
Mesh2NeRF: Direct Mesh Supervision for Neural
Radiance Field Representation and Generation

(Supplementary Material)

Yujin Chen1, Yinyu Nie1, Benjamin Ummenhofer2, Reiner Birkl2,
Michael Paulitsch2, Matthias Müller2, and Matthias Nießner1

1 Technical University of Munich
2 Intel Labs

A Implementation Details

A.1 Details of Single Scene Fitting

Datasets. For the ABO dataset, we use twelve objects representing various
household categories3, including a chair (ABO item ID: B075X4N3JH), a table
(B072ZMHBKQ), a lamp (B07B4W2GY1), a vase (B07B8NZQ68), a planter
(B075HWK9M3), a dumbbell set (B0727Q5F94), a light fixture (B07MBFDQG8),
a cabinet (B008RLJR2G), a basket set (B07HSMVFKY), a sofa (B073G6GTK7),
and two beds (B075QMHYV8 and B07B4SCB4H). Each object is normalized to
[-1,1] in three dimensions. For baselines that require rendered images and camera
poses to train, we render each object from cameras distributed on a sphere with
a radius of 2.7 using PyTorch3D [1]. We use the lighting defined by PyTorch3D
PointLights, with a location in [0, 1, 0], and the ambient component [0.8, 0.8,
0.8], diffuse component [0.3, 0.3, 0.3], and specular component [0.2, 0.2, 0.2]. In
our method, rendered RGB images are not used. Instead, we directly utilize the
same normalized meshes and the light information.

For the Poly Haven dataset, we use six realistic models4, including a potted
plant, a barber chair, a coffee chart, a chess set, a concrete cat statue, and a
garden hose. Rendered images for baseline NeRF training inputs are normalized
to the [-1,1] cube. We render each object from cameras distributed on a sphere
with a radius of 2.0. The point light is located at [0, 2, 0], with ambient, dif-
fuse, and specular components set to [1.0, 1.0, 1.0], [0.3, 0.3, 0.3], and [0.2, 0.2,
0.2], respectively. Mesh2NeRF training employs the same normalized meshes and
lighting. For the SketchFab scene, we use Entrée du château des Bois Francs and
Château des Bois Francs . The rendering settings remain consistent with Poly
Haven data, with a camera distance of 1.5.
Training. We implement our method in Python using the PyTorch framework.
We leverage PyTorch3D [1] and Open3D [5] for processing mesh data and per-
forming essential computations in Mesh2NeRF. Training on both the ABO and
3 https://amazon-berkeley-objects.s3.amazonaws.com/index.html
4 https://polyhaven.com/models

https://polyhaven.com/a/potted_plant_01
https://polyhaven.com/a/potted_plant_01
https://polyhaven.com/a/BarberShopChair_01
https://polyhaven.com/a/CoffeeCart_01
https://polyhaven.com/a/chess_set
https://polyhaven.com/a/concrete_cat_statue
https://polyhaven.com/a/garden_hose_wall_mounted_01
https://polyhaven.com/a/garden_hose_wall_mounted_01
https://sketchfab.com/3d-models/entree-du-chateau-des-bois-francs-8dc01ff203bc4f02ac74c0b00f441be5
https://sketchfab.com/3d-models/chateau-des-bois-francs-822e334e36824a1095f67a778cf5b214
https://amazon-berkeley-objects.s3.amazonaws.com/index.html
https://polyhaven.com/models


2 Y. Chen et al.

Poly Haven datasets comprises 50,000 iterations with a batch size of 1024 rays.
We employ the Adam optimizer [2] with a 1cycle learning rate policy [4], where
the max learning rate is set to 1×10−3, the percentage of the cycle by 0.001, and
the total number of steps is 50,000. For each sampled point, we assign a weight
wcolor of 1 if the sample lies within the surface thickness; otherwise, wcolor is set
to 0. Additionally, we fix wintegral at 10 during the training process.
Sampling. During training, we employ ray casting to compute the intersection
distance for each ray and the input mesh. For each ray, we conduct stratified
sampling, obtaining 512 points distributed along the ray. In the case of rays
intersecting the surface, an additional 512 points are sampled within the surface
thickness using a random sampling approach. For rays that do not intersect the
surface, we randomly sample another set of 512 points along the ray. For each
sampled point, Mesh2NeRF can extract ground truth density (or alpha value)
and color information directly from the input mesh. This procedure ensures the
availability of accurate supervision data for training. In the inference phase,
given a specific view, we utilize the camera’s intrinsic parameters to determine
the origin and direction of the ray. Subsequently, we uniformly sample points
along the ray within the object cube. In a scenario with a surface thickness of
0.005, we sample 800 points along each target ray.

