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Abstract. Recent advancements in adverse weather restoration have
shown potential, yet the unpredictable and varied combinations of weather
degradations in the real world pose significant challenges. Previous meth-
ods typically struggle with dynamically handling intricate degradation
combinations and carrying on background reconstruction precisely, lead-
ing to performance and generalization limitations. Drawing inspiration
from prompt learning and the "Teaching Tailored to Talent" concept,
we introduce a novel pipeline, T3-DiffWeather. Specifically, we em-
ploy a prompt pool that allows the network to autonomously combine
sub-prompts to construct weather-prompts, harnessing the necessary at-
tributes to adaptively tackle unforeseen weather input. Moreover, from a
scene modeling perspective, we incorporate general prompts constrained
by Depth-Anything feature to provide the scene-specific condition for
the diffusion process. Furthermore, by incorporating contrastive prompt
loss, we ensures distinctive representations for both types of prompts by
a mutual pushing strategy. Experimental results demonstrate that our
method achieves state-of-the-art performance across various synthetic
and real-world datasets, markedly outperforming existing diffusion tech-
niques in terms of computational efficiency.

Keywords: Adverse weather restoration · Diffusion model · Prompt
learning · Teaching tailored to talent

1 Introduction

With the growth of the community, image restoration in adverse weather con-
ditions has become increasingly significant [13, 18, 19, 21, 40, 74, 82]. To meet
practical demands effectively, research is increasingly focusing on the all-in-one
removal of multiple weather degradations [20, 46, 58, 76, 87] as a primary objec-
tive.

Contrasting with restoration tasks targeted at specific weather conditions,
multi-weather restoration involves a composition of various weather phenomena.
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Early developments employed methods such as neural architecture search [46]
or distillation [20] to combine models tailored to individual tasks, but these ap-
proaches are complicated and cumbersome. Moreover, several methods [76, 88]
have attempted to employ a codebook as a reliable prior for guiding image
restoration or utilized shared learnable queries to adapt different weather degra-
dations. However, such paradigms are not aware of the differences and similarities
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Fig. 1: t-SNE visualization of different feature dis-
tributions. (a). Scenes with different contents also have
significant commonalities compared to degradations. And
there are some differences and commonalities between
degradations and degradations. (b). Degradation residu-
als can represent degradations to a certain extent and be
distinguished from the background.

between degradations. Re-
cently, the WGWS frame-
work [102] analyzed the
weather-general and weather-
specific features and per-
formed targeted parame-
ter learning for such char-
acteristics. Yet, its two-
stage design and the need
for customized modifica-
tions within different ar-
chitectures remain intri-
cate. In addition, un-
like dealing with a single
weather, adverse weather
will cause unseen and un-
predictable degradation
combinations in the real
world, which poses a
challenge to handling degra-
dations adaptively. Hence,
1. How to effectively and flexibly model complicated and unpredictable
weather combinations in the real world remains an open question .

Furthermore, benefiting from recent advancements in diffusion models [28],
there is the first diffusion-based method—WeatherDiffusion [58]—which has
demonstrated the superiority of generative paradigms over regression models
in reconstructing clean backgrounds from adverse weather images. However, its
shortcomings are evident: the original degraded image as a condition does not
adequately guide the reconstruction from noise to clean images, and requires
a certain number of steps for sampling. For diffusion models, discovering suf-
ficiently informative conditions is essential for high-quality image reconstruc-
tion [27, 42, 48, 81]. Therefore, 2. Designing a condition that equips rich
information on adverse weather samples is critical for diffusion pro-
cess.

To address the aforementioned challenges, we introduce a novel paradigm.
Inspired by prompt learning [32,99], we claim that prompts can be employed to
craft a comprehensive condition. i). Unlike the recent paradigm [59] that uti-
lized a shared set of learnable prompts to adapt to varying degraded images, we
design a prompt pool. This pool can fully exploit the differences and similari-
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ties among weather degradations, thereby offering the network a wider range of
options. Specifically, we enable the network to autonomously construct the nec-
essary weather information based on the input degradation residual and freely
assemble a specific set of weather-prompts for unpredictable phenomena. ii).
We observe that the scene features behind adverse weather often share com-
monalities (see Fig.1 (a)), inspiring us to devise general prompts specifically
for background modeling. Drawing inspiration from the recent breakthroughs in
Depth-Anything [83], we note this model exhibits exceptional robustness when
handling extreme samples. This observation leads us to extract critical features
from Depth-Anything, utilizing them to direct our general prompts. iii). Addi-
tionally, we introduce a compact contrastive prompt loss to further regulate two
types of prompts, and integrate them seamlessly into the diffusion process. At
the core of our approach, a "Teaching Tailored to Talent" paradigm is resembled
, adeptly guiding distinct weather combinations and their respective scene back-
grounds. Building upon this foundation, we introduce a novel diffusion-based
architecture: T3-DiffWeather . It achieves SOTA performance across various
adverse weather benchmarks while requiring only a tenth of the sampling steps
compared to the latest WeatherDiffusion [58].

