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1 Preliminaries

Diffusion Models. Diffusion models (DMs) [5, 10] infuse training data with
Gaussian noise and then recover the original data through the inversion of this
noise. Initially, DMs implement a diffusion algorithm that incrementally converts
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a starting image x0 into a noise distribution xT ∼ N (0, 1) across T steps. Each
step of this transformation is described by the equation:

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

with xt representing the image with noise at timestep t, βt as a predetermined
scale parameter, and N signifying the Gaussian distribution. Defining αt = 1−βt

and ᾱt =
∏t

i=0 αi allows us to simplify Eq.1 as:

q (xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
. (2)

During the inference phase, DMs commence by generating a Gaussian noise
map xT and then progressively apply a denoising process until reaching a high-
fidelity result x0:

p (xt−1|xt,x0) = N
(
xt−1;µt(xt,x0), σ

2
t I

)
, (3)

where the mean value µt(xt,x0) =
1√
αt

(
xt − ϵ 1−αt√

1−ᾱt

)
and the variance σ2

t =
1−ᾱt−1

1−ᾱt
βt. The noise estimate ϵ is optimized ϵθ(xt, t) through training as follows:

with a clean image x0, DMs select a random timestep t and noise ϵ ∼ N (0, I)
to produce the noisy images xt as per Eq.2. DMs then optimize the model
parameters θ of ϵθ in accordance with [5]:

Ldiff = E
∥∥ϵ− ϵθ

(√
ᾱtx0 + ϵ

√
1− ᾱt, t

)∥∥2
2
. (4)

2 Dataset Configurations

Our experiments incorporate three primary benchmark datasets, including var-
ious snow conditions, dense rain with haze, real and simulated raindrops and
streaks.
Snow100K: The Snow100K [8] dataset is specifically created to assess the per-
formance of image snow removal algorithms. This benchmark is structured into
two primary sections: a training set comprising 50,000 images, and a testing set.
The testing set is divided into Snow100K-S, Snow100K-M, and Snow100K-L,
containing 16,611, 16,588, and 16,801 images, respectively. These subsets are
classified based on the intensity of synthetic snow coverage, categorized by the
size of the snowflakes as light, medium, and heavy. Furthermore, Snow100K
encompasses an additional set of 1,329 real-world snowy images, labeled as
Snow100K-Real, to evaluate the effectiveness in adapting to realistic snow sce-
narios.
Outdoor-Rain: The Outdoor-Rain dataset [6] serves as an integral benchmark
for addressing the complex challenge of removing both rain and haze from im-
ages, which presents dense rain patterns and integrates a realistic atmospheric
perspective. The training set of Outdoor-Rain comprises 9,000 images. For quan-
titative analysis, we utilize a subset of 750 high-definition images, as Test1 in [6],
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Fig. 1: Structure of the basic block.

which tests the effectiveness of image restoration algorithms under conditions of
rain and dense haze.
RainDrop: The RainDrop [12] contains a set of images that simulate the visual
obstruction and artifacts caused by raindrops on the camera lens in real scenes.
The set contains 861 training images and a test subset of 58 images. This subset
is called RainDrop-A.

3 Architecture Implementation

For the diffusion process architecture, we simply adopt the framework from the
prior work Refusion [9] as our backbone (refer to Fig.1). To emphasize the su-
periority of our paradigm and the efficacy of our richly informative conditions,
we have significantly reduced the parameter amount from the original 131M [9]
to 69M. Specifically, we set the channel width to 64 and 18 blocks for the third
stage of the encoder, all blocks across other stages are set to 1. Compared to
the latest WeatherDiffusion [11], our intermediate architecture achieves remark-
ably improved performance in our experiments, while using almost 50M fewer
parameters. This not only showcases the excellence of our pipeline but also the
ample capability of our conditions.

4 Additional Ablation Studies

To rigorously evaluate the performance and effectiveness of our proposed T3-
DiffWeather framework, we have further carried out a series of comprehensive
ablation studies. The more details of these studies are elaborated in the subse-
quent sections.
Discussion of prompt pool size and topk. Our results show that as the
prompt pool size increases, the model has sufficient diversity in prompts to ef-
fectively capture and represent various degraded properties. Conversely, a tip
pool that is too large may introduce redundancy or noise, thereby compromis-
ing the model’s resilience. Additionally, for top-k, too fine-grained selection may
lead to overfitting of poorly represented degradation attributes or ignoring valu-
able global information. Smaller top-k values ensure that the most relevant tips
are employed, resulting in more robust and general performance across various
degraded images.
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Fig. 2: Abl. of Prompt pool size and k value of top-k.

