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Abstract. We present MoE-DiffIR, an innovative universal compressed
image restoration (CIR) method with task-customized diffusion priors.
This intends to handle two pivotal challenges in the existing CIR meth-
ods: (i) lacking adaptability and universality for different image codecs,
e.g ., JPEG and WebP; (ii) poor texture generation capability, particu-
larly at low bitrates. Specifically, our MoE-DiffIR develops the powerful
mixture-of-experts (MoE) prompt module, where some basic prompts co-
operate to excavate the task-customized diffusion priors from Stable Dif-
fusion (SD) for each compression task. Moreover, the degradation-aware
routing mechanism is proposed to enable the flexible assignment of basic
prompts. To activate and reuse the cross-modality generation prior of
SD, we design the visual-to-text adapter for MoE-DiffIR, which aims to
adapt the embedding of low-quality images from the visual domain to the
textual domain as the textual guidance for SD, enabling more consistent
and reasonable texture generation. We also construct one comprehensive
benchmark dataset for universal CIR, covering 21 types of degradations
from 7 popular traditional and learned codecs. Extensive experiments on
universal CIR have demonstrated the excellent robustness and texture
restoration capability of our proposed MoE-DiffIR. The project can be
found at https://renyulin-f.github.io/MoE-DiffIR.github.io/.

Keywords: Compressed Image Restoration · Mixture-of-Experts · Prompt
Learning · Stable Diffusion

1 Introduction

Image compression has emerged as a ubiquitous and indispensable technique
in human life and industrial applications, aiming to reduce the costs of image
transmission and storage. Existing image codecs can be roughly divided into
two categories: (i) traditional image codecs [5, 8, 33, 57, 59], which are designed
based on elaborate pre-defined transform, and coding modes, e.g., JPEG [59],
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Fig. 1: Visualization of restored compressed images with our MoE-DiffIR on various
image codecs and coding modes. Our method can restore diverse compressed images
at low bitrates through a single network while possessing high texture generation ca-
pability.

BPG [76], and WebP [17] etc; (ii) learned end-to-end image codec [1,19,68], where
rate-distortion optimization is achieved with learnable non-linear transform, soft
quantization, entropy coding, and other techniques. Despite the substantial suc-
cess, the compressed images inevitably encounter severe compression artifacts,
such as blur, color shift, and block artifacts at low bitrate, which brings an
unpleasing visual experience as shown in Fig. 1.

To remove the complicated compression artifacts, the Compressed Image
Restoration (CIR) task has been extensively investigated by a series of pioneer-
ing studies [15, 49, 72], focusing on the design of the restoration network. Based
on advanced Convolution Neural Networks (CNN) [26] and Transformer [58]
architecture, some works [6,11,13,22,28,31,71] achieved excellent objective per-
formance (e.g., PSNR, SSIM) on JPEG artifact removal. However, as shown in
Fig. 1, these works overlooked two essential challenges in the current CIR task:
(i) numerous image codecs and coding modes, leading to diverse compression
artifacts. For instance, at low bitrate, the JPEG codec tends to produce block-
ing artifacts, whereas the learned codecs, e.g., CPSNR [7] is susceptible to more
blur artifacts. This raises an urgent requirement for an all-in-one/universal CIR
method; (ii) unsatisfied texture recovery due to the lack of generation priors in
low-quality images and CIR models.

To address the above challenges, we aim to achieve an all-in-one CIR model
by excavating diffusion priors from Stable Diffusion (SD) [3, 10, 23, 38, 61, 74].
Notably, existing works have shown the superior applicability of stable diffu-
sion in image restoration, e.g., StableSR [61], and DiffBIR [38], which reuse the
generation priors of diffusion models for a specific task by introducing the modu-
lation module, like ControlNet [80], feature adapter [47,75,82]. Nonetheless, the
above approaches are inadequate for effectively modulating diffusion models for
multiple CIR tasks with shared modulation parameters. Recently, prompt learn-
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ing has demonstrated its potential and efficiency for universal image restoration
framework [3,18,35,40,43,50]. Inspired by this, we explore how to utilize prompt
learning to simultaneously excavate diffusion priors within Stable Diffusion for
multiple CIR tasks.

In this work, we present MoE-DiffIR, the first all-in-one diffusion-based frame-
work for universal compressed image restoration with prompt learning. Partic-
ularly, the various CIR tasks usually own distinct degradation forms due to dif-
ferent image codecs/modes. This entails the requirement of the task-customized
diffusion priors for each CIR task from Stable Diffusion. To this end, we propose
the advanced Mixture-of-Experts (MoE) Prompt module, which takes advantage
of MoE [44,55,83] to enable dynamic prompt learning for multiple CIR tasks with
fixed few prompts. Concretely, we set a series of basic prompts as degradation
experts, and design the degradation-aware router to customize the modulation
scheme for each task by adaptively selecting top K prompts. In contrast to single
prompt or multiple weighted prompts in [3,40,43,50], our MoE-Prompt enables
each prompt to perceive different degradations and improve the parameter reuse.

It is noteworthy that Stable Diffusion possesses a rich text-to-image genera-
tion prior, which is usually overlooked by existing IR works [38,61]. To activate
and reuse these cross-modality priors, we introduce the visual-to-text adapter.
Particularly, the CLIP visual encoder is exploited to extract the visual embed-
ding from low-quality images, and the visual-to-text adapter is responsible for
transforming the visual embedding into corresponding textual embedding for the
guidance of Stable Diffusion. Considering that the low-quality image might dam-
age the extracted visual embedding, we utilize several transform layers as the
quality enhancer before the CLIP visual encoder. To validate the effectiveness
of our MoE-DiffIR, we construct the first benchmark for the universal CIR task
by collecting 7 commonly used image codecs, including 4 traditional codecs and
3 learnable codecs, each with three levels of compression, resulting in 21 types
of degradations. Extensive experiments on the universal CIR task have shown
the superiority of our MoE-DiffIR in terms of improving perceptual quality and
enhancing the robustness for various compression artifacts.