As an overview, the contributions of our work are summarized as follows:

– We introduce a novel prompt pool. Capitalizing on the similarities and dif-
ferences among various weather conditions, proposed prompt pool empowers
the network to autonomously combine sub-prompts, effectively constructing
diverse weather-prompts to enhance representation for complicated weather
degradations.

– Inspired by the shared attributes within the scenes of degraded samples,
we have crafted general prompts specifically tailored for background under-
standing. For the first time, we propose to utilize the robust features of
Depth-Anything [83] as a constraint for general prompts.

– We incorporate a compact contrastive prompt loss to further boost the
prompt representation of two designs. Overall, our diffusion-based architec-
ture, T3-DiffWeather, achieves SOTA performance on multi-weather restora-
tion benchmarks with significantly fewer inference steps.

2 Related Works

2.1 Image Restoration in Adverse Weather Conditions

Dehazing: The field of single-image dehazing has witnessed remarkable ad-
vancements in recent years [1, 50, 52, 61, 74, 79, 91]. DehazeFormer [74] adopted
a transformer-based approach, tackling the complicated hazy images through
distinct window processing. Meanwhile, the MB-TaylorFormer [61] leveraged a
linear Transformer architecture grounded in Taylor series expansion to clarify
hazy scenes effectively.
Deraining: The progress in single-image rain removal is steadily increasing, in-
cluding rain streaks [21,65,85,101] and raindrops [13,60,62,80,82]. IDT [82] de-
veloped a transformer-based technique that combines window-based and spatial



4 Chen et al.

transformers to enhance the precision of rain streak modeling. UDR-S2Former [13]
leveraged uncertainty to refine the sparse ViT model for improved performance
of raindrop removal.
Desnowing: Unlike dehazing and deraining, single-image snow removal presents
a greater challenge [9,15–18,23,49,90]. JSTASR [18] introduced a framework ca-
pable of addressing both haze and snow removal simultaneously. MSP-Former [16]
was the inaugural attempt at a single-image snow removal network utilizing a
transformer architecture. Nevertheless, similar to haze and rain removal, these
innovative approaches still grapple with limitations when confronted with other
variants of extreme weathers.
Multi-Weather Restoration: Adverse weather restoration endeavors to de-
velop a consolidated network to adeptly address weather-induced image degra-
dations [20,46,58,76,86,88,102]. The pioneering work in this domain was the All-
in-One [46], the extensive parameterization due to NAS may make it impractical
for real-world deployment. TransWeather [76] introduced a weather-type decoder
capable of interpreting diverse weather degradations, yet its fixed queries cannot
explicitly consider the degradations of different weather and lacks background-
level modeling. WeatherDiffusion [58] presented a diffusion-based method that
harnessed the capabilities of diffusion models for weather removal, achieving
SOTA results across various benchmarks. Nonetheless, the slow inference speed
and the absence of precise prompt conditions may hinder its widespread practical
application.

2.2 Conditional Diffusion Models

Recent advancements in denoising diffusion probabilistic models (DDPM) [29]
have captured intricate distributions with accuracy that exceeds other generative
frameworks, including GANs. To further enhance the precision and realism of the
generated outputs, diffusion models often incorporated additional conditioning
or guidance mechanisms, as evidenced by recent studies [2,3,26,37]. In the field
of image restoration, the prevailing approach involves feeding networks with con-
catenated degraded inputs to yield outputs of high fidelity quality [42,43,58,68,
89] compared with traditional regressive models [25,35,38,39,41,66,78]. To fur-
ther refine the denoising process, networks often incorporated single task-specific
prompts such as masks or textual information [27, 84] as embedded guidance.
However, the recent WeatherDiffusion [58] typically used degraded images as
the sole condition, which may result in performance limitations for addressing
all-in-one restoration tasks.