Table 1: Com. of memory cost, PSNR,
and SSIM across the different Depth-
Anything [16] architectures.

Method #Memory Cost PSNR ↑ SSIM ↑
ViT-S-14 (Ours) 115.22 MB 31.99 0.9365
ViT-B-14 402.29 MB 31.96 0.9365
ViT-L-14 1314.38 MB 32.06 0.9366

Gains of different Depth-Anything
Architecture. The ablation study
shown in Tab.1 compares memory cost
with image recovery quality of differ-
ent Depth-Anything [16] architectures.
We found that the ViT-S-14 model
stands out for its low memory con-
sumption of only 115.22 MB, while
still achieving competitive PSNR and
SSIM metrics for our final results. In comparison, ViT-B-14 and ViT-L-14 require
significantly more memory with little corresponding gain in PSNR or SSIM.

Table 2: Abl. of Contrastive
Prompt Loss (CPL).

Method PSNR ↑ SSIM ↑
w/o. CPL 31.71 0.9350
w/o. Negative γ 31.81 0.9359
w/o. Positive γ 31.77 0.9358
w. CPL (Ours) 31.99 0.9365

Benefits of Contrast Prompt Loss (CPL). As
shown in Tab.2, the CPL distinguishes designed
prompts to guide the diffusion process. The ta-
ble shows that the pull of explicit constraints for
prompts and the push of two prompts based on dif-
ferent motivations play an important role in improv-
ing the learning effect. They improve the guidance
performance of conditions on diffusion by promot-
ing enhanced representation learning. More ablation
experiments can be found in the supplementary ma-
terial.

4.1 Effectiveness of Degradation Residual

Table 3: Ablation studies on degradation
residual(§4.1).

Settings PSNR↑ SSIM↑
w/o. degradation residual (clean image) 31.13 0.9317

degradation residual (Ours) 31.99 0.9365

In contrast to the state-of-the-art
method WeatherDiffusion [11], which
focuses on reconstructing clean im-
ages, we have adapted the training ob-
jective of our diffusion model to re-
construct degradation residual. Such a
paradigm greatly reduces the difficulty
of diffusion reconstruction, and under
the guidance of sufficient conditions, it
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can improve the quality of the image fidelity. As shown in Tab.3, our pipeline
can greatly improve restoration performance without requiring many inference
steps.

Table 4: Ablation studies for Loss Function(§4.2).

Settings PSNR↑ SSIM↑
L2 (sampling) 31.79 0.9358

PSNR Loss (sampling) 31.99 0.9365

4.2 Gains for the Loss Function

We further explore loss function and present the results in Tab.4. It is noticeable
that using PSNR loss [2] in the sampling process has better performance than
L2 loss.

5 Performance on More Datasets

Table 5: Comparisons results on the
datasets of setting in [18].

Datasets Method PSNR ↑ SSIM ↑
SPA+ TransWeather [15] 33.64 0.93

Chen et al. [4] 37.32 0.97
WGWS-Net [18] 38.94 0.98

T3-DiffWeather (Ours) 39.99 0.99
RealSnow TransWeather [15] 29.16 0.82

Chen et al. [4] 29.37 0.88
WGWS-Net [18] 29.46 0.85

T3-DiffWeather (Ours) 29.81 0.90
REVIDE TransWeather [15] 17.33 0.82

Chen et al. [4] 20.10 0.85
WGWS-Net [18] 20.44 0.87

T3-DiffWeather (Ours) 20.89 0.89

In our extended quantitative com-
parison, we compare a novel dataset
configuration, the same as WGWS-
Net [18]. As illustrated in Tab.5, our
approach continues to demonstrate
state-of-the-art performance. Notably,
unlike the WGWS-Net paradigm which
requires a two-stage training process,
our method adopts a "teaching tai-
lored to talent" pipeline that is more
versatile and adaptable to weather
degradations across various scenarios.
This one-stage, adaptive framework
ensures high-quality restoration with-
out needing phase-specific training,
providing a universally applicable so-
lution for diverse weather conditions.