The main contributions of this paper are as follows:

– We propose the first all-in-one diffusion-based method for universal com-
pressed image restoration (CIR) by extracting the task-customized diffusion
priors from Stable Diffusion for each CIR task.

– Based on the Mixture-of-Experts (MoE), we propose the MoE-Prompt mod-
ule to enable each prompt expert to perceive the different degradation and
cooperate to extract task-customized diffusion priors. Moreover, we active
and reuse the cross-modality generation priors with our proposed Visual-to-
Text adapter, which further uncovers the potential of stable diffusion.

– We construct the first dataset benchmark for the CIR tasks, consisting of 7
typical traditional and learned image codecs/modes, each with 3 compression
levels, resulting in 21 types of degradation tasks.



4 Y. Ren et al.

– Extensive experiments on 21 CIR tasks have validated the effectiveness of our
proposed MoE-DiffIR in improving the perceptual quality and the excellent
robustness for unseen compression artifacts.

2 Related Work

2.1 Compressed Image Restoration

Compressed image restoration (CIR) aims to restore compressed images gen-
erated by different codecs at varying bitrates. Existing CIR methods typically
employ CNN-based [11,13,22,34] or Transformer-based approaches [6,27,36,62].
QGAC [13] and FBCNN [22] are typical CNN-based methods that predict qual-
ity factors of compressed images to achieve blind restoration of JPEG codecs.
The work [62] proposes an unsupervised compression encoding representation
learning method specifically for JPEG, improving generalization in the JPEG
domain. However, these methods primarily aim to enhance the objective quality
of the restored images and have poor perceptual quality at extremely low com-
pression bitrates. Additionally, they only target a specific compression codec like
JPEG, lacking generality in practical applications.

2.2 Diffusion-based Image Restoration

The impressive generative capabilities of diffusion models hold potential for vari-
ous visual domains, including low-level vision tasks [24,25,46,70]. Diffusion-based
image restoration (IR) methods can be divided into two categories [32]: super-
vised IR methods [30, 41, 42, 53, 69] and zero-shot IR methods [9, 25, 52, 65, 66].
Recently, some works [18,23,38,61] have attempted to fine-tune pre-trained SD
models to extract diffusion priors for real-world image restoration. The pioneer-
ing work in this area is StableSR [61], which fine-tunes a pre-trained Stable
Diffusion model with a time-aware encoder for image restoration in real-world
scenes. Another method is DiffBIR [38], which combines SwinIR [36] to first
perform coarse-level restoration of distorted images and then utilizes Stable Dif-
fusion with ControlNet [80] for details refinement. PASD [74] attempts to employ
pre-trained BLIP and ResNet models to extract high-level information from low-
quality images to directly guide the Stable Diffusion restoration.

2.3 Prompt Learning in Image restoration

Recently, prompt learning has significantly influenced the fields of language and
vision [21,48,84]. Several studies have begun applying prompts to low-level tasks,
with PromptIR [50] being a notable example. This work extends Restormer [78],
introducing a set of prompts to identify different distortions, and uses soft
weights to manage these prompts for all-in-one image restoration. Another pi-
oneering work is ProRes [43], which employs a singular image-like prompt to
interact with various distortions. Additionally, PIP [35] suggests a dual-prompt
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approach: one type for universal texture perception and another suite for dif-
ferent degradation types, similar to the weighting approach of PromptIR. In
diffusion-based methods, DACLIP [40] also incorporates multiple prompts with
soft weight combinations at each time step, facilitating multi-task learning.

Unlike previous prompt-based methods, this paper leverages the concept
of routers within the Mixture of Experts (MoE) framework, treating different
prompts as experts for routing. It schedules combinations of prompts based on
different distortion tasks. In this way, basic prompts can cooperate to fully ex-
cavate the task-customized diffusion priors for multiple CIR tasks.

3 Proposed Method

We propose a novel framework dubbed MoE-DiffIR for universal compressed im-
age restoration. Firstly, we review the concept of Mixture-of-Experts and Stable
Diffusion in Sec. 3.1. In order to fully excavate the task-customized diffusion
priors from stable diffusion, we propose a mixture of experts prompt module
illustrated in Sec. 3.2. Meanwhile, we design the visual-to-text adapter for MoE-
DiffIR in Sec. 3.3 to generate more realistic and consistent texture. Additionally,
we introduce the entire framework and fine-tuning process of MoE-DiffIR in
Sec. 3.4. Finally, we present our proposed dataset benchmark for compressed
image restoration tasks in Sec. 3.5.

3.1 Preliminary

Mixture-of-Experts: The Mixture of Experts (MoE) model is an effective method
for increasing the capabilities [39, 44, 55] of the models, and it is frequently em-
ployed in various scaling-up tasks. In MoE, routers select and activate different
experts based on the input tokens using various routing mechanisms [44,51,83].
A particularly typical example is the use of Sparsely Gated MoE [55] where the
output y of MoE layer could be described as:

y =

n∑
i=1

G(x)iEi(x) (1)

Here, Gx and Ei denote the output of router and i-th expert, respectively. In
this work, we draw inspiration from the routing concept in MoE framework
to combine basic prompts, which enables the prompts to cooperate together
and fully excavate the task-customized diffusion priors for universal compression
tasks.