2.3 Prompt Learning

Prompt learning has been increasingly applied to computer vision [5,6,57,70,71,
96]. This technique involved the insertion of task-specific prompt tokens prior to
the input, equipping pre-trained models with the necessary knowledge to perform
new tasks without extensive fine-tuning. The approach of Context Optimization
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Fig. 2: The overview of proposed method. (a) showcases our pipeline, which
adopts an innovative strategy focused on learning degradation residual and employs the
information-rich condition to guide the diffusion process. (b) illustrates the utilization
of our prompt pool, which empowers the network to autonomously select attributes
needed to construct adaptive weather-prompts. (c) depicts the general prompts directed
by Depth-Anything constraint to supply scene information that aids in reconstructing
residuals. (d) shows the contrastive prompt loss, which exerts constraints on prompts
driven by two distinct motivations, enhancing their representations.

(CoOp) [99] leveraged this for the CLIP model [64], refining prompts in a con-
tinuous space through backpropagation. Conditional Context Optimization (Co-
CoOp) [98] innovated further by producing input-dependent prompt residuals to
enhance generalization ability. For low-level tasks, PromptIR [59] introduced a
learnable prompt module that generates shared prompts responsive to various
degradation types. Additionally, recent researches utilized text prompts to guide
image restoration networks [22, 48, 75]. However, the use of sparse text embed-
dings could lead to performance limitations and increase complexity due to the
necessity for additional multi-modal models.

3 Methods

Novel Pipeline T3-DiffWeather. For adverse weather restoration, the in-
tricate blend of degradations in the real world poses significant challenges to
obtaining clean backgrounds. Consequently, developing a model that can ef-
fectively adapt complicated degradation combinations is crucial. We introduce
a novel pipeline, T3-DiffWeather, whose key principle is “Teaching Tailored
to Talent.” Inspired by prompt learning [32, 59, 99], our design incorporates
instance-wise weather-prompts tailored for specific degradations and general
prompts for scene information, efficiently exploiting both the disparate and
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shared attributes present in degraded images. We leverage these prompts as
the condition to guide the diffusion process with rich information.

Specifically, leveraging insights from Fig.1, we observe that degradations ex-
hibit more distinct features compared to the background (as shown in Fig.1(a)),
and degradation residual rd (subtract the degraded image y from the clean im-
age x) provides a clearer representation of the degraded image (as illustrated in
Fig.1(b)). We claim that the degradations are a primary factor for the difficulty in
restoration. Therefore, we pivot the reconstruction target of the diffusion model
toward the degradation residual. The training objective is (see supplementary
material):

Lres = E

∥∥∥∥∥∥∥ϵ− ϵθ

√ᾱ( x− y︸ ︷︷ ︸
residual rd

) +
√
1− ᾱϵ,y, c


∥∥∥∥∥∥∥
2

2

. (1)

where c denotes the condition built by weather-prompts Pw and general prompts
Pgd. We simply embed them into the latent layer in the diffusion network
through cross-attention, similar to the text embedding in SD [67]. This pro-
cess is naturally efficient and does not take up much computation overhead.
Given the feature embedding Fe ∈ RH×W×D in the latent layer, The formula
can be expressed as follows:

F
′

e = softmax
(
Q(Fe)K(Pw)

T

√
D

)
V(Pw),

F̂e = softmax

(
Q(F

′

e)K(Pgd)
T

√
D

)
V(Pgd),

(2)

where Q(·),K(·),V(·) are the query, key, and value functions. The F̂e is the
output feature embedding.

3.1 Prompt Pool for Weather Representation

Motivation I: The restoration from adverse weather is often impeded by the
complicated and varied combinations of degradations, which can influence net-
work performance. Unlike the substantial domain gap encountered in general
restoration between various types of degradations [7,8,95], weather degradations
in the real world exhibit some similar attributes, such as haze veiling and low
contrast [102]. Concurrently, degradations specific to distinct conditions manifest
unique attributes varying in shape and scale. These differences and similarities
inspire us to explicitly leverage degradation characteristics to enhance the rep-
resentation of degradations.

