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Exocentric ViewEgocentric View

Action: “wash the trouser with the brush” Action: “wipe the sink”

Exocentric ViewEgocentric View

Fig. 1: Comparison of action frames generated in the egocentric and exocentric views.
The egocentric images are synthesized by our model, and the exocentric images are
synthesized by an off-the-shelf text-to-image generation model.

A Comparison of Egocentric and Exocentric Views

Our proposed problem and model mainly focus on action frame generation in
the egocentric view rather than exocentric view (i.e., third-person view). The
examples for the comparison of the two views are illustrated in Fig. 1. The in-
structional images generated in the exocentric view may be far from the camera.
The important details of hand-object interactions are unclear and occluded, thus
making it hard for users to follow. In contrast, the action frames generated in
the egocentric view by our model exactly match the user’s viewpoint and clearly
capture important details for action execution. In addition, it’s more feasible for
users to take a picture that captures the current contexts (i.e., the input frame
to our model) from the egocentric perspective than exocentric perspective, es-
pecially when the user is working alone. The egocentric image can be obtained
even more easily by using a wearable device. These advantages further motivate
us to focus on the egocentric view for action frame generation.

B Domain Gap Between Existing Diffusion Models and
Our Problem

In the egocentric action frame generation problem, one challenge is the domain
gap of the existing diffusion models and our problem (elaborated in Sec. 1 of the
main paper). In this section, we show some specific examples to provide more
insights. In Fig. 2, we present a few image-text pairs for text-to-image diffusion
model training (left) and data samples for egocentric action frame generation
(right). The diffusion model training data is mostly captured from the exocentric
perspective and the prompts are about the objects rather than human daily
activities. We also evaluate the performance of InstructPix2Pix [2] using off-
the-shelf weights and compare it with the finetuned counterpart in Tab. 1. The
prominent performance drop in all metrics further confirms the impact of the
domain gap. Though we can finetune the model with egocentric data, such a
big domain gap still limits the performance of existing diffusion models applied
to our problem. To bridge this gap, our proposed LEGO model incorporates
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“A photo of a 
television studio” 

“A photo of a 
maine coon, a 
type of pet.” 

“An armchair 
that looks like 
an apple.” 

“A dog rolling 
in the snow at 
sunset.”

“Return an egg 
in the tray” 

“Repair a piston” “Put the cement 
on the concrete” 

“Open drawer” 

Data in Diffusion Model Domain Data in Egocentric Action Domain

Fig. 2: Demonstration of the domain gap of off-the-shelf diffusion models and our
problem. The existing diffusion models are pre-trained with exocentric images with
prompts mainly about objects, while our problem requires the capability of action
generation in the egocentric view.

Table 1: Performance of InstructPix2Pix model on our problem without finetuning.
As a comparison, we also show the results of finetuned model in parentheses.

EgoVLP EgoVLP+ CLIP FID ↓ PSNR LPIPS ↓
Ego4D 38.2 (62.2) 67.7 (78.8) 68.5 (78.8) 46.0 (24.7) 11.6 (12.2) 41.4 (37.2)
EK-100 34.8 (43.0) 46.9 (61.1) 68.1 (77.0) 51.0 (20.6) 10.9 (11.2) 43.1 (40.8)

the embeddings from a visual instruction tuned LLM as additional conditioning,
which enables the diffusion model to learn action state transition more effectively
from an egocentric perspective.

C Comparison with Prior Image Generation Models
Using LLMs

We compare our model with prior image generation and image editing models
that utilize LLMs to improve the performance (see Tab. 2). Our model differs
from prior methods mainly in four aspects: (1) All prior models are designed for
exocentric image generation, while our model is proposed for image generation in
the egocentric view, which is still understudied. (2) Prior models are trained with
data that doesn’t have the domain gap with diffusion model pre-training data.
Therefore, prior models can directly use the off-the-shelf LLM parameters (i.e.,
without finetuning) for their tasks. In contrast, our model finetunes the LLM
by visual instruction tuning to narrow the domain gap. (3) We also innovatively
incorporate LLM embeddings into the diffusion model to boost image generation
performance, which has not been investigated in prior work. (4) Prior image
editing methods focus on local object manipulation and global style transfer.
In our work, we focus on generating images of actions conducted in the same
contexts as input, which has not been studied in prior image editing methods.
These differences consolidate our contributions and thus notably distinguish our
model from prior work.