Stable Diffusion: Stable diffusion conducts diffusion process in latent space,
where a VAE encoder is used to compress input image into latent variable z0.
Then the model predict added noise to noisy latent zt with a unet network. The
optimization function could be written as follows:

LSD = Eϵ∼N (0,1) [∥ϵ− ϵ(zt, t)∥22] (2)

Where t denotes the time step and ϵ denotes the noisy map to be estimated.
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Fig. 2: Comparison of different prompt interaction methods. Here we mainly catego-
rize them into three types: (a) Single Prompt [43], (c) Multiple Prompts [3,35,40], (b)
MoE-Prompt (Ours). We use Mixture of Experts routing methods to select different
combinations of prompts for various compression tasks. In (b), DP stands for Degra-
dation Prior which is obtained from LQ images through pre-trained CLIP encoder of
DACLIP.

3.2 Mixture-of-Experts Prompt

As depicted in Fig. 2(b), we propose the mixture-of-experts (MoE) prompt to ex-
cavate task-customized diffusion priors. Unlike previous prompt-based IR meth-
ods, MoE-Prompt is designed to maximize reusability and the representative
capacity of each prompt expert for different tasks. Concretely, there are two
commonly used prompt-based IR categories. The first category is the single
prompt, as shown in Fig. 2(a), where a single prompt (usually image-like) is
used to perceive distortions from different tasks through simple addition. This
method struggles to model multiple tasks effectively, particularly as the num-
ber of tasks increases. A single prompt makes it difficult to manage complex
relationships between different tasks.

The second category involves the use of multiple prompts, as represented
in Fig. 2(c), in most works [3, 40, 50]. Specifically, these methods set a prompt
pool and generate a set of weights: w1, w2, ..., wn, which are used to multiply the
predefined prompts and fuse them with soft weighting. However, this method
is susceptible to the “mean feature”, i.e., these prompts learn similar features,
lacking the diversity and reducing the modulation capability of universal tasks
(Please see Sec. 1 in the Supplementary). The reason is due to the lack of one
mechanism to enable these prompts to learn distinct degradation/task knowl-
edge.

Therefore, the core principle of our MoE-Prompt method is to treat each
prompt as an expert, allowing for the adaptive selection and scheduling of the
necessary prompt cooperation for different distortion tasks through a router.
This enables prompts to better cooperate and be reused for extracting task-
customized diffusion priors. As depicted in Fig. 2(b), it is necessary to provide
distortion-related information to the router. Considering that DA-CLIP [40] is
trained on large-scale distortion tasks and has demonstrated robustness to out-
of-domain data, we use the pre-trained CLIP encoder from DACLIP to extract
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Fig. 3: The framework of the proposed MoE-DiffIR enables dynamic prompt learning
for multiple CIR tasks through (b) MoE-Prompt Generator, and introduces a visual-
to-text adapter to generate more reasonable texture. In MoE-DiffIR: MoE-Prompt
Module (c) aims to extract multi-scale features to interact with (b). Here (a) depicts
the process of fine-tuning Stable Diffusion, which consists of two stages. Stage I: only
the MoE-Prompt Module is pre-trained to excavate task-customized diffusion priors
for each CIR task. Stage II: the (d) Decoder Compensator is fine-tuned for structural
correction.

the degradation prior (DP) from low-quality images for various compression
tasks. The obtained DP interacts with input features through a cross-attention
mechanism and is then fed into the router. A more detailed diagram of this struc-
ture could be found in the Sec. 1 of the Supplementary. After that, the router
adaptively selects a combination of prompts using a noisy Top-K function [55],
which is formalized as:

G(x) = Top-K(Softmax(xWg +N (0, 1)Softplus(xWnoise))) (3)

where x represents the input features, Wg is the weight matrix for global fea-
tures, and Wnoise introduces stochasticity to the selection process, encouraging
robustness and diversity in prompt selection. “Softplus” here is the smooth ap-
proximation to the ReLU function. Once K prompts have been selected, they
interact with the input feature through a form of matrix multiplication.

3.3 Visual2Text Adapter

Stable Diffusion, trained on large-scale datasets [54], stores an abundance of
text-to-image priors. However, these priors are often overlooked by some exist-
ing SD-based IR works. For instance, StableSR [61] and DiffBIR [38] configure
the text condition input for the SD as an empty string. In order to activate
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and reutilize textual prior knowledge, we attempt to extract visual information
from low-quality(LQ) images and transform it into the text embedding space.
Indeed, there are some attempts to leverage pre-trained language models like
BLIP for direct textual feature extraction from LQ images, such as PASD [74].
However, in the realm of compressed image restoration (CIR), especially at very
low bit rates, the damage to the distorted images is severe. Extracting textual
features from these images could potentially degrade the performance of the
model. Therefore, as shown in Fig. 3(a), we first enhance the LQ images using
several transformer blocks and then employ CLIP’s image encoder to directly
extract visual features. To better leverage the robust text-to-image capabilities
of SD, we employ several MLP layers [16] (referred to the Visual2Text Adapter)
to translate visual information into the textual domain of SD. This approach
aids in enhancing the reconstruction of textures and details.

3.4 Overall Fine-tuning Procedure

Fig. 3(a) illustrates the entire fine-tuning process of our MoE-DiffIR. Similar to
StableSR [61] and AutoDIR [23], we fine-tune the framework in two stages. In the
first stage, only the MoE-Prompt Module is trained, while the VAE Codecs and
UNet remain fixed. The MoE-Prompt Module modulates the LQ image features
onto the multi-scale outputs of Stable Diffusion via the SPADE layer [64]. To
achieve this, we employ three downsample layers in the MoE-Prompt Module,
and use ViT blocks [12] and convolution layers to extract LQ features at each
scale.

In the second stage, all modules are fixed except for the VAE decoder. This
fine-tuning process is crucial for ensuring the fidelity of the recovered images,
which is also underscored in existing literature [61, 85]. The high compression
rate may lead to information loss during the reconstruction stage via the VAE
decoder. This occurs because the pre-trained VAE decoder does not align well
with varying scenarios, causing the output latent variable z0 from Stable Diffu-
sion to misalign with the our CIR tasks. Consequently, it is essential to augment
the Decoder with some low-quality information, as clearly illustrated in Fig. 3(d).
The loss function for second stage fine-tuning is:

LDecoder = Llpips[zlq, z0, hr] (4)

In this phase, we employ the LPIPS perceptual loss function, using high-quality
images as the reference. Here z0 denotes the output of unet denoising network
and zlq is latent variable of low quality image.