Leveraging the advancements in prompt learning for image restoration, we
posit that the network should adaptively learn the characteristics of degrada-
tions and autonomously construct suitable weather-prompts. Consequently, we
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introduce the design of a prompt pool. This design triggers the network to se-
lectively choose sub-prompts from the pool, crafting a unique weather-prompt
tailored to each sample. Such an autonomous construction explicitly takes into
account the similarities (shared sub-prompts) and differences (independent sub-
prompts) under varying weather conditions. Specifically, given our prompt pool
P =

{
Pi

s

}N
i=1

with each sub-prompts Pi
s ∈ RLs×D (Ls denotes the length

of tokens), where i represents the index of a specific sub-prompts and N is
the prompt pool size. For the input (degradation residual) embedding Fe, the
weather-prompt construction function Ψ can be defined as:

Pw = Ψ(P ,Fe;Θ), (3)

Here, Θ parameterizes the selection process to optimally align the sub-prompts
with the embedded feature (related to degradation) Fe. Motivated by the essence
of ViT [24], we utilize the query-key mechanism, which enables the network to
select the necessary sub-prompts for the input embedding. Specifically, a learn-
able key Ki

s ∈ R1×D is designed for each sub-prompts to calculate the correlation
with embedding Fe (query) for choose. The formula can be expressed as follows:

Ki
s ∈ R1×D match←→ Pi

s, Fe ∈ RH×W×D mean−→ Fmean
e ∈ R1×D, δ(Ki

s,Fe),
(4)

where δ(·) denotes the similarity calculation (we empirically choose cosine sim-
ilarity). We employ this metric to let the network select the most appropriate
sub-prompts from the pool to form effective weather-prompts.

Pw =

k⋃
i=1

Ki
s if δ(Ki

s,Fe) ≥ δ(Ki+1
s ,Fe), (5)

where k is the number of sub-prompts with the top-k similarity we selected.
⋃k

i=1

denotes the concatenation of individual sub-prompts to construct the weather-
prompts Pw, which embodies the most representative features of the input in
relation to the given weather conditions.

Such a manner can be understood as the network using sub-prompts to freely
control the weather attributes that need to be learned (see Fig.3), which is
novel and efficient compared to previous paradigms. This adaptive combination
tailored to individual samples achieves exceptional performance, aligning with
the concept of "teaching tailored to talent".
Discussion I: Recently, prompt learning has been used in image restoration [59].
Nonetheless, such an approach often relied on shared parameters to address
various degradation scenarios, leading to potential interference among different
degradations and overlooking the unique features of instance-wise degradations.
We aim to implement a novel strategy "prompt pool". It enables the network to
adaptively select appropriate sub-prompts in response to the specific degradation
present in the input, thereby concentrating on the inter-attributes and intra-
attributes of the weather degradations.
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Weather-Prompts of rain & haze samples

Weather-Prompts of snow samples

Weather-Prompts of raindrop samples

unique attributes 

similar attributes 

(a) (b) 

Fig. 3: (a). The selection frequency of sub-prompts. Some similar selection
frequencies reflect the network’s ability to adaptively exploit common attributes in
some similarity between tasks (e.g. rain and raindrop). At the same time, the unique
prompt frequencies highlight the flexibility to adapt to the specific characteristics of
each weather condition.(b) t-SNE visualization of weather-prompts for differ-
ent weather conditions.

3.2 General Prompts for Scene Modeling

Motivation II: Scene information provides guidance for the reconstruction of
degraded residuals. In contrast to previous methods that solely focus on under-
standing degradations [58, 76, 102], we claim that modeling the scene

(b) Degradation
samples

(d) Depth-Anything 
Features

(e) DINO
Features

(f) DINOv2
Features

(c) Depth-Anything
Results

(a) Depth-Anything Results

Fig. 4: Motivation of Depth-
Anything [83] as a constraint. Depth-
Anything has degradation-independent
performance, and the intermediate features
have better robustness than the previous
pre-trained network [4, 56].

content is another critical factor in
enhancing performance. Inspired by
this insight, we contemplate whether
clean backgrounds in degraded im-
ages possess distinguishable charac-
teristics. Utilizing t-SNE for visual-
ization, we observe the distribution
among clean images in Fig.1. There
is often a significant distinction be-
tween degradations and background,
while clean images share commonal-
ities within the latent space. Conse-
quently, we propose general prompts
that encourage the network to boost
representation with respect to the
background.