In addition to general image generation/editing models, there is some work
about hand-object interaction (HOI) generation, which is also relevant with our
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Table 2: Comparison with prior text-to-image generation (T2I) and image editing
methods that incorporate large language models. Please see Sec. C for more discussions.

Methods Domain Source of LLM How to LLM Edited Main
Gap Parameters use LLM Embed. Content Task

Chen et al. [4] No off-the-shelf Auto-label w/o N/A T2I
Liu et al. [12] No off-the-shelf Auto-label w/o N/A T2I
Lian et al. [11] No off-the-shelf Enrich Prompt w/o N/A T2I
Yu et al. [22] No off-the-shelf Enrich Prompt w/o N/A T2I
Wu et al. [20] No off-the-shelf Controller w/o N/A T2I
Wen et al. [18] No off-the-shelf Multi-round Refine w/o N/A T2I
Wu et al. [19] No off-the-shelf Multi-round Refine w/o N/A T2I

Chakrabarty et al. [3] No off-the-shelf Controller w/o Obj.&Style Edit
Koh et al. [10] No off-the-shelf Controller w/o Obj.&Style Edit
Wang et al. [17] No off-the-shelf Controller w/o Object Edit
Chen et al. [5] No off-the-shelf Multi-round Refine w/o Object Edit

LEGO (Ours) Yes Instruction-tuned Enrich Prompt w/ Action Edit

problem. To show the difference, we compare with two important models in this
area – AffordanceDiffusion [21] and HOIDiffusion [23]. The two models take a 2D
object image or 3D object model as inputs. This results in a much easier synthesis
task, as these models simply have to add a hand in a correct pose to augment
the input. In contrast, our real-world egocentric input image already contains
the hands and complex scene context. The diffusion model has to identify the
initial state of the action and synthesize the correct action state afterwards
with the hands in the correct location and an adjusted camera viewpoint, while
preserving important scene context. This is a much harder task with unique
challenges resulting in a more substantial domain gap.

D Analysis of Image-to-Text Metrics

In Tab. 3, we report the image-to-text CLIP score of InstructPix2Pix (IP2P) [2]
baseline and the ground truth. Ideally, the CLIP score between the ground truth
and the text prompt should serve as a performance uppperbound (UB). How-
ever, the image-to-text CLIP score of upperbound is very close to the baseline
on Ego4D, and even lower than the baseline on Epic-Kitchens. It suggests the
CLIP model fails to align action descriptions with corresponding egocentric im-
ages in semantics, thus resulting in a quick saturation in CLIP score. In our
experiments, we use BLIP to caption the generated image and measure the text-
to-text similarity of captions and action descriptions (following [9]). The two
metrics (BLIP-B and BLIP-L) that use two different BLIP structures both re-
sult in larger gap between the baseline model and the upperbound (3.68%/2.96%
vs. 0.85% and 1.61%/1.44% vs.−1.08%). Therefore, we adopt BLIP based met-
rics and user study to measure image-text alignment. Note that, our model still
performs on-par or slightly better than IP2P in image-to-text CLIP score, and
exceeds IP2P notably when using BLIP based metrics and user study (see Tab.
2 and Fig. 4 in the main paper).
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Table 3: Image-to-text metrics of the baseline model and uppperbound. The gray row
shows the gap of IP2P to the upperbound. The upperbound measured by CLIP score
is comparable with or even lower than the baseline model (highlighted by red).

