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1 Sensitiveness to Coarse Pose Errors

In this section, we investigate the performance of our method under varying
coarse pose errors.

Range of location errors. Table A presents the performance comparison
between our method and the state-of-the-art [26, 28], across different ranges of
location errors: 28×28 m2 and 56×56 m2, while maintaining the same orientation
ambiguity of 20◦. The results show that our method achieves consistently the
best performance on cross-area evaluation.

Table A: Performance comparison with different location error ranges on the cross-
view KITTI dataset.

Location
Error ( m2) Algorithms

Test-1 (Same-area)
Lateral Longitudinal Azimuth

d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

28 × 28

Shi and Li [26]∗ 44.66 73.92 12.06 35.62 25.31 57.41
Shi et al. [28]∗ 85.85 98.46 23.27 46.99 98.89 99.97

Ours (λ = 0) 61.46 87.76 13.44 38.14 99.76 100.00
Ours (λ = 1) 66.39 94.38 18.18 53.59 99.76 100.00

56 × 56

Shi and Li [26]∗ 35.54 70.77 5.22 15.88 19.64 51.76
Shi et al. [28]∗ 76.44 96.34 23.54 50.57 99.10 100.00

Ours (λ = 0) 59.58 85.74 11.37 31.94 99.66 100.00
Ours (λ = 1) 66.07 94.22 16.51 49.96 99.66 100.00

Location
Error ( m2) Algorithms

Test-2 (Cross-area)
Lateral Longitudinal Azimuth

d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

28 × 28

Shi and Li [26]∗ 34.17 72.30 11.56 35.08 11.40 48.18
Shi et al. [28]∗ 60.01 87.96 14.69 35.64 99.42 100.00

Ours (λ = 0) 65.62 90.32 13.46 38.53 99.97 100.00
Ours (λ = 1) 67.90 89.76 14.29 42.92 99.97 100.00

56 × 56

Shi and Li [26]∗ 27.82 59.79 5.75 16.36 18.42 49.72
Shi et al. [28]∗ 57.72 86.77 14.15 34.59 98.98 100.00

Ours (λ = 0) 62.73 86.53 9.98 29.67 99.99 100.00
Ours (λ = 1) 64.74 86.18 11.81 34.77 99.99 100.00
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Table B: Performance comparison with different location error ranges on the cross-
view KITTI dataset.

Orientation
Ambiguity Algorithms

Test-1 (Same-area)
Lateral Longitudinal Azimuth

d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

20◦

Shi and Li [26]∗ 35.54 70.77 5.22 15.88 19.64 51.76
Shi et al. [28]∗ 76.44 96.34 23.54 50.57 99.10 100.00

Ours (λ = 0) 59.58 85.74 11.37 31.94 99.66 100.00
Ours (λ = 1) 66.07 94.22 16.51 49.96 99.66 100.00

80◦

Shi and Li [26]∗ 26.95 62.39 5.14 15.69 3.10 8.88
Shi et al. [28]∗ 70.21 95.47 22.29 48.90 53.27 93.98

Ours (λ = 0) 53.11 86.03 12.99 32.18 57.65 96.79
Ours (λ = 1) 57.94 91.49 17.73 47.44 57.65 96.79

Orientation
Ambiguity Algorithms

Test-2 (Cross-area)
Lateral Longitudinal Azimuth

d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

20◦

Shi and Li [26]∗ 27.82 59.79 5.75 16.36 18.42 49.72
Shi et al. [28]∗ 57.72 86.77 14.15 34.59 98.98 100.00

Ours (λ = 0) 62.73 86.53 9.98 29.67 99.99 100.00
Ours (λ = 1) 64.74 86.18 11.81 34.77 99.99 100.00

80◦

Shi and Li [26]∗ 22.43 54.63 5.17 15.78 3.05 8.50
Shi et al. [28]∗ 56.97 87.72 15.17 35.39 58.68 95.92

Ours (λ = 0) 57.68 84.92 11.64 31.52 56.79 97.76
Ours (λ = 1) 60.50 86.57 12.62 35.60 56.79 97.76

Variation in orientation ambiguity. Subsequently, we augment the ori-
entation ambiguity from 20◦ to 80◦, while maintaining a location error range of
56× 56 m2. Table B provides the performance comparison between our method
and the two state-of-the-art [26, 28]. Our method achieves the best cross-area
evaluation performance on the different orientation ambiguity. Furthermore, the
results reveal a decline for all methods in the percentage of images for which the
estimated orientation is restricted to 1◦ as the orientation ambiguity increases.
Nevertheless, our method and Shi et al . [28], which was recently accepted to
ICCV2023, consistently maintain the majority of image orientations within a 3◦

margin from their ground truth values. Consequently, the translation estimation
performance remains robust. In contrast, Shi and Li [26] encounter a notable
drop in both translation and orientation estimation performance.