The proposed general prompts
Pg ∈ RLg×D, unlike the degradation-
specific sub-prompts, are designed to
encapsulate the common attributes of
the scene across various weather dis-
tortions. It serves as a versatile anchor
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within the representational space, fostering a consistent perception of the back-
ground. Therefore, for the initialization of prompts, we seek to impose an explicit
constraint that directs the learning towards the general attributes of the scenes.
It will ensure that the general prompts are not disturbed by the varying degrees
of degradations.
Observation: Inspired by scene understanding [12, 34], utilizing depth infor-
mation has proven to effectively represent clean scenes. Additionally, adverse
weather conditions is notably more susceptible to depth-related distortions com-
pared to other degradations. Recently, the Depth-Anything [83] model leverages
extensive datasets and the robust representational capabilities of DINOv2 [56]
to develop a depth estimation model that applies to any scene. As illustrated in
Fig.4 (a), we observe that depth maps estimated by Depth-Anything are almost
unaffected by degradations, which to some extent demonstrates the robustness of
the intermediate hidden features in scene representation (Fig.4 (b)). Motivated
by this discovery, we claim that the latent space features can be used to impose
an explicit constraint on the general prompts, thereby better focusing on the
background portion.
Depth-Anything Constraint: To direct the general prompts Pg ∈ RLg×D

towards a more nuanced perceiving of the background, we integrate the latent
features from the Depth-Anything model using an attention-based mechanism.
Specifically, we define a cross-attention operation where the general prompts
form the queries, and the keys and values are derived from the Depth-Anything
features. Let Fd ∈ RH×W×D represents the depth-aware features, where H and
W are the dimensions of the feature map. The cross-attention mechanism is then
given by:

Pgd = softmax

(
QgKT

d√
D

)
Vd, (6)

Obtained general prompts Pgd adaptively integrate scene information, providing
sufficient prior knowledge for the subsequent perception of the background while
mitigating the impact of degradations.

3.3 Contrastive Prompt Loss

The sections above illustrate two types of prompts as the condition for the dif-
fusion model. Additionally, we introduce contrastive prompt loss. It aims to dif-
ferentially enhance the representations of two uniquely designed prompts. These
prompts act as conditions for the diffusion model, with one tailored to model
weather degradations and the other, guided by the Depth-Anything model, to
perceive the background information. Given the inherently different design ob-
jectives of each prompt type, they are hypothesized to act as negative samples for
each other. For the positive samples of prompt type, we employ cosine similarity
to draw them nearer to the constraint within the latent space. The contrastive
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prompt loss Lcp is defined as:

Lcp =
1

b

1

k

b∑
j=1

k∑
i=1

[
γ (Kgd,Fmean

d )− γ
(
Ki

s,Kgd

)]
, (7)

where b is the batch size. Kgd represents the learnable key matched for general
prompts, γ(·) denotes the 1− δ(·), which ensures the optimization process.
Discussion II: While our approach draws inspiration from prior contrastive
learning paradigms [20, 79, 97], it is distinctly different. 1). We do not require
the construction of additional negative samples, as the two types of motivation-
driven prompts within our design naturally serve as negatives for each other.
2). Prompts has explicit constraints that draw them closer to feature embed-
dings, eliminating the need for ground truth images as positive samples. 3). Our
prompts can interact with high-dimensional features within the network directly,
obviating the process for the traditional contrastive learning step of mapping via
a pre-trained network [69] to a feature space.

3.4 Loss Function

To supervise our T3-DiffWeather model, we employ the noise estimation loss
Eq.1 and the contrastive prompt loss Eq.7 during the noise estimation phase.
Additionally, our contrastive prompt loss is designed to optimize the prompts
adapted to different instance samples. Hence, during the training, we conduct the
sampling process for restoring clean images and impose additional supervision
on this process through reconstruction loss and contrastive prompt loss. This
approach better constrains the optimization trajectory [30, 33] of the diffusion
process and releases the potential of prompts. The overall objective function can
be expressed as follows:

Ltotal = λ1Lres + λ2Lcp + λ3

∥∥∥(rsample
d + y)− x

∥∥∥
psnr

+ λ4Lsample
cp (8)

where psnr denotes the PSNR loss [11,14] we choose empirically. λ1, λ2, λ3 and
λ4 are set to 1 empirically.