6 Evaluating Real-World Performance

To further demonstrate the superiority of our paradigm in the real world, we
conduct a quantitative comparison of real-world datasets. Tab.?? presents an
in-depth evaluation of our T3-DiffWeather approach on datasets captured un-
der real-world meteorological conditions [1, 3, 13]. Our T3-DiffWeather method
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Table 6: Com. on more datasets.

RainDS-Real(RDS) GT-RAIN
Method

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
WGWS-Net [18] 20.79 0.603 20.65 0.608

WeatherDiff128 [11] 21.09 0.605 20.83 0.613
AWRCP [17] 21.31 0.607 20.97 0.615

Ours 21.96 0.612 21.27 0.619

achieves impressive scores, emphasizing its excellent adaptability to different
environmental conditions. This shows that our "teaching tailored to talent"
paradigm can allow the network to adaptively utilize the required attributes,
which is effective for diverse real-life scenarios. It shows that our method is
widely applicable to actual environments.

7 More Visual Comparison

We provide more visual comparisons to illustrate the superior visual perfor-
mance of T3-DiffWeather in adverse weather restoration. The comparison re-
sults are shown in the Fig.3-10. As shown in the figure, our method is closer
to the reference images in various tasks on synthetic datasets, significantly sur-
passing previous methods in terms of overall image detail and color recovery. In
addition, we have also shown more real-world samples. It can be seen that our
overall paradigm of "teaching tailored to talent" is more capable of dealing with
complicated scenarios in the real world and has good adaptability.

8 Limitation Discussion

Despite the outstanding performance of our pipeline, the diffusion architecture
still faces the challenge of reducing parameter amounts compared to traditional
regression models. Moreover, the pursuit of more efficient guidance methods for
the diffusion process is essential to enhance the embedding of conditions within
the framework. Although the cross-attention [14] approach we currently utilize
has achieved notably beneficial performance, there is continuing potential for
further advancements in this area.

9 Broad Impacts

Advances in adverse weather image restoration extend across various domains,
offering lots of benefits:

1. Improved Visibility and Safety for Transportation: In transporta-
tion systems, especially for autonomous vehicles and advanced driver-assistance
systems, restoring images from adverse weather conditions like haze, rain, or
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snow is crucial. Enhanced clarity in visual inputs leads to better decision-making
and increased road safety.

2. Reinforced Scientific and Environmental Analysis: Adverse weather
conditions can obscure critical details in environmental monitoring and climate
research imagery. Effective restoration techniques can unveil obscured features,
aiding in more accurate data collection and analysis for climate studies and
resource management.

3. Facilitated Geographic and Outdoor Activities: For outdoor enthu-
siasts and professionals in geography or archaeology, adverse weather restoration
can enhance the usability of images captured in suboptimal conditions, providing
clearer documentation and analysis of natural sites or historical landmarks.

The application of sophisticated adverse weather restoration methods promises
substantial positive societal impacts, particularly in enhancing safety and infor-
mation accuracy. The technology also has commercial applications in fields that
require high-fidelity visual information regardless of weather conditions.

10 Future Works

Moving forward, we aspire to further mitigate the issue of parameter amounts
while refining the concepts presented in our paper. Our goal is to extend our
approach to other all-in-one tasks, aiming to create a unified framework for
image restoration. Additionally, we are committed to ensuring that the overall
pipeline design remains free from any redundancy.
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Fig. 3: Visual comparisons of rain & haze removal on Test1 dataset [7].
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Fig. 4: Visual comparisons of raindrop removal on RainDrop dataset [12].
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Fig. 5: Visual comparisons of snow removal on Snow100K dataset [8].
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Fig. 6: Visual comparisons of rain removal on real-world sample.
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Fig. 7: Visual comparisons of rain removal on real-world sample.
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Fig. 8: Visual comparisons of snow removal on real-world sample.
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Fig. 9: Visual comparisons of snow removal on real-world sample.
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Fig. 10: Visual comparisons of snow removal on real-world sample.
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