp Frames
after VFI

(II) EvUnroll + TimeLens

(I) EvUnroll

HH

Fig. 7: Illustration of Experiment Settings of EvUnroll [10] and the combination of
EvUnroll and TimeLens [6].

Event

Image

High-Quality
Images

Network

Event

Image

Encoder Decoder High-Quality
Images

Exposure Time Embedding

Spatio-temporal
representation

(a) Previous work, e.g., EvUnRoll, eSL-Net, TimeLens … (b) Our method

Time

Fig. 8: Differences between our method and previous methods. In contrast to the
previous method, our approach introduces spatio-temporal representation and exposure
time embedding. The spatio-temporal representation involves capturing all the spatio-
temporal information during the exposure time. Furthermore, specific exposure time
information is embedded, which enables the decoder to generate a frame with high-
quality.

C.11 Effectiveness of the DCN:

Deformable convolutions offer an effective means of modeling long-range depen-
dencies while preserving computational efficiency. Given these advantages, we
have incorporated deformable convolutions into the backbone architecture of
encoding. To evaluate their impact, we conducted an ablation study, as presented
in Tab. 5. Our results demonstrate an average improvement of 0.0775 dB in PSNR
and 0.0088 in SSIM with the inclusion of deformable convolutions, highlighting
their beneficial effect.

Due to the limited size of our dataset, we have introduced only one layer of
deformable convolution. In contrast to the referenced research [8], which utilized
a training set of over 14.2 million samples in the training set, our dataset is

10

(a) Events (b) Input RS Frame (c) Reconstructed
RS Frame

(d) Events (e) Input RS Frame (f) Reconstructed
RS Frame

Fig. 9: Rolling shutter frame reconstruction visualization in real-world dataset.

Table 5: Ablation for deformable convolution (DC).

Interpolation multiple DC PSNR SSIM

✗ 33.15 0.9729
1ˆ ✓ 33.12 0.9881

✗ 31.11 0.9701
3ˆ ✓ 31.11 0.9738

✗ 30.79 0.9609
5ˆ ✓ 30.84 0.9673

✗ 30.48 0.9685
9ˆ ✓ 30.54 0.9579

Average Increase + 0.0775 + 0.0088

comparatively smaller. The GEV training set comprises 784 samples, while the
FASTEC training set consists of 1620 samples.

C.12 Exploring Why DeblurSR Appears to Correct Rolling Shutter:

While the primary focus of the DeblurSR [5] study did not lie in the correction
of the rolling shutter effect, we can observe a certain level of correction in the
experiments, albeit accompanied by artifacts. We attribute this phenomenon
to the fact that events themselves can be viewed as capturing a global shutter
perspective. Consequently, the spiking representation learned by DeblurSR using
events possesses the potential for rolling shutter correction. The effectiveness
of using events to learn implicit representation for rolling shutter correction is
evident.

11

(d) Predicted
image

(e) Temporal
gradients

(f) Events
(Global)

(a) Predicted
image

(b) Temporal
gradients

(c) Events
(Local)

(I) Simulated Dataset (II) Real-world Dataset

Fig. 10: (I) and (I) show visualizations on simulated and real-world datasets, respectively.
From left to right: the predicted images, temporal gradients (BF px, t, θq{Bt), and events.
Orange and blue hues in the image signify positive and negative gradients, respectively.
The color intensity is associated with the gradient value, with higher absolute values
manifested by stronger colors.

12

1import torch
2import torch.nn as nn
3from absl.logging import info
4from egrsdb.models.unet.dcnv3_nchw import DCNv3NCHW
5

6class _SCN(nn.Module):
7def __init__(self , hidden_channels , high_dim_channels ,

is_deformable , loop):
8super(_SCN , self).__init__ ()
9self.hidden_channels = hidden_channels
10self.high_dim_channels = high_dim_channels
11self.is_deformable = is_deformable
12self.loop = loop
13self.W1 = nn.Conv2d(hidden_channels ,

high_dim_channels , 3, 1, 1, bias=False)
14self.S1 = nn.Conv2d(high_dim_channels ,

hidden_channels , 3, 1, 1, groups=1, bias=False)
15self.S2 = nn.Conv2d(hidden_channels ,

high_dim_channels , 3, 1, 1, groups=1, bias=False)
16self.shlu = nn.ReLU(True)
17if is_deformable:
18self.dcn = DCNv3NCHW(channels=high_dim_channels ,

groups=1, offset_scale =2, act_layer="ReLU", norm_layer="
LN", dw_kernel_size =3, center_feature_scale =0.25)