4 Experiments

4.1 Implementation

Pipeline implementation. T3-DiffWeather builds upon the backbone followed
by previous diffusion design [54]. We employ uniform initialization techniques to
set up the weights for sub-prompts in the prompt pool and general prompts, in-
cluding their respective keys. Specifically, we designate a total of 20 sub-prompts
within the prompt pool, with each sub-prompt comprising 64 tokens (Ls), from
which we select the top 5 (k) to form the required weather-prompts. The token
number for general prompts (Lg) is set at 256 to ensure the balance between
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Table 1: Snow.
Snow100K-S [49] Snow100K-L [49]

Method
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

SPANet[CVPR’19] [77] 29.92 0.8260 23.70 0.7930
JSTASR[ECCV’20] [18] 31.40 0.9012 25.32 0.8076
RESCAN[ECCV’18] [47] 31.51 0.9032 26.08 0.8108
DesnowNet[TIP’18] [49] 32.33 0.9500 27.17 0.8983
DDMSNet[TIP’21] [94] 34.34 0.9445 28.85 0.8772
MPRNet[CVPR’21] [93] 34.97 0.9457 29.76 0.8949
NAFNet[ECCV’22] [10] 34.79 0.9497 30.06 0.9017
Restormer[CVPR’22] [92] 35.03△ 0.9487△ 30.52△ 0.9092△

All-in-One[CVPR’20] [46] - - 28.33 0.8820
TransWeather[CVPR’22] [76] 32.51 0.9341 29.31 0.8879
TKL&MR[CVPR’22] [20] 34.80 0.9483 30.24 0.9020
WeatherDiff64[PAMI’23] [58] 35.83 0.9566 30.09 0.9041
WeatherDiff128[PAMI’23] [58] 35.02 0.9516 29.58 0.8941
AWRCP[ICCV’23] [88] 36.92 0.9652 31.92 0.9341

⋆ T3-DiffWeather (Ours) 37.51 0.9664 32.37 0.9355

Table 2: Rain & Haze.
Outdoor-Rain [44]

Method
PSNR ↑ SSIM ↑

CycleGAN[ICCV’17] [100] 17.62 0.6560
pix2pix[ICCV’17] [31] 19.09 0.7100
HRGAN[CVPR’19] [45] 21.56 0.8550
PCNet[TIP’21] [36] 26.19 0.9015
MPRNet[CVPR’21] [93] 28.03 0.9192
NAFNet[ECCV’22] [10] 29.59 0.9027
Restormer[CVPR’22] [92] 29.97△ 0.9215△

All-in-One[CVPR’20] [46] 24.71 0.8980
TransWeather[CVPR’22] [76] 28.83 0.9000
TKL&MR[CVPR’22] [20] 29.92 0.9167
WeatherDiff64[PAMI’23] [58] 29.64 0.9312
WeatherDiff128[PAMI’23] [58] 29.72 0.9216
AWRCP[ICCV’23] [88] 31.39 0.9329

⋆ T3-DiffWeather (Ours) 31.99 0.9365

Table 3: Raindrop.
RainDrop [60]

Method
PSNR ↑ SSIM ↑

pix2pix[ICCV’17] [31] 28.02 0.8547
DuRN[CVPR’19] [51] 31.24 0.9259
RaindropAttn[ICCV’19] [63] 31.44 0.9263
AttentiveGAN[CVPR’18] [60] 31.59 0.9170
CCN[CVPR’21] [62] 31.34 0.9286
IDT[PAMI’22] [82] 31.87 0.9313
UDR-S2Former[ICCV’23] [13] 32.64△ 0.9427△

All-in-One[CVPR’20] [46] 31.12 0.9268
TransWeather[CVPR’22] [76] 30.17 0.9157
TKL&MR[CVPR’22] [20] 30.99 0.9274
WeatherDiff64[PAMI’23] [58] 30.71 0.9312
WeatherDiff128[PAMI’23] [58] 29.66 0.9225
AWRCP[ICCV’23] [88] 31.93 0.9314

⋆ T3-DiffWeather (Ours) 32.66 0.9411

Fig. 5: These tables provide quantitative comparisons with state-of-the-art image
desnowing, deraining, and adverse weather removal methods, employing PSNR and
SSIM as metrics—where higher values signify better restoration. The best and second-
best metrics are shown with bold text and underlined text, respectively. The triangle
△ represents the SOTA metric trained on a single dataset. Above half of the tables
present comparisons of task-specific methods for a single dataset, while the bottom sec-
tion showcases the performance of the proposed T3-DiffWeather method across all four
test sets against state-of-the-art adverse weather solutions, including All-in-One [46],
TransWeather [76], TKL&MR [20], WeatherDiffusion [58] and AWRCP [88].