Methods Ego4D Epic-Kitchens

CLIP BLIP-B BLIP-L CLIP BLIP-B BLIP-L

IP2P [2] 20.53 20.00 20.56 21.68 25.37 26.36
UpperBound (UB) 21.38 23.68 23.52 20.60 26.98 27.80
∆ = UB−IP2P 0.85 3.68 2.96 -1.08 1.61 1.44

Table 4: Comparison of LEGO trained with single dataset and both datasets (denoted
as scaleup). ↓ means a lower score in this metric suggests a better performance. The
better results are highlighted with boldface. The performance of LEGO model can be
effectively improved by involving more training data.

Methods EgoVLP EgoVLP+ CLIP FID ↓ PSNR LPIPS ↓

E
go

4D LEGO 65.65 80.44 80.61 23.83 12.29 36.43

LEGO (scaleup) 66.32 80.77 80.90 23.56 12.30 36.33

E
K

-1
00 LEGO 45.89 62.66 78.63 21.57 11.33 40.36

LEGO (scaleup) 47.46 63.51 78.90 19.64 11.40 39.88

There’s also another evaluation strategy used by the concurrent work – Gen-
HowTo [6]. They train a 10-class classifier to distinguish real initial state images
and generated final state images of 5 action categories, and use the testing re-
sults on real final state images as the metric. Our EgoVLP+ metric shares the
same motivation of evaluating action state transition as this metric. However,
EgoVLP+ is not limited to a fixed set of action categories and does not require
training a classifier for each baseline model. Thus we prefer to use EgoVLP+ in
our experiments.

E Additional Experiment Results

E.1 Performance at Different Transition Time

As explained in Sec. 4.1 of main paper, for an action beginning at t, we select
the frame at t − δi as input and the frame at t + δo as target. We divide the
test data into four bins according to the action state transition time from input
frame to target frame δ = δi + δo. We establish the threshold for each bin to
ensure that the quantity of data samples in each bin is relatively similar. The
performance of LEGO and baselines at different transition time is demonstrated
in Fig. 3. The flat curves suggest the egocentric action frame generation problem
is equally challenging regardless of transition time. Our model still surpasses all
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Fig. 3: Comparison with baselines at different action transition time. Our model out-
performs all baselines across all transition time.

baselines by a notable margin across all transition time. This fine-grained result
further validates the superiority of our approach.

E.2 Effect of Dataset Scaleup

We further analyze how the dataset scale affects our model performance by
merging the training set of Ego4D and Epic-Kitchens. The training strategy and
other hyper-parameters remain identical to separate training on each dataset
(described in Sec. F.3). We demonstrate the results in Tab. 4. The performance
of our model is further boosted by leveraging more training data (i.e., scaleup).
Notably, the gains on Epic-Kitchens are more prominent than gains on Ego4D
(e.g ., 1.57% vs. 0.67% on EgoVLP score, 1.93 vs. 0.27 on FID, etc.). The possi-
ble reason is that Ego4D dataset has more training data covering more diverse
scenarios and actions. Hence, it can greatly compensate for the low diversity of
Epic-Kitchens dataset after merging them. The improvement on two datasets
suggests our model can be effectively boosted by scaling up the training data.
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Input Frame LEGO Ground Truth

“How to pick a birthday card  in the drawer?”

“How to adjust the lawn mower gear?”

“How to scrap the wallpaper on the wall of the 
apartment with the big scrapper?”

“How to place the wood plank on the wood cutter?”

“How to use the phone on table?”

Input Frame LEGO Ground Truth

“How to pick cards on the carpet?”

Fig. 4: Additional visualization of LEGO output on Ego4D as well as the ground truth.
Ground truth shows how each action is actually conducted in the real world.

E.3 Additional Visualization

We demonstrate more results of our model and the corresponding ground truth
on Ego4D (see Fig. 4) and Epic-Kitchens (see Fig. 5). The generated frames are
well aligned with the user query and the ground truth in these examples. To
better understand the limitation of our model, we also illustrate some failure
cases in Fig. 6. Our approach may fail to associate the action with the correct
objects when the objects are not distinct enough in the egocentric perspective,
e.g ., the marker and croissant in the first row of failure cases. In addition,
generating the action frame in some scenarios needs more contexts than a static
input frame. For example, the model fails to understand which object is the
furniture and incorrectly drives the nails into the wood under it (i.e., the second
failure case of Ego4D). It also lacks the context that the user already holds
a bag of noodles, so it synthesizes a frame of taking out the noodles from a
cupboard (i.e., the second failure case of Epic-Kitchens). These weaknesses can
inspire more future studies in action understanding and egocentric action frame
generation. Please refer to Sec. G for more discussions.