2 Performance with Increasing Amounts of Data as
Supervision

Below, we analyze the performance of our method with λ = 0, 1 and the state-
of-the-art [26, 28], when different amounts of training data are employed. The
results are illustrated in Fig. A.

For most models, except Shi and Li [26], we observe a consistent increase
in performance on the same-area evaluation (Test-1) as the amount of training
data increases. However, when it comes to the cross-area evaluation (Test-2),
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(a) Shi and Li [24] (b) Shi et al. [26]

(c) Ours (λ = 0) (d) Ours (λ = 1)
Fig.A: Performance comparison between our method and the state-of-the-art on the
KITTI dataset with different amounts of training data.

the two state-of-the-art methods, which require ground truth pose for supervi-
sion, exhibit a decline in performance when the training data exceeds 80%. This
phenomenon suggests that our method avoids overfitting and holds the potential
for further performance improvements with additional training data. Moreover,
it’s worth noting that our method doesn’t necessitate GT labels for ground im-
ages during training, simplifying the process of large-scale data collection and
reducing associated costs.

3 Semi-supervised Setting

Our method can be easily adapted to address the scenario when a small amount
of training data with accurate pose labels is available by adding additional super-
vision to the network with this amount of data, e.g ., using the training objective
in Shi et al . [28].

In Tab. C, we show the performance of our method when fine-tuned with
different portions of the current training dataset with accurate pose labels. Data
amount = 0 indicates the original weakly supervised pipeline where no such
data is available. The results show that fine-tuning leads to better performance
when the data amount with accurate pose labels is over 50%. However, when the
data amount is smaller, the fine-tuning leads to inferior performance. We suspect
this is because the model overfits the limited training data with accurate labels,
causing a loss of general inference ability on other data.

A properly designed training method should address this problem. How-
ever, apart from this semi-supervised scenario, we believe the original weakly-
supervised application addressed in this paper is also of high importance. It
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Table C: The percentage of images whose lateral translation has been restricted to 1
meter (d = 1) to its ground truth value under the semi-supervised setting.

Data Amount (%) 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lateral (d = 1) 62.73 39.49 44.61 55.31 60.96 65.60 71.48 74.61 78.61 83.86

avoids additional effort to select the portion of accurate data, as most localiza-
tion algorithms and noisy GPS sensors themselves do not provide a measure of
whether its prediction is accurate or not. Thus, we leave this semi-supervised
setting as a future work.

4 Sharing Feature Extractors or Not at Different
Scenarios

We empirically found that the feature extractors for satellite and ground images
captured by a pin-hole camera are shareable in the localization task. Tab. D
presents the comparison of our method with shared or non-shared feature de-
scriptors. In this comparison, the rotation estimator is kept the same and trained
only on satellite images. From the results, it can be seen that sharing weights
between ground and satellite images achieves better performance. A potential
explanation might be that both the satellite images and ground images cap-
tured by a pin-hole camera map straight lines in the real world to straight lines
in images and the viewpoint differences of the two view images are solved by
a geometry projection module. This is similar to the task of multi-view stereo
and image-based rendering, where the feature extractors for multi-view images
are shared, and their differences are handled by Homography/geometry warp-
ing. Not sharing weights between the two branches increases the learning burden
of the network, especially when supervision is not strong, resulting in inferior
performance.

While for rotation and translation estimation, we found different feature
extractors for different purposes achieve better performance. Tab. E illustrates
the comparison results. This might be because good features for rotation and
translation estimation are not identical. When re-using the feature extractors in
rotation estimation for translation, we found the network converges slowly, and
the performance on both rotation and translation estimation is poor, although
better than the original coarse poses that we aim to refine.

5 Performance on the Ford Dataset

We present the performance of our method on the Ford dataset in Tab. F. The
results show our method achieves competitive performance with fully supervised
SOTA, and sharing feature extractors between the ground and satellite branches
performs better than not sharing, which is consistent with our observations on
KITTI.
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Table D: Sharing feature extractors or not between satellite and ground images cap-
tured by a pin-hole camera.

Share?
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑

Ours
(λ = 0)

No 48.64 77.37 9.97 25.63 99.66 100.00 54.49 79.75 8.96 26.54 99.99 100.00
Yes 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours
(λ = 1)

No 62.81 93.00 19.90 55.53 99.66 100.00 62.81 84.77 13.14 36.89 99.99 100.00
Yes 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

Table E: Sharing feature extractors or not for rotation and translation estimation.