(a) Input (b) TransWeather (c) TKL&MR (d) Restormer (e) WeatherDiff (f) T3-DiffWeather (g) Reference

(a) Input (b) TransWeather (c) TKL&MR (d) Restormer (e) WeatherDiff (f) T3-DiffWeather (g) Reference

(a) Input (b) TransWeather (c) TKL&MR (d) UDR-S2Former (e) WeatherDiff (f) T3-DiffWeather (g) Reference

Fig. 6: Visual comparisons in adverse weather conditions on Snow100K [49], Outdoor-
Rain [76] and RainDrop [60] datasets.

performance and manageable overhead. When constraining the general prompts
using Depth-Anything [83], we utilize the ViT-S architecture, which demands
minimal memory usage while maintaining robustness. During the diffusion pro-
cess, we opt for DDIM [72] sampling. Owing to our focus on reconstructing
degradation residuals and the rich representations of the condition, setting the
number of sampling steps to merely 2 suffices to achieve impressive performance.
Additional architectural details can be found in the supplementary materials.
Training details. To train our T3-DiffWeather model, we leverage the compre-
hensive AllWeather dataset referenced in [76], including 18, 069 images from the
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Snow100K [49], Outdoor-Rain [44], and RainDrop [60] datasets, the same as pre-
vious adverse weather restoration methods [46, 58, 76, 88]. Our T3-DiffWeather
pipeline is developed on the PyTorch framework and undergoes training on two
NVIDIA A800 GPUs. This pipeline includes 800K training iterations, utilizing
the Adam optimizer with momentum parameters set to 0.9 and 0.995. Training
commences with an initial learning rate of 1.5 × 10−4, which is reduced using
a cosine annealing schedule. To promote stability during the learning phase, an
exponential moving average strategy weighted at 0.995 is employed for param-
eter updates, as supported by findings in [55] and [73]. The diffusion procedure
consists of 1, 000 timesteps, labeled as T , with an incrementally ascending noise
schedule βt ranging from 0.0001 to 0.02. The training employs image patches
of 256× 256 pixels. Augmentation techniques like horizontal flipping and fixed-
angle random rotation are used in the training. Please refer to the supplementary
material to view detailed training and testing dataset configurations.

4.2 Quantitative comparison

We perform a comparative analysis of metrics between synthetic and real datasets.
Specifically, we compare the model performance for a single task and the perfor-
mance of a multi-weather image restoration model trained on multiple weather
datasets. Our quantitative analysis reveals the competitive advantage of our T3-
DiffWeather pipeline over existing state-of-the-art algorithms in image restora-
tion with various weather impacts. As shown in Tab.1, T3-DiffWeather achieves
excellent performance in image snow removal, as evidenced by the highest PSNR
and SSIM metrics on the Snow100K-S [49] and Snow100K-L [49] datasets. It is
particularly noteworthy that the PSNR on Snow100K-S is 1.68db higher than
the previous best diffusion model, WeatherDiffusion [58], indicating a significant
improvement in recovery quality. This is mainly due to our new pipeline design
and suitable and effective conditions. In addition, our method ranks first in the
deraining and dehazing task (Tab.2) and maintains the leading position in the
raindrop removal (Tab.3).

4.3 Visual Comparison

Fig.6 visually compares state-of-the-art image restoration techniques on a syn-
thetic dataset designed to simulate real-world conditions. WeatherDiffusion [58]
marginally enhances detail definition but does not remove degradations entirely
in some areas. Restormer improves color fidelity but does not entirely eliminate
synthetic artifacts. T3-DiffWeather markedly improves texture and color accu-
racy, closely matching the reference. It significantly reduces synthetic distortions,
maintaining scene authenticity, as seen in the detailed insets.

Furthermore, Fig.7 also shows a visual comparison of restoration methods
applied to images of real-world scenarios. Also based on a diffusion model, our
method can better remove degradation in the real world and restore complex
scene textures than WeatherDiffusion [58]. In addition, UDR-S2Former [13] has
deficiencies in handling real rainy scenes. In comparison, our method visually
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(a) Input (b) TransWeather (c) TKL&MR (d) UDR-S2Former (e) WeatherDiff (f) T3-DiffWeather (g) Deg. Residual

(a) Input (b) TransWeather (c) TKL&MR (d) Restormer (e) WeatherDiff (f) T3-DiffWeather (g) Deg. Residual

(a) Input (b) TransWeather (c) TKL&MR (d) Restormer (e) WeatherDiff (f) T3-DiffWeather (g) Deg. Residual

Fig. 7: Visual comparisons of the real-world adverse weather samples.

removed all degradations details, which proves the competitiveness of our method
compared to specific methods. We also show the heat map of our degradation
residual. We find that our method always focuses on degradations in terms of
the restoraiton object, which proves the effectiveness of our pipeline.