3.5 CIR dataset benchmark

We introduce the first universal dataset benchmark for compressed image restora-
tion. This benchmark includes four traditional compression methods: (i) JPEG [59],
(ii) VVC [5], (iii) HEVC [57], (iv) WebP [17] and three learning-based compres-
sion methods: (i) CPSNR, (ii) CSSIM , (iii) HIFIC [45]. Both CPSNR and CSSIM
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are adopted from the work [7], optimized by MSE and MS-SSIM loss, respec-
tively. Each codec has three distinct bitrate levels. For JPEG and WebP, we set
quality factor (QF) values from [5,10,15]. For VVC and HEVC, we adopt MPEG
standard QP values from [37, 42, 47]. For HIFIC, we use three released weights 1

represented for three different bitrates: “low”, “med”, and “high”. We also define
cross-degree distortions for unseen test tasks, such as setting QF of JPEG from
values [5,25]. Additionally, we create cross-type distortions using AVC codec
methods for static images from values [37, 42, 47]. We adopt DF2K [2,37] as our
compressed training dataset, containing 3450 images, resulting in 72450 images
across 21 compression tasks.

4 Experiments

4.1 Experiment Setup

Implementation Details. We fine-tune Stable Diffusion 2.1-base2 over two
training stages. In the first stage, followed in Sec. 3.4, we fix the decoder of
VAE and only train MoE-Prompt module. We use an Adam optimizer(β1 = 0.9,
β2 = 0.999) with fixed learning rate of 5e−5. The total iterations are 0.4M steps,
constrained by loss function LSD as described in the Sec. 3.1. In the second stage,
we train only the decoder compensator with other modules fixed. We generate
70,000 latent images using the weights from the first stage and train the decoder
with the corresponding LQ images and ground truth images. The learning rate is
set to 1e−4 and total iterations are 0.1M steps. In the whole training process, we
resize the input images into 256x256 and employ random flipping and rotation
for data augmentation. The batch size is set to 32, and the training is conducted
on four NVIDIA RTX 3090 GPUs.
Compared Methods. To validate the effectiveness of MoE-DiffIR, we compare
it with several state-of-the-art (SOTA) methods. These methods include two
for all-in-one IR: PromptIR [50] and Airnet [29], one method for compression
artifact removal: HAT [6], one GAN-based method: RealESRGAN [63], and four
diffusion-based methods: StableSR [61], DiffBIR [38], SUPIR [77] and PASD [74].
Here, we present only a subset of the quantitative results. A more comprehensive
set of quantitative results will be detailed in the Sec. 2 of the Supplementary.
For training settings, we adhere to the configurations provided in the official
code repositories of these methods. We set batch size to 32 for all methods.

4.2 Comparisons with State-of-the-arts

We validate MoE-DiffIR on five commonly used compressed test sets: LIVE1 [56],
Classic5 [79], BSDS500 [4], DIV2K Testset [2], and ICB [14]. We employ PSNR,
SSIM as distortions metrics, and LPIPS [81], FID [20] as perceptual metrics. In
Sec. 2 of the Supplementary, we show more results using some non-reference
metrics like ClipIQA [60], ManIQA [73] to further validate the perceptual quality.
1 https://github.com/Justin-Tan/high-fidelity-generative-compression
2 https://huggingface.co/stabilityai/stable-diffusion-2-1-base

https://github.com/Justin-Tan/high-fidelity-generative-compression
https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Table 1: Quantitative comparison for compressed image restoration on seven codecs
(average on three distortions). Results are tested on with different compression qualities
in terms of PSNR↑, SSIM↑, LPIPS↓, FID↓. Red and blue colors represent the best and
second best performance, respectively. All compared methods are retrained on
our constructed CIR datasets except for SUPIR [77].

LIVE1 [56] Classic5 [79] BSDS500 [4] DIV2K [2] ICB [14]Codecs Methods PSNR SSIM LPIPS FID PSNR SSIM LPIPS FID PSNR SSIM LPIPS FID PSNR SSIM LPIPS FID PSNR SSIM LPIPS FID
AirNet [29] 30.06 0.858 0.2241 113.59 35.84 0.955 0.1213 62.78 30.99 0.864 0.1975 96.56 29.91 0.872 0.2037 107.22 31.25 0.878 0.2565 179.67

HAT [6] 30.18 0.860 0.1952 115.53 33.69 0.911 0.1185 57.80 31.07 0.865 0.1809 86.32 29.58 0.869 0.1980 107.22 30.98 0.881 0.2308 173.19
PromptIR [50] 31.42 0.885 0.2131 111.15 35.66 0.949 0.1124 49.84 31.95 0.881 0.1791 87.50 31.14 0.896 0.1879 98.83 31.67 0.896 0.2113 167.68

RealESRGAN [63] 30.26 0.860 0.1423 76.28 33.21 0.915 0.1106 56.49 30.24 0.848 0.1485 81.43 29.39 0.866 0.1357 74.46 30.22 0.876 0.1443 130.66
DiffBIR [38] 28.42 0.812 0.0995 67.23 30.38 0.86 0.1026 56.95 28.67 0.810 0.1013 73.43 27.99 0.805 0.0898 65.84 29.72 0.837 0.1086 113.05
PASD [74] 28.39 0.806 0.1055 70.46 29.97 0.839 0.0959 54.98 27.70 0.758 0.0934 70.93 28.04 0.784 0.0906 67.61 28.75 0.668 0.1736 115.67