F More Implementation Details

F.1 Prompt and Examples for Data Curation

In data curation, we randomly select 12 examples from each datasets covering
diverse scenarios. All examples are shown in Fig. 7 and Fig. 8. We also clarify
our requirements in the prompt sent to GPT-3.5. The complete prompt is shown
in Fig. 9. We specify the composition of input query, the expected detailed
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Input Frame LEGO Ground Truth

“How to open oil?”

“How to pick up tray?”

“How to open drawer?”

“How to open bin?”

Input Frame LEGO Ground Truth

“How to put down sponges?”

“How to take plate?”

Fig. 5: Additional visualization of LEGO output on Epic-Kitchens as well as the ground
truth. Ground truth shows how each action is actually conducted in the real world.

“How to take the marker from the floor?”

“How to drive nails into the furniture 
with the nail gun?”

“How to put croissant on pan?”

“How to take out the noodles?”

Input Frame LEGO Ground Truth Input Frame LEGO Ground Truth

Fig. 6: Failure cases of our model in Ego4D (on the left of the dash line) and Epic-
Kitchens (on the right of the dash line). Please refer to Sec. E.3 for more analysis.

information and extra requirements for the output in the system information.
Then we fill the examples for in-context learning and the example for inference
in the prompt and input it to GPT-3.5 for data curation.

F.2 Details of Data Preparation and Improvement

Data Preparation for Visual Instruction Tuning. For our dataset cura-
tion, we randomly select 20,891 actions with bounding box annotations from the
Ego4D training set and 17,922 actions with VISOR [7] mask annotations from
the Epic-Kitchens training set. We leverage GPT to produce detailed descrip-
tions of these actions as described in Sec. 3.1 of main paper. For instruction
tuning, we insert the original action label into a prompt template to construct
the full user prompt. In order to diversify the prompt structure, we prepare 10
prompt templates and randomly select one for each action at training time.
Data Improvement for Action Frame Generation. For an action starting
at t, we select an egocentric image frame δi seconds before the action begins as
the input, and an image δo seconds after the action begins as the target frame.
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Action Label: “tighten the nut”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
the nut using the left hand and tighten it 
with the screwdriver in the right hand.”

Action Label: “shake something”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
and shakes something in the right hand.”

Action Label: “adjust wrist watch”
Bounding Boxes: (shown on image)
Action Descriptions: “The person uses 
the right hand to adjust the wrist watch 
wore on the left wrist.”

Action Label: “place the card in 
between other cards”
Bounding Boxes: (shown on image)
Action Descriptions: “The person uses 
the right hand to place the card in other 
cards held in the left hand.”

Action Label: “drop the slice of tomato 
on a plate”
Bounding Boxes: (shown on image)
Action Descriptions: “The person drops 
the slice of tomato in the right hand on a 
plate on the right.”

Action Label: “drop the game console 
on the table”
Bounding Boxes: (shown on image)
Action Descriptions: “The person drops 
the game console in hands on the table.”

Action Label: “pick phone”
Bounding Boxes: (shown on image)
Action Descriptions: “The person 
picks the phone using the right hand.”

Action Label: “attach the second screw to 
the first bicycle with his right hand”
Bounding Boxes: (shown on image)
Action Descriptions: “The person attaches 
the screw in the right hand to the bike.”

Action Label: “mark the wood”
Bounding Boxes: (shown on image)
Action Descriptions: “The person 
presses the wood using the left hand and 
makes a mark using the pencil in the 
right hand.”

Action Label: “press dough in 
container with left hand”
Bounding Boxes: (shown on image)
Action Descriptions: “The person uses 
the left hand to press the dough in a 
container in front of him.”