Share?
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑

Ours
(λ = 0)

Yes 33.77 74.66 9.17 26.13 11.69 34.64 32.18 71.92 7.58 24.00 12.64 37.24
No 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours
(λ = 1)

Yes 35.62 81.69 10.68 31.78 10.20 31.35 32.62 73.72 8.87 26.07 10.21 31.62
No 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

Table F: Average results comparison on Log1 and Log2 of the Ford Multi-AV dataset.

Algorithms Lateral Longitudinal Azimuth
d = 1 ↑ d = 3 ↑ d = 1 ↑ d = 3 ↑ θ = 1 ↑ θ = 3 ↑

Shi and Li [26]* 37.29 69.33 5.22 15.94 16.87 44.14
Shi et al. [28]* 63.77 82.53 19.45 34.17 61.49 92.62

Song et al. [33]* 46.13 - 11.97 - 58.64 -

Ours (λ = 0) share 65.47 93.50 8.00 20.11 46.63 96.86
not share 14.21 69.62 5.13 13.40 46.63 96.86

Ours (λ = 1) share 78.87 97.96 16.42 37.26 46.63 96.86
not share 58.19 96.83 10.14 25.33 46.63 96.86

6 Visual Explanation of the Spatial Correlation Process

The spatial correlation process is illiustrated in Fig. B. We first center crop the
synthesized overhead view feature map depicted in Fig. 5 (b) of the main paper
and make its coverage around 40× 40 m2, as we consider scene contents within
20m to the camera location is the most important for the localization purpose.
Then, we adopt the cropped overhead view feature map as the correlation kernel,
similar to the yellow kernel in Fig. B, and the reference satellite image as the
correlation input, indicated by the green grid in Fig. B, and apply inner product
between the input and the kernal. The output, indicated by the pink grid in
Fig. B, is the location probability map of the ground camera with respect to the
satellite image.

In practice, the coverage of the reference satellite map and the kernel is
engineered to make the coverage of the convolution output slightly larger than
the location search space of the ground camera. In this example, the coverage
of the satellite map is around 100× 100 m2, and that of the convolution output
(location probability map) is about 60× 60 m2.
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]

Fig. B: The spatial correlation process. We compute the inner product between the
reference satellite feature map (input) and synthesized overhead view feature map
(kernel) from the ground image across all possible locations. This figure is from https:
//giphy.com/gifs/blog-daniel-keypoints-i4NjAwytgIRDW

Table G: Comparison between projecting features (Feat.) and images (Imgs).
Test-1 (Same-area) Test-2 (Cross-area)

Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑d = 1 ↑d = 3 ↑d = 1 ↑d = 3 ↑θ = 1 ↑θ = 3 ↑

Ours
(λ = 0)

Imgs 45.40 80.57 6.97 21.39 99.92 100.00 48.24 79.16 6.95 20.60 100.00 100.00
Feat 59.58 85.74 11.37 31.94 99.66 100.00 62.73 86.53 9.98 29.67 99.99 100.00

Ours
(λ = 1)

Imgs 54.31 90.59 13.36 38.32 99.92 100.00 58.53 87.34 11.24 33.23 100.00 100.00
Feat. 66.07 94.22 16.51 49.96 99.66 100.00 64.74 86.18 11.81 34.77 99.99 100.00

7 Stage-wise Training VS. End-to-end Training

We present the comparison between end-to-end and stage-wise training in Tab. H.
We observe that, at the beginning of end-to-end training, the rotation estima-
tion performance for the query image is poor (near random), which negatively
impacts the translation estimation performance. At the same time, allowing the
signal of translation estimation loss to propagate back to the rotation estima-
tor negatively affects its performance. Furthermore, end-to-end training requires
large GPU memory and, thus, a smaller batch size, which is detrimental to metric
learning performance.

Table H: Comparison with end-to-end training on KITTI dataset (Ours with λ = 0)
.