19

20def forward(self , blur_image , events):
21x1 = blur_image
22event_input = events
23x1 = torch.mul(x1, event_input)
24z = self.W1(x1)
25tmp = z
26for i in range(self.loop):
27ttmp = self.shlu(tmp)
28x = self.S1(ttmp)
29x = torch.mul(x, event_input)
30x = torch.mul(x, event_input)
31x = self.S2(x)
32if self.is_deformable:
33x = torch.relu(x)
34x = self.dcn(x)
35x = ttmp - x
36tmp = torch.add(x, z)
37c = self.shlu(tmp)
38return c
39

40

13

41class ESLBackBone(nn.Module):
42def __init__(self , is_color , event_moments ,

hidden_channels , high_dim_channels , is_deformable , loop):
43super(ESLBackBone , self).__init__ ()
44in_channel = 3 if is_color else 1
45self.in_channel = in_channel
46self.event_moments = event_moments
47self.hidden_channels = hidden_channels
48self.high_dim_channels = high_dim_channels
49self.is_deformable = is_deformable
50self.loop = loop
51self.image_d = nn.Conv2d(in_channels=in_channel ,

out_channels=self.hidden_channels , kernel_size =1, stride
=1, padding=0, bias=False)

52self.event_c1 = nn.Conv2d(in_channels=event_moments ,
out_channels=self.hidden_channels , kernel_size =1, stride
=1, padding=0, bias=False)

53self.event_c2 = nn.Conv2d(in_channels=self.
hidden_channels , out_channels=self.hidden_channels ,
kernel_size =1, stride=1, padding=0, bias=False)

54self.relu = nn.ReLU(inplace=True)
55self.end_conv = nn.Conv2d(in_channels =128,

out_channels=high_dim_channels , kernel_size =3, stride=1,
padding=1, bias=False)

56self.scn_1 = _SCN(hidden_channels , high_dim_channels ,
is_deformable , loop)

57

58def forward(self , events , blur_frame):
59x1 = self.image_d(blur_frame)
60event_out = self.event_c1(events)
61event_out = torch.sigmoid(event_out)
62event_out = self.event_c2(event_out)
63event_out = torch.sigmoid(event_out)
64out = self.scn_1(x1 , event_out)
65out = self.end_conv(out)
66return out

Listing 1: The pytorch implementation of encoder.

14

References

1. Chen, Z., Chen, Y., Liu, J., Xu, X., Goel, V., Wang, Z., Shi, H., Wang, X.: Videoinr:
Learning video implicit neural representation for continuous space-time super-
resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 2047–2057 (2022) 7

2. Gehrig, D., Gehrig, M., Hidalgo-Carrió, J., Scaramuzza, D.: Video to events: Recy-
cling video datasets for event cameras. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 3586–3595 (2020) 3

3. Liu, P., Cui, Z., Larsson, V., Pollefeys, M.: Deep shutter unrolling network. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 5941–5949 (2020) 3, 4

4. Scheerlinck, C., Rebecq, H., Stoffregen, T., Barnes, N., Mahony, R., Scaramuzza,
D.: Ced: Color event camera dataset. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops. pp. 0–0 (2019) 3

5. Song, C., Bajaj, C., Huang, Q.: Deblursr: Event-based motion deblurring under
the spiking representation. arXiv preprint arXiv:2303.08977 (2023) 10

6. Tulyakov, S., Gehrig, D., Georgoulis, S., Erbach, J., Gehrig, M., Li, Y., Scaramuzza,
D.: Time lens: Event-based video frame interpolation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 16155–
16164 (2021) 5, 6, 9

7. Wang, B., He, J., Yu, L., Xia, G.S., Yang, W.: Event enhanced high-quality image
recovery. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIII 16. pp. 155–171. Springer (2020) 1

8. Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu, X., Lu, T., Lu, L.,
Li, H., et al.: Internimage: Exploring large-scale vision foundation models with
deformable convolutions. arXiv preprint arXiv:2211.05778 (2022) 1, 9

9. Zheng, X., Liu, Y., Lu, Y., Hua, T., Pan, T., Zhang, W., Tao, D., Wang, L.: Deep
learning for event-based vision: A comprehensive survey and benchmarks. arXiv
preprint arXiv:2302.08890 (2023) 1

10. Zhou, X., Duan, P., Ma, Y., Shi, B.: Evunroll: Neuromorphic events based rolling
shutter image correction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 17775–17784 (2022) 2, 3, 4, 5, 6, 7, 9