Action Label: “check on a fabric”
Bounding Boxes: (shown on image)
Action Descriptions: “The person 
reaches out to a fabric using the right 
hand and checks its status by touching it.”

Action Label: “go up the ladder”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
on to the ladder using the left hand and 
goes up the ladder.”

Fig. 7: All Ego4D examples used for data curation with GPT-3.5 via in-context learn-
ing. For simplicity, the bounding boxes are only shown on images. We input the coor-
dinates of bounding boxes to GPT-3.5 in practice.

Due to the possible drastic camera motion, the egocentric image frames at t− δi
and t+ δo may be blurry. As a mitigation, we first calculate aesthetic scores [1]
of the frames at t− δi and t+ δo as well as 3 frames before and after them. The
corresponding frames with the highest aesthetic score are used as the input and
ground truth of our model. In addition, the egocentric body motion may have
huge variance depending on the action type, meaning that the input frame and
target frame may look almost identical in more stationary actions (e.g ., camera
wearer is reading book), or significantly different in more active actions (e.g .,
outdoor activities with frequent head motion). Such large variances may incur
additional barriers for the diffusion model training. Therefore, we calculate the
similarity of the input frame and target frame, and we filter out the instances
where the similarity is lower than 0.81 or higher than 0.97. With these steps, we
ultimately curate 85521/9931 data samples for the train/test sets from Ego4D
and 61841/8893 data samples for the train/test sets from Epic-Kitchens.
Preprocessing Examples. For each input frame or target frame, we calculate
aesthetic scores [1] of the current frame as well as 3 frames before and after
(7 frames in total). As demonstrated in Fig. 10(a), the frame of the highest
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Action Label: “open fridge”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
the handle of the fridge and opens the 
fridge door using the right hand.”

Action Label: “pick up yoghurt”
Bounding Boxes: (shown on image)
Action Descriptions: “The person 
reaches out to a yoghurt and picks it up 
using the left hand.”

Action Label: “put knife”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
a knife in right hand and puts it down.”

Action Label: “take cutting board”
Bounding Boxes: (shown on image)
Action Descriptions: “The person takes 
the cutting board out of a cupboard 
using right hand.”

Action Label: “dry hands”
Bounding Boxes: (shown on image)
Action Descriptions: “The man picks a 
cloth beside the cutting board and dries 
both hands.”

Action Label: “close bin”
Bounding Boxes: (shown on image)
Action Descriptions: “The person 
moves the left hand out of the bin and 
closes it using the right hand.”

Action Label: “chop end of onion”
Bounding Boxes: (shown on image)
Action Descriptions: “The person presses 
the onion on the chopping board with the 
left hand and then cuts off the end of the 
onion with a knife in the right hand.”

Action Label: “peel onion”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
an onion in the left hand over a chopping 
board and uses the knife in the right 
hand to peel the onion.”

Action Label: “open tap”
Bounding Boxes: (shown on image)
Action Descriptions: “The person’s left 
hand is holding a pan under a tap and the 
person opens the tap with the right hand.”

Action Label: “fill pan with water”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds a 
pan under a running tap using the left hand 
and lets water fill the pan.”

Action Label: “continue stirring onions”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds 
the pan using the left hand and stirs the 
onion in the pan with a spatula in the right 
hand.”

Action Label: “put chicken into pan”
Bounding Boxes: (shown on image)
Action Descriptions: “The person holds a 
chopping board using the left hand and 
moves chicken from the chopping board into 
the pan using a knife in the right hand.”

Fig. 8: All Epic-Kitchens examples used for data curation with GPT-3.5 via in-context
learning. For simplicity, the bounding boxes are only shown on images. We input the
coordinates of bounding boxes to GPT-3.5 in practice.

aesthetic score usually has the best image quality. We then use this frame as
input or target frame. We also calculate the similarity of input and target frame
for each action. We empirically filter out data whose similarity is lower than 0.81
or higher than 0.97. Some examples of abandoned data are shown in Fig. 10(b).
A very low similarity usually indicates a big change in the background due to the
head motion. A very high similarity implies the action involves very small hand
movements. Such a big variance in these data samples increases the challenge
for generative models to learn action state transition.