Training
Approach

Test-1 (Same-area) Test-2 (Cross-area)
Lateral
d = 1

Longitudinal
d = 1

Azimuth
θ = 1◦

Lateral
d = 1

Longitudinal
d = 1

Azimuth
θ = 1◦

End-to-end 32.83 8.22 10.15 32.53 7.76 10.10
Stage-wise 59.58 11.37 99.66 62.73 9.98 99.99

8 Angle ambiguity at 0◦& 360◦, why not rotation matrix?

Since we have prior knowledge of the coarse orientation, the angle ambiguity
can be restricted to be smaller than 360◦. Thus, the angle ambiguity at 0◦ and
360◦ can be avoided. A rotation matrix over-parameterizes the 1-DoF rotation

https://giphy.com/gifs/blog-daniel-keypoints-i4NjAwytgIRDW
https://giphy.com/gifs/blog-daniel-keypoints-i4NjAwytgIRDW
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angle in the cross-view image matching, thus leading to inferior performance, as
shown in the 1st row of Tab. I. We further make the pose regressor output sine
and cosine of the angle (2-DoF output). The results in the 2nd row of Tab. I are
promising but still inferior to our original parameterization (last row).

Table I: Additional ablation study on rotation estimation on the KITTI dataset.

Rotation Parameterization Test-1 (Same-area) Test-2 (Cross-area)
θ = 1◦ θ = 3◦ θ = 1◦ θ = 3◦

Rotation Matrix 5.05 15.44 5.07 15.51
Sin(angle) & Cos(angle) 90.01 100.00 86.52 100.00

Angle 99.66 100.00 99.99 100.00

9 Comparison Between Projecting Features and Images

In this paper, we follow the general practice of projecting features instead of
images [32]. This is because when projecting ground images to an overhead view
by assuming ground plane Homography, the pixels for scene objects above the
ground plane are incorrectly projected to the overhead view and thus suffer
distortion. In this way, the scene information of these objects will be lost in the
projected image, resulting in inferior localization performance.

In contrast, features have a larger field of view of the original image and en-
code higher-level semantic information about the scene. For example, the build-
ing roots also have a semantic meaning of “building”. It can be mapped to the
building roof in the overhead view, which shares the same semantic information
as the building root. Thus, projecting features instead of the original images
can tolerate the errors in the overhead-view projection by the ground plane Ho-
mography to some extent. We illustrate the experimental comparison between
projecting features and images in Tab. G. Not surprisingly, projecting features
achieves better performance.

10 Model Size and Evaluation Speed Comparison

We present the model size and evaluation speed comparison with two recent
state-of-the-art, whose models and evaluation scripts have been released, in
Tab. J. All of them are evaluated on an RTX 3090 GPU. It can be seen that our
method achieves the fastest evaluation speed with a relatively small model size.

11 Limitations

Although our self-supervised learning approach has achieved promising results,
it has a few limitations.

(i) First, as explained previously, our self-supervised training strategy for
rotation estimation is only suitable for ground images captured by a pin-hole
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Table J: Model size and evaluation speed comparison on the KITTI dataset.

Model Size Evaluation Speed

Shi and Li [26] Shi et al. [28] Ours Shi and Li [26] Shi at al. [28] Ours

20.2 M 29.1 M 20.6 M 500 ms 200 ms 47 ms

camera. Due to the significant domain differences between panoramic and satel-
lite images, it cannot be applied to estimating a spherical camera’s orientation.

(ii) Second, our deep metric learning supervision strategy computes the spa-
tial correlation between each query image and several satellite images. To save
GPU memory and enable a reasonable batch size for metric learning, we use the
feature level of a quarter of the original image size for the translation estimation.
This actually sacrifices localization accuracy to some extent.

(iii) For the same reason, we cannot adopt a more sophisticated overhead-
view feature synthesis method because it will consume significant memory, thus
sacrificing batch size, and the weak supervision limits the learning ability of a
powerful overhead-view synthesis module with complex designs.

(vi) Finally, similar to all the ground-to-satellite localization networks where
a single camera is used for query, our method suffers poor localization perfor-
mance along the longitudinal direction, as shown in Fig. C. This can potentially
be addressed using a video or multi-camera setup for the query.

We leave these unsolved problems as our future work and encourage the
community to pay attention to them.

Fig. C: Ambiguity along the longitudinal (driving direction) pose estimation.

12 Potential Negative Impact

This paper introduces a novel approach for self-supervised ground-to-satellite
image registration. The objective of this approach is to enhance the accuracy of
coarse camera pose estimates, such as those obtained from noisy GPS sensors,
through ground-to-satellite image matching. However, it also raises concerns
about privacy, particularly regarding the potential for individuals or sensitive
locations to be identified and tracked without their consent. Unauthorized access
to satellite imagery could enable surveillance activities or intrusions into personal
privacy, raising ethical and legal implications.

We emphasize that the proposed method should be utilized in a manner
that aligns with legal and ethical considerations. Careful implementation and
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adherence to privacy regulations and policies are crucial to ensure the ethical
and responsible use of this approach.
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