StableSR [61] 30.19 0.855 0.1069 68.19 31.08 0.875 0.1227 46.97 30.60 0.847 0.1127 67.94 29.44 0.863 0.1067 62.55 31.00 0.875 0.1213 125.56
SUPIR [77] 27.41 0.747 0.1254 71.04 29.05 0.834 0.1110 60.60 27.89 0.713 0.1076 69.63 27.56 0.780 0.1362 70.23 28.78 0.673 0.1319 121.60

JPEG [59]

Ours 30.50 0.857 0.0964 62.72 32.30 0.890 0.0902 40.83 30.95 0.852 0.1006 68.00 29.86 0.868 0.0906 55.75 31.48 0.881 0.1059 100.93
AirNet [29] 29.08 0.803 0.3055 185.2 33.74 0.914 0.1715 165.37 29.71 0.796 0.3147 183.47 28.15 0.808 0.2863 155.61 28.17 0.797 0.3252 208.07

HAT [6] 29.19 0.806 0.2801 182.68 32.27 0.874 0.1629 156.23 29.75 0.797 0.2874 170.61 28.51 0.812 0.2832 154.78 29.04 0.817 0.3069 213.37
PromptIR [50] 30.00 0.825 0.3053 168.36 34.06 0.916 0.1662 148.57 30.32 0.811 0.2818 162.25 29.41 0.832 0.2628 145.96 29.35 0.816 0.2798 205.30

RealESRGAN [63] 28.64 0.786 0.2082 131.83 32.56 0.884 0.1196 87.79 28.24 0.765 0.2185 130.61 27.77 0.792 0.1978 114.20 27.89 0.790 0.2118 188.82
DiffBIR [38] 27.54 0.771 0.1687 95.49 29.64 0.811 0.1407 85.55 27.97 0.773 0.1775 111.42 27.06 0.763 0.1468 93.68 28.03 0.775 0.1746 154.91
PASD [74] 27.48 0.766 0.1746 101.67 28.78 0.779 0.1381 86.43 26.84 0.749 0.1717 109.04 26.91 0.738 0.1355 96.20 26.80 0.708 0.1857 154.37

StableSR [61] 28.49 0.771 0.1679 98.45 30.23 0.822 0.1318 84.59 28.75 0.756 0.1831 100.38 27.85 0.789 0.1473 92.08 28.46 0.789 0.1824 165.84
SUPIR [77] 27.46 0.714 0.1468 99.73 28.45 0.774 0.1415 87.62 27.16 0.784 0.1759 105.71 26.49 0.733 0.1833 99.80 26.84 0.715 0.1990 159.98

VVC [5]

Ours 28.76 0.777 0.1444 88.83 31.01 0.845 0.1121 78.28 28.94 0.755 0.1577 84.92 28.05 0.786 0.1316 80.96 28.63 0.781 0.1540 144.51
AirNet [29] 28.70 0.792 0.3159 167.81 33.59 0.906 0.1790 172.80 29.31 0.784 0.3244 174.49 27.78 0.794 0.3010 158.35 27.35 0.827 0.3041 209.11

HAT [6] 28.82 0.795 0.2957 167.72 31.80 0.862 0.1717 165.78 29.42 0.786 0.3002 176.55 28.19 0.800 0.2994 153.22 29.45 0.831 0.3075 232.96
PromptIR [50] 29.54 0.814 0.3138 172.58 33.87 0.909 0.1721 157.71 29.88 0.799 0.2901 156.25 29.04 0.822 0.2677 146.35 29.85 0.834 0.2847 223.55

RealESRGAN [63] 28.31 0.776 0.2269 139.67 32.43 0.873 0.1266 104.17 28.02 0.754 0.2355 137.33 27.53 0.781 0.2148 117.01 28.33 0.807 0.2192 200.91
DiffBIR [38] 27.53 0.762 0.1790 104.09 29.54 0.809 0.1317 94.85 27.79 0.773 0.1784 111.20 26.96 0.751 0.1595 96.19 28.35 0.780 0.1666 176.30
PASD [74] 27.50 0.76 0.1801 108.89 29.02 0.78 0.1300 91.91 26.07 0.747 0.1853 106.77 26.15 0.704 0.1461 100.83 27.02 0.706 0.1801 177.79

StableSR [61] 28.19 0.759 0.1845 106.00 30.39 0.821 0.1323 85.98 28.64 0.751 0.1902 108.52 27.67 0.780 0.1656 95.47 28.84 0.803 0.1895 184.51
SUPIR [77] 26.80 0.679 0.1605 108.69 28.39 0.777 0.1339 97.12 26.40 0.743 0.1895 107.19 26.47 0.700 0.1721 103.54 27.05 0.710 0.1938 182.37

HEVC [57]

Ours 28.50 0.768 0.1622 98.66 31.08 0.839 0.1157 82.82 28.71 0.745 0.1749 96.23 27.83 0.777 0.1470 84.63 28.87 0.791 0.1776 171.01
AirNet [29] 29.40 0.822 0.2537 154.54 34.59 0.930 0.1453 106.65 29.55 0.803 0.2701 161.94 28.31 0.831 0.2253 145.74 27.02 0.831 0.2804 221.70

HAT [6] 29.51 0.825 0.2384 153.36 32.31 0.882 0.1404 99.30 29.68 0.804 0.2582 152.92 28.84 0.832 0.2252 139.85 30.33 0.857 0.2358 211.06
PromptIR [50] 30.49 0.856 0.2501 149.40 35.1 0.936 0.1383 94.66 30.35 0.832 0.2533 145.45 30.04 0.866 0.2137 135.30 29.61 0.866 0.2352 207.33