4.4 Comparison of Parameters and Computational Complexity

Table 4: Com. of parameters and
GFLOPs (256×256 resolution) for diffu-
sion process.
Method #Params #GFLOPs

Single Image Restoration
IR-SDE [53] 135.3M 119.1G×100 steps
Refusion [54] 131.4M 63.4G×50 steps

Adverse Weather Restoration
WeatherDiffusion [58] 113.68M 248.4G×25 steps
T3-DiffWeather (ours) 69.38M 59.82G×2 steps

As shown in Tab.4, our pipeline sig-
nificantly reduces the number of pa-
rameters required for diffusion com-
pared to previous designs. Moreover,
with only two steps in the sampling
process, the computational complex-
ity at a 256×256 resolution is a mere
1/52 of that of the SOTA WeatherDif-
fusion [58]. Additionally, the computa-
tional complexity of the single image
restoration diffusion architecture Re-
fusion [54] is nine times of ours, under-

scoring the efficacy of proposed conditions and constraints and the superiority
of our holistic approach aimed at reconstructing degradation residuals.

4.5 Ablation Studies

In order to verify the efficacy of each key component of T3-DiffWeather, we
conduct a series of ablation experiments. All these variants are trained using the
same configurations as in the implementation details, and the ablation results
are tested on Outdoor-Rain [44].
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Table 5: Abl. of Prompt Pool.
Method PSNR ↑ SSIM ↑
w/o. prompt pool 31.05 0.9325
w/o. matched keys 31.72 0.9349
w. prompt [59] 31.38 0.9330
w. prompt pool (Ours) 31.99 0.9365
Length Ls PSNR ↑ SSIM ↑
32 (Sub-prompts) 31.79 0.9358
64 (Sub-prompts) (Ours) 31.99 0.9365
128 (Sub-prompts) 32.04 0.9366

Effectiveness of Prompt Pool. The Tab.5
highlight the vital role of the proposed
prompt pool in adverse weather restoration.
Leveraging the advances in prompt learn-
ing, our prompt pool method autonomously
crafts tailored sub-prompts for each spe-
cific degradation scenario. This approach has
shown substantial improvements over meth-
ods without a prompt pool or with un-
matched keys and significantly surpasses the
previous design [59]. With our method, the
network selects the most representative sub-prompts with 64 token numbers of
sub-prompts to balance the complexity and performance, affirming the prompt
pool’s utility in capturing the attributes of complex weather patterns.

Table 6: Abl. of General Prompts.
Method PSNR ↑ SSIM ↑
w/o. General Prompts 31.52 0.9342
w/o. Depth-Anything [83] 31.67 0.9349
w. DINO [4] 31.77 0.9357
w. DINOv2 [56] 31.82 0.9359
w. Depth-Anything [83] (Ours) 31.99 0.9365
Length Lg PSNR ↑ SSIM ↑
128 (General Prompts) 31.73 0.9354
192 (General Prompts) 31.88 0.9360
256 (General Prompts) (Ours) 31.99 0.9365
320 (General Prompts) 32.03 0.9365

Improvements of proposed Gen-
eral Prompts. Tab.6 illustrates the
efficacy of incorporating the ro-
bust Depth-Anything [83] features
as a constraint for general prompts.
The depth-aware features intrinsic to
Depth-Anything have demonstrated
superior performance over other pre-
trained models (e.g. DINO [4], DI-
NOv2 [56]), particularly regarding
scene understanding. Moreover, gen-
eral prompts without such explicit
constraints exhibit limitations in holis-
tically background modeling.

Furthermore, our experiments re-
vealed a performance bottleneck asso-

ciated with increasing the number of general prompts. To optimize efficiency
without compromising gains, we determine that selecting 256 tokens yields the
optimal balance, effectively avoiding unnecessary computational overhead. More
ablation experiments can be found in the supplementary material.

5 Conclusion

This paper draws inspiration from the prompt learning and the concept of
"Teaching Tailored to Talent", proposing a novel T3-DiffWeather. It utilizes
weather-prompts constructed from free combinations of sub-prompts, and gen-
eral prompts constrained by Depth-Anything to provide rich information for the
diffusion process from the degradation and background perspectives. Experimen-
tal results demonstrate that our method achieves SOTA performance on various
synthetic and real-world data sets, with excellent computational efficiency.
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