F.3 Training Details for Visual Instruction Tuning and Action
Frame Generation

Visual Instruction Tuning. We train the model with a batch size of 128 and a
learning rate of 2×10−5. Warm-up strategy and consine anneal [14] are also used
in training. It takes 24 hours to train the model on 8 NVIDIA A100-SXM4-40GB
for 3 epochs. AdamW [13] is adopted as the optimizer for training.
Egocentric Action Frame Generation. In training, we feed the input frame,
ground truth frame (to obtain the gaussian noise through the diffusion process)
together with the enriched action descriptions and VLLM embeddings into the
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System: You are an AI assistant that provides a description of an image based on the action 
and object context. The action consists of a verb and nouns. Each object location is 
represented by a bounding box. For each bounding box, four numbers are provided in 
brackets – they are [x-coordinate of top-left, y-coordinate of top-left, x-coordinate of 
bottom-right, y-coordinate of bottom-right]. The origin is at the top-left of each frame. The 
x-axis is on the top and the y-axis is on the left. All coordinates are normalized to the range 
from 0 to 1. This information can be used to infer the spatial relation of hands and objects. 
Note that the detailed narration is in a natural and holistic style. Please add more details 
in the action. For example, try to describe which hand is used in each action like “with 
right hand” or “using left hand”. Try to describe the spatial relation of these objects like 
“on the right”, “on the left”, “from … to …” or use some spatial words like “in”, “on”, 
“out”, “front”, “back”, etc. Describe the image in only one sentence. Do not describe 
objects or actions that are not presented in action or objects locations context. Many 
examples are provided for learning and an additional example is provided for inference.

User: Examples for learning: (1) {Example-1} (2) {Example-2} … (12) {Example-12}

User: Example for inference: {Inference Example}

Fig. 9: The structure of the prompt sent to GPT-3.5. We specify the composition of the
input query (highlighted in blue). Then we articulate the requirements for action en-
richment (highlighted in green) and extra demands (highlighted in yellow). Example-1
to Example-12 consist of the action label, object bounding boxes and manual annota-
tion of detailed action descriptions. The inference example consists of just action label
and object bounding boxes.

model. We finetune the latent diffusion model with a batch size of 256 and an
initial learning rate of 10−4 without warm-up strategy. Horizontal flipping is
used as data augmentation. We train the model with optimizer AdamW [13] for
20,000 iterations on 8 NVIDIA A100-SXM4-40GB over 38 hours. In inference,
we feed the input frame, a randomly-sampled gaussian noise as well as enriched
action descriptions and VLLM embeddings into the latent diffusion model. We
apply 100 denoising steps for each instance.

F.4 Details about Classifier-free Guidance

We use classifier-free guidance for two conditions (following [2]) by sharing the
same guidance scale across the enriched action descriptions, VLLM image em-
bedding and VLLM text embedding. As defined in Sec. 3.2 in main paper, we use
C to denote the three conditions and use X to denote the input frame. Specif-
ically, we randomly set only the image conditioning X = ∅ at a probability of
5%, only the conditioning from VLLM C = ∅ at a probability of 5% and both
X = ∅ and C = ∅ at a probability of 5%. Then the score estimate of our model
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4.685 4.947 4.831 4.683

4.542 4.742 4.368

(a) Aesthetic Scores 
of Neighboring Frames

Similarity: 0.643 Similarity: 0.656

Input Frame Target Frame Input Frame Target Frame

Similarity: 0.994 Similarity: 0.990

(b) Examples with Very Low and Very High Similarity of Input and Target Frames

Fig. 10: Data preprocessing in our work. (a) The fame with the highest aesthetic score
(highlighted) is less blurry and then used as the target frame of this action. (b) The
actions with too low (<0.81) or too high similarity (>0.97) between input and target
frames are filtered out from the datasets.

is formulated as

ẽθ(zt,X , C) = eθ(zt,∅,∅) (1)
+ sx · (eθ(zt,X ,∅)− eθ(zt,∅,∅)) (2)
+ sc · (eθ(zt,X , C)− eθ(zt,X ,∅)), (3)

where θ refers to the parameters in the denoising UNet. zt is the noisy latent
at timestep t, which is obtained by diffusion process in training and randomly
initialized by a gaussian noise in inference. sx and sc are the guidance scales
corresponding to the conditioning X and C respectively. In inference, we use
sx = 7.5 and sc = 1.5 which are identical to the settings in InstructPix2Pix [2].
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Fig. 11: The interface used for evaluation of enriched action descriptions. Both input
and target frames are shown to the raters.