RealESRGAN [63] 28.95 0.816 0.1697 100.49 33.66 0.913 0.0928 89.85 28.39 0.784 0.1890 117.83 28.16 0.824 0.1568 94.41 29.23 0.844 0.1735 173.90
DiffBIR [38] 27.96 0.779 0.1472 91.40 30.01 0.875 0.1021 66.42 28.30 0.777 0.1705 103.80 27.73 0.778 0.1318 91.27 29.05 0.807 0.1407 136.89
PASD [74] 27.88 0.77 0.1511 96.90 29.71 0.844 0.0940 63.11 27.68 0.810 0.1638 101.99 26.22 0.723 0.1218 97.58 27.70 0.707 0.1379 138.46

StableSR [61] 28.88 0.805 0.1206 75.13 32.11 0.872 0.1074 69.10 29.00 0.780 0.1528 97.23 28.34 0.820 0.1235 84.54 29.86 0.839 0.1487 142.77
SUPIR [77] 27.36 0.671 0.1418 95.55 30.14 0.837 0.1073 69.50 26.17 0.757 0.1791 100.12 26.84 0.716 0.1530 101.02 27.72 0.711 0.1389 141.48

WebP [17]

Ours 29.28 0.815 0.1098 70.64 32.82 0.895 0.0781 61.70 29.13 0.783 0.1300 80.32 28.57 0.825 0.1019 68.87 30.27 0.845 0.1255 136.27
AirNet [29] 30.33 0.847 0.2386 151.30 35.15 0.940 0.1502 165.52 30.35 0.825 0.2678 156.72 29.92 0.859 0.2110 145.42 28.83 0.863 0.2421 188.50

HAT [6] 30.40 0.850 0.2070 153.25 33.33 0.898 0.1520 167.65 30.43 0.827 0.2460 155.76 29.79 0.861 0.2095 135.84 31.38 0.880 0.2384 178.90
PromptIR [50] 30.84 0.865 0.2341 141.38 35.87 0.945 0.1461 153.46 30.91 0.838 0.2478 145.03 30.54 0.879 0.1857 129.72 31.49 0.880 0.2067 175.59

RealESRGAN [63] 30.07 0.840 0.1467 85.38 33.76 0.917 0.1096 80.31 29.62 0.813 0.2235 142.41 29.12 0.845 0.1443 81.47 29.79 0.859 0.1580 151.03
DiffBIR [38] 28.42 0.812 0.1064 85.38 30.13 0.841 0.1307 79.13 28.06 0.795 0.1534 103.09 28.06 0.804 0.1030 80.08 29.75 0.835 0.1096 109.86
PASD [74] 28.34 0.81 0.1101 89.69 29.24 0.810 0.1269 66.64 26.78 0.782 0.1549 99.44 27.43 0.786 0.0933 82.53 28.56 0.785 0.1802 117.99

StableSR [61] 29.85 0.833 0.1082 73.86 31.29 0.847 0.1199 70.77 29.64 0.806 0.1595 103.12 28.76 0.835 0.1003 68.97 30.40 0.853 0.1280 114.55
SUPIR [77] 27.48 0.721 0.1074 90.06 29.71 0.803 0.1410 71.20 27.95 0.803 0.1719 108.30 27.00 0.779 0.1046 84.73 28.58 0.796 0.1252 120.47

CPSNR [7]

Ours 30.18 0.837 0.0996 72.23 31.75 0.866 0.1029 64.18 30.12 0.821 0.1623 101.35 29.46 0.848 0.0865 58.97 31.25 0.864 0.1041 109.05
AirNet [29] 27.54 0.816 0.3325 171.53 33.99 0.947 0.1490 131.64 28.32 0.806 0.3270 173.52 27.09 0.822 0.3183 165.87 26.64 0.824 0.3268 197.18

HAT [6] 27.63 0.819 0.2780 167.27 32.79 0.911 0.1428 120.24 28.35 0.809 0.2864 161.61 26.88 0.813 0.3180 161.40 28.88 0.854 0.2651 193.93
PromptIR [50] 27.95 0.826 0.3284 160.14 34.26 0.948 0.138 123.52 28.49 0.817 0.2939 158.59 27.23 0.822 0.2904 156.75 28.97 0.843 0.2543 185.23

RealESRGAN [63] 27.08 0.802 0.1986 108.08 32.72 0.92 0.1009 61.25 27.47 0.791 0.2765 150.52 26.20 0.786 0.2131 116.11 27.38 0.815 0.1996 169.79
DiffBIR [38] 26.50 0.766 0.1364 82.54 29.62 0.841 0.1354 69.74 26.67 0.757 0.1517 95.84 26.17 0.748 0.1351 89.88 28.44 0.806 0.1352 128.31
PASD [74] 26.45 0.762 0.1377 86.59 28.64 0.819 0.1273 68.14 26.72 0.744 0.1483 95.09 25.56 0.725 0.1372 87.22 27.48 0.706 0.1758 127.86

StableSR [61] 27.00 0.789 0.1535 90.74 30.53 0.844 0.1271 71.17 27.81 0.785 0.1897 109.78 26.31 0.786 0.1506 96.62 28.35 0.824 0.1509 129.93
SUPIR [77] 25.78 0.661 0.1358 87.00 28.57 0.813 0.1414 70.98 25.54 0.695 0.1587 92.55 25.00 0.719 0.1277 90.01 27.50 0.709 0.1842 133.68

CSSIM [7]

Ours 26.85 0.781 0.1352 80.23 31.03 0.87 0.1154 66.02 28.09 0.798 0.1573 101.87 25.97 0.773 0.1294 84.58 28.20 0.819 0.1322 122.25
AirNet [29] 29.22 0.853 0.1258 78.78 32.35 0.897 0.1061 60.69 27.63 0.841 0.1339 77.67 28.93 0.864 0.1227 82.71 29.04 0.880 0.1956 135.95