A.2 Details of Conditional Generation

Data setting. In the main manuscript, we evaluate NeRF conditional gen-
eration on ShapeNet Cars and Chairs, and additionally perform inference on
KITTI Cars. For ShapeNet Cars and Chairs, the model is trained ontheir re-
spective training sets. During inference, for the 1-view setup, we use view 64 as
the NeRF input and evaluate the other 249 views out of 250. For the 2-view
setup, we use views 64 and 104 as the NeRF input and evaluate the other 248
views. We additionally evaluate the results of 3-view and 4-view setups in Sec-
tion B.2. For the 3-view setup, we use views 0, 125, and 250 as the NeRF input
and evaluate the other 247 views. For the 4-view setup, we use views 0, 83, 167,
and 250 as the NeRF input and evaluate the other 246 views.
Training and evaluation. For SSDNeRF results, we adhere closely to its offi-
cial implementation5 during model training, ensuring consistency with our train-
ing data. The evaluation employs the same test set as SRN [3]. For Mesh2NeRF,
Blender is utilized to obtain color and intersection distance information for each
viewpoint. Additional details are available in the ShapeNet rendering reposi-
tory6. In Mesh2NeRF supervision during training, we use a surface thickness
of 0.01. Along each ray, we employ a stratified sampling strategy to distribute
32 points along the ray, along with an additional random sampling of 32 points
within the surface thickness. Both wcolor and wintegral are set to 1. In the in-
ference stage, we evenly sample 400 points along each target ray for volume
rendering.
5 https://github.com/Lakonik/SSDNeRF
6 https://github.com/yinyunie/depth_renderer

https://github.com/Lakonik/SSDNeRF
https://github.com/yinyunie/depth_renderer


Mesh2NeRF 3

NeRF Training Viewpoints

PS
N
R

15

20

25

30

2 6 15 30 60 90 120

NeRF Mesh2NeRF NeRF

Fig. 9: Comparing Mesh2NeRF with NeRF trained with the different viewpoint num-
bers. The performance of NeRF saturates as the number of viewpoints increases, i.e.,
adding viewpoints results in diminishing returns at some point. Overall, the perfor-
mance is worse than Mesh2NeRF, which does not require renderings and is aware of
the whole scene content.

Table 3: Ablation of integral loss Lintegral of Mesh2NeRF NGP on the Poly Haven
dataset.

Variant Potted Plant Barber Chair Coffee Chart Chess Set Cat Statue Garden Hose Average

PSNR ↑

V1 11.53 27.42 11.90 7.02 12.42 7.09 12.90
V2 19.26 23.43 21.74 22.62 23.91 20.59 21.93
V3 23.96 25.76 24.93 25.32 24.53 22.68 24.53
V4 23.66 26.79 26.96 26.00 24.64 23.77 25.30
V5 13.67 7.08 11.91 25.95 14.84 8.73 13.70

SSIM ↑

V1 0.657 0.926 0.739 0.563 0.485 0.423 0.632
V2 0.744 0.892 0.849 0.851 0.676 0.731 0.791
V3 0.819 0.900 0.881 0.873 0.689 0.750 0.819
V4 0.829 0.907 0.901 0.877 0.683 0.756 0.825
V5 0.642 0.535 0.739 0.884 0.556 0.471 0.638

LPIPS ↓

V1 0.448 0.096 0.446 0.596 0.618 0.620 0.477
V2 0.123 0.078 0.110 0.076 0.236 0.106 0.122
V3 0.088 0.100 0.108 0.076 0.261 0.114 0.125
V4 0.087 0.101 0.105 0.084 0.268 0.128 0.129
V5 0.353 0.548 0.446 0.087 0.459 0.514 0.401

Traning and inference time. We train our generative model using two RTX
A6000 GPUs, each processing a batch of 8 scenes. On average, 80K training
iterations for ShapeNet experiments take around 40 hours, and 10K training
iterations for Objaverse mugs take around 5 hours. For inference, under the
unconditional generation setting using 50 DDIM steps, sampling a batch of 8
scenes takes 4 sec on a single RTX A6000 GPU. And under the conditional
generation setting, and 130 sec for reconstructing a batch of 8 scenes from a
single-view condition.



4 Y. Chen et al.

Table 4: Mesh2NeRF NeRF results vary with defined surface thickness on the ABO
dataset. Smaller thickness yields better MLP optimization performance, with 0.0050
and 0.0025 providing comparable results. We choose 0.0050 as the default thickness for
subsequent experiments.