F.5 Implementation Details of the Baseline Models

We compare our model with three prior image editing models – ProxEdit [8],
SDEdit [15] and InstructPix2Pix [2]. We provide more implementation details
for training the three models on our dataset. ProxEdit and SDEdit rely on a
pre-trained diffusion model to edit the input image. Given the domain gap of
the off-the-shelf diffusion models and our problem, we finetune a latent diffu-
sion model with the egocentric action data using the default training hyper-
parameters in [16]. During finetuning, we use the action label as textual prompt
and the target action frame as the ground truth. Then we implement Prox-
Edit and SDEdit on the finetuned diffusion model. In terms of InstructPix2Pix,
we finetune it end to end with the egocentric action datasets using the same
training hyper-parameters as our LEGO model (see Sec. F.3). Note that for all
three baseline models, we use the short action labels as input rather than the
detailed descriptions. The proposed action description enrichment is one of our
key contributions, so we use it only for our model to show the benefit.

F.6 Details and Interfaces for User Study

User Study for the Enriched Action Descriptions. In Sec. 4.5 of the main
paper, we apply the user study to evaluate the quality of enriched action de-
scriptions from our instruction tuned VLLM and the off-the-shelf VLLM. We
randomly sample 100 examples from the test set of each dataset. For each in-
stance, we show the input frame, target frame and the action descriptions gener-
ated by VLLM. The rater is asked to select whether the description aligns with
the two frames. We hire 5 raters for each instance on Amazon Mechanical Turk
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Fig. 12: The interface used for evaluation of generated action frames. The four gener-
ated frames are randomly shuffled to avoid potential bias.

and finally get 500 samples for each dataset. The interface shown to raters is
illustrated in Fig. 11.
User Study for Generated Action Frames. The user interface for evaluation
of generated action frames is illustrated in Fig. 12. We show the input frame and
shuffled outputs from the four models to raters. To make a fair comparison, we
show the action label instead of the enriched action description because the
baseline models only take original action labels as input.

G Limitation and Future Work

In this paper, we use an egocentric image to capture the user’s environment
contexts and generate the action frame to provide visual instructions. However,
there are still some problems that are not explicitly solved by our method. We
find it’s hard for our model to associate the action with correct objects when
there are too many irrelevant objects around. Synthesizing the diverse and com-
plex hand-object interactions is also a big challenge especially when people are
operating some machines. In addition, our work indicates a few valuable direc-
tions for the future study.

• The embeddings from the visual large language model (VLLM) are fed into
the UNet together with the CLIP based text representation as additional
conditioning. How to leverage the VLLM embeddings more effectively in
diffusion models deserves future study.
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• Recognizing and localizing the objects that are relevant with the action
descriptions in a chaotic environment may be a bottleneck for the application
in real-world problems, which deserves more attention.

• It’s difficult to synthesize correct interactions of hands and objects in some
professional work, such as using a wood cutter, operating a lawn mower and
sewing clothes on a sewing machine. How to combine affordance understand-
ing with generative models may be a key step to address this problem.

• Existing automatic image-to-text similarity metric doesn’t generalize well to
the egocentric domain. We expect more investigation of better evaluation
metrics for image-text alignment.

H Code and Data Release

We will release our code, pre-trained model weights, additional data annota-
tions, train/test split, the enriched action descriptions and VLLM embeddings
on the website (https://bolinlai.github.io/Lego_EgoActGen/) to the re-
search community to facilitate future studies.
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