HAT [6] 29.32 0.857 0.1254 79.54 32.48 0.909 0.1009 62.95 27.70 0.841 0.1368 75.22 28.10 0.857 0.1220 76.08 30.35 0.888 0.1723 126.98
PromptIR [50] 29.89 0.876 0.1206 82.81 32.69 0.918 0.0958 64.17 28.12 0.858 0.1325 79.23 29.06 0.879 0.1153 79.58 30.14 0.895 0.1577 122.82

RealESRGAN [63] 28.86 0.849 0.0766 53.47 30.86 0.918 0.084 47.83 26.76 0.818 0.1040 70.85 27.62 0.839 0.0982 66.55 29.40 0.875 0.1014 104.11
DiffBIR [38] 28.03 0.805 0.0595 45.14 28.72 0.849 0.0777 41.64 26.46 0.795 0.0920 69.37 27.13 0.796 0.0781 59.07 29.15 0.838 0.0776 79.42
PASD [74] 28.00 0.801 0.0652 50.70 28.40 0.818 0.0774 40.57 27.52 0.787 0.0846 65.70 27.59 0.734 0.0690 58.63 28.90 0.762 0.1297 78.86

StableSR [61] 28.87 0.841 0.0706 46.69 29.78 0.877 0.0792 39.27 26.96 0.807 0.0905 62.49 27.49 0.837 0.0705 53.48 29.46 0.867 0.0876 85.59
SUPIR [77] 27.81 0.748 0.0735 48.40 28.43 0.812 0.0799 44.23 27.37 0.756 0.1021 63.67 27.17 0.733 0.0834 62.03 28.93 0.769 0.0936 83.47

HIFIC [45]

Ours 29.18 0.847 0.0593 43.58 30.24 0.88 0.0767 35.89 27.54 0.824 0.0753 53.70 28.08 0.848 0.0628 48.57 30.15 0.875 0.0685 74.12

Quantitative Analysis. Table 1 shows comprehensive performance of our
MoE-DiffIR compared with SOTA methods across 7 compression codecs. Here,
for each codec, we average the metrics of its three distortion levels. Since the
primary objective of this work is to enhance the perceptual quality of images at
low bitrates, our comparisons primarily focus on the perceptual quality against
generative models. From the table, we can see that our method almost surpasses
all other methods in terms of perceptual metrics like LPIPS and FID. Moreover,
our method is also competitive in distortion metrics such as PSNR compared to
transformer-based methods, thanks to the fine-tuning stage of the VAE decoder.
Specifically, on the LPIPS metric, we achieved a 10.9% reduction compared to
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SUPIR, a decrease of 5.4 on the FID metric, and also an average increase of
0.41dB over StableSR on the PSNR metric.
Qualitative Analysis. Additionally, we also present some perceptual visual
results in Fig. 4, covering different quality factors from various codecs (More
visual comparsions with SUPIR and PASD are shown in Sec. 3 of the Sup-
plementary). It is observable that, in scenarios with lower compression rates,
the Transformer-based all-in-one model PromptIR tends to restore images too
smoothly, whereas DiffBIR is prone to generating some erroneous texture de-
tails, as shown in the textual information in the third row of Fig. 4. Thanks
to the compensation in the second stage of the VAE decoder, MoE-DiffIR is
capable of generating more accurate textures in terms of fidelity. Moreover, our
MoE-Prompt enables MoE-DiffIR to effectively handle different compression dis-
tortions, demonstrating excellent perceptual restoration capabilities, including
color correction and texture detail generation.

Fig. 4: Visual comparisons between our methods and other state of the arts methods.
This figure demonstrate 5 different compression tasks: JPEG (QF=10), VVC (QP=47),
HEVC (QP=47), CSSIM (“Low” bitrates), CPSNR(“Low” bitrates). More visual results
can be found in Sec. 3 of the Supplementary.

4.3 Ablation Studies

The effects of MoE-Prompt. We conduct experiments with different prompt
designs mentioned in Sec. 3. The results are presented in Table 2. We compare
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four prompt designs: No Prompt, Single Prompt, Multiple Prompts, and our
MoE-Prompt. In addition to the 21 tasks in our CIR dataset, we also test the
performance of these models on some unseen tasks to assess their generalizability.
Specifically, we employ two types of unseen tasks to validate the generalization
performance. The first type is “Cross Degrees”, which involves selecting one of
the seven codecs, but with unseen quality factors. In this experiment, we choose
VVC with QP from values [32,52] as the distortion types. The second type is
“Cross Type”, where we select codec AVC [67] with QP from values [47, 42, 37].
Specifically, without prompts, the model has a reduced ability to distinguish be-
tween various distortions, leading to a notably lower average performance across
tasks than prompt-based models, particularly on unseen tasks. Furthermore, us-
ing a single prompt results in lower average performance across the 21 tasks
compared to using multiple prompts or MoE-Prompt, indicating that a single
prompt lacks the capability for multi-task modeling. In contrast, our MoE-based
method exceeds multiple prompt design by an average of 0.05dB on 21 tasks and
improves perceptual quality, reducing LPIPS by 5% and FID by about 4. This
proves that MoE-Prompt can more effectively utilize and share prompts across
various distortion tasks, uncovering task-customized diffusion priors than other
prompt interaction methods.

Table 2: Impacts of different prompt designs. Results are reported on LIVE1, DIV2K
and ICB. For seen tasks, the value is the average result of 21 compression tasks on
our CIR dataset. For unseen tasks, the value is the average result of “Cross Degrees”
(VVC: QP form values [32,52]) and “Cross Types” (AVC: QP from values [47,42,37]).
Best performances are in bold.

Seen tasks Unseen Tasks
LIVE1 BSDS500 DIV2K LIVE1 (Cross Degrees) ICB (Cross Types)Methods

PSNR/SSIM LPIPS/FID PSNR/SSIM LPIPS/FID PSNR/SSIM LPIPS/FID PSNR/SSIM LPIPS/FID PSNR/SSIM LPIPS/FID
No Prompt 28.73/0.806 0.1343/85.87 28.56/0.770 0.1591/96.45 27.86/0.813 0.1295/79.5 31.79/0.893 0.064/37.33 28.61/0.787 0.1933/210.84

Single Prompt 28.86/0.806 0.1272/79.45 28.78/0.791 0.1530/89.62 28.02/0.816 0.1143/71.26 33.25/0.910 0.0457/28.60 28.88/0.793 0.179/187.29
Multiple Prompt 28.98/0.810 0.1212/77.09 28.93/0.794 0.1482/89.34 28.22/0.817 0.1124/71.65 33.32/0.913 0.0432/28.23 28.89/0.792 0.1756/187.89

MoE-Prompt (Ours) 29.02/0.811 0.1179/75.86 28.97/0.794 0.1430/88.14 28.29/0.821 0.1071/68.91 33.45/0.916 0.0411/25.65 29.02/0.800 0.1690/176.87

Table 3: Impacts of Visual2Text(V2T) adapter and Degradation Prior (DP). Results
are reported on LIVE1, BSDS500, ICB. Here the value is the average result of 21
compression tasks. Best performances are in bold.

Methods
Datasets

LIVE1 BSDS500 ICB
PSNR/SSIM LPIPS/FID PSNR/SSIM LPIPS/FID PSNR/SSIM LPIPS/FID

MoE-Prompt 29.02/0.810 0.1179/75.86 28.97/0.794 0.1430/88.14 29.83/0.839 0.1277/122.59
MoE-Prompt+V2T Adapter 29.03/0.812 0.1145/74.13 28.94/0.796 0.1367/86.77 29.83/0.840 0.1239/119.78

MoE-Prompt+DP 29.07/0.814 0.1154/76.60 29.06/0.795 0.1405/88.00 29.87/0.841 0.1269/122.32
MoE-Prompt+V2T Adapter+DP 29.10/0.814 0.1136/73.60 29.02/0.797 0.1356/86.81 29.88/0.841 0.1235/119.29

The effects of Visual2Text adapter and Degradation Prior. In Sec. 3.3,
we describe using a cross-modal adapter to convert visual information into text
embeddings. Additionally, in Sec. 3.2, we employ the pre-trained DACLIP [40]
to provide degradation priors (DP), enhancing the router’s adaptive selection of
optimal prompts. Ablation studies validate these methodologies by integrating
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the Visual2Text adapter or DP into the MoE-Prompt backbone. Table 3 shows
that adding V2T adapter could reduce LPIPS by 3-5% and improves FID by 1-3
points on average, indicating better perceptual quality. The use of degradation
prior (DP) mainly contributes to distortion metrics, with an average PSNR
increase of 0.07dB across 21 tasks, indicating that adding visual information
could enhance perceptual quality while adding DP may improve fidelity. Visual
comparisons in Fig. 5 also show an interesting phenomenon: at extremely low
bitrates, Stable Diffusion may convert severe distortions into noise spots, which
could be smoothed with the use of the V2T adapter or by adding degradation
prior (DP), thereby enhancing model performance.

Fig. 5: Visual ablation results: different prompt interaction designs, use of V2T adapter
and use of degradation prior (DP).

(a) Effects of the number of prompts (b) Effects of K value

Fig. 6: The effect of the number of prompts and the value K of the Top-K function.

The effects of number of total prompts and selected prompts. In our
proposed MoE-Prompt Module, the router uses a Top-K function to select K
prompts from N predefined prompts. We conduct ablation experiments to eval-
uate the effects of varying N and K. Since our CIR dataset consits of total 21
compression tasks, we set N to a series of values (1, 4, 7, 11, 14, 17, 21) and use



14 Y. Ren et al.

the LIVE1 dataset for testing. As shown in Fig. 6(a), changing N significantly
impacts both the distortion metric PSNR and the perceptual metric LPIPS.
When N is small, both PSNR and LPIPS are poor because a single prompt
(N=1) cannot model different distortion tasks effectively. As N increases, per-
formance improves but then declines past a certain point due to the difficulty
in learning task-relevant distortion features from too many prompts, leading to
underutilization. The data suggests that performance is optimal at N=7, similar
to N=11, indicating that around N=7 is sufficient for parameter economy. We
then fix N at 7 and vary K with values (1, 3, 5, 7). Fig. 6(b) shows that while
K=1 yields higher PSNR, it results in poor perceptual quality. We can conclude
that multiple prompts could cooperate together for perceiving different tasks
with better perceptual quality. The best perceptual performance is seen when
K is between 3 and 5. Thus, we select N=7 and K=3 for the final settings.

5 Conclusion

In this work, we propose the MoE-Prompt to excavate task-customized diffu-
sion priors for universal compressed image restoration, dubbed MoE-DiffIR. Our
method maximizes the utilization of different prompts, enabling them to collab-
oratively perceive different distortions. By utilizing a Visual2Text adapter, we
integrate visual information into the text inputs of the Stable Diffusion model,
thereby improving the perceptual restoration capabilities of the model at low
bitrates. We also construct a comprehensive dataset benchmark for CIR tasks.
Our extensive experiments have demonstrated that MoE-DiffIR not only im-
proves perceptual performance at low bitrates but also facilitates rapid transfer-
ability across various compression tasks. In the future, we intend to design novel
approaches within our CIR benchmark to further improve the performance of
the model.

Limitation

In this work, we propose a novel universal compressed image restoration (CIR)
framework using the MoE-Prompt Modules. Although our model outperforms
other methods in terms of perceptual quality, there remains a notable gap be-
tween the restored images and the ground truth at extremely low bitrates, as
shown in Fig. 4. In future work, we aim to focus on this area and strive for
improvements.
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