Surface Thickness PSNR ↑ SSIM ↑ LPIPS ↓

0.0200 27.18 0.919 0.058
0.0100 27.18 0.929 0.053
0.0050 28.40 0.933 0.049
0.0025 28.93 0.934 0.056

B Additional Results

B.1 More Results on Single Scene Fitting

Impact of integral loss. In this ablation study, we investigate the impact of
the integral loss during optimizing neural radiance fields in Mesh2NeRF. We
compare five variants of our method, denoted as (V1) through (V5), except
for (V1), we maintain walpha = 1 and wcolor = 1. (V1): only uses the integral
loss Lintegral , without the alpha loss Lalpha and the color loss the integral loss
Lcolor ; (V2): excludes the integral loss Lintegral ; (V3) with the integral loss and
uses a weight of wintegral = 1; (V4) with the integral loss and uses a weight of
wintegral = 10. (V5) with the integral loss and uses a weight of wintegral = 100.
We evaluate the PSNR, SSIM, and LPIPS of each sample test view and provide
overall average results across all test views in the dataset. As shown in Table 3,
(V4) achieves the highest average PSNR and SSIM, while (V2) exhibits slightly
superior performance in terms of LPIPS. Consequently, we select V4 as the
default configuration for our Mesh2NeRF.
Comparing using NeRFs with different numbers of viewpoints. We com-
pare Mesh2NeRF NeRF with NeRF trained using varying numbers of views on
the chair object from the ABO dataset. In Fig. 9, we chart the mean PSNR for
NeRF w.r.t. training views rendered from the mesh, and Mesh2NeRF, directly
optimized from mesh. The evaluation results of NeRF exhibit improvement from
a few viewpoints to dozens of views (e.g ., covering most of the surface), con-
verging with increasing views. Mesh2NeRF captures more comprehensive object
information even compared to NeRF at convergence, acting as an upper bound.
Ablation study on surface thickness. In Table 4, we self-compare surface
thickness as a hyperparameter defining mesh resolution. For objects normalized
to [-1,1] in three dimensions, we vary the surface thickness from 0.02 to 0.0025.
Results show average PSNR, SSIM, and LPIPS for test views at 256× 256 reso-
lution. A smaller thickness captures finer details but demands denser sampling
for rendering. Consequently, we set 0.005 as the default surface thickness for our
method.
Lighting model. We apply Phong model in our experiments, while Mesh2NeRF
can accommodate any BRDF and lighting. The only adjustment required is to



Mesh2NeRF 5

Table 5: Comparison with Instant NGP with additional depth supervision. Ours
(Mesh2NeRF NGP) outperforms Instant NGP in both limited and dense view set-
tings.

Method Depth loss PSNR

Instant NGP (limited views) No 15.75
Yes 16.19 (+0.44)

Instant NGP (dense views) No 19.51
Yes 19.72 (+0.21)

Mesh2NeRF NGP - 20.42

change the function computing the color value of the ray hit point. For instance,
if Spherical Harmonics lighting replaces the point lighting, the analytic solution
(as illustrated in Fig. 3) can also achieve an SSIM over 0.99.
Baseline with geometry information. We compare NeRF baseline with and
without GT depth supervision during fitting on the Sketchfab scene Entrée du
château des Bois Francs. Results (Table 5) show improvements in Instant NGP
with depth supervision in both dense (same as Sec. 4.1) and sparse (30 views)
settings. More improvement from depth is gained in the limited views setup
(+0.44 PSNR vs. +0.21). Even with depth, Instant NGP is still worse than
Mesh2NeRF NGP.
More qualitative comparsions. We present qualitative results from the Sketch-
fab dataset in Fig.10. Renderings from two views for each object are compared
with NeRF baselines, accompanied by corresponding PSNR values. Similarly,
Fig.11 showcases qualitative results on the ABO dataset, with renderings from
two views for each object compared alongside corresponding LPIPS values. These
figures demonstrate that Mesh2NeRF NeRF outperforms NeRF baselines.
High-resolution volume rendering. Our method is not constrained by res-
olution during rendering, as evidenced by our evaluation setting. In Fig. 12,
we compare Mesh2NeRF NGP and Instant NGP renderings at resolutions of
1024× 1024. Our approach consistently outperforms Instant NGP, demonstrat-
ing its ability to achieve high-resolution results during inference.

B.2 More Results on Conditional Generation

More spare-view NeRF conditional generation results. We present qual-
itative comparisons of NeRF generation conditioned on sparse-view images on
previously unseen objects in ShapeNet Cars and Chairs between SSDNeRF and
our method as the supervision. In Figure 13, we showcase the results of NeRF
generation conditioned on 3-view inputs in both ShapeNet Cars and Chairs. For
a broader perspective, Figure 14 illustrates the results of NeRF reconstructions
from 4-view inputs in both ShapeNet Cars and Chairs. In Figure 15, we pro-
vide addition NeRF generation results conditioned on single-view KITTI Cars
real images, utilizing the model trained on the synthetic ShapeNet Cars. This



6 Y. Chen et al.

highlights the generalization capability of Mesh2NeRF supervision in NeRF gen-
eration tasks, even when faced with significant domain gaps.
Study on early-stage results. Our method offers direct supervision to the
3D radiance field, facilitating faster model convergence during training. To illus-
trate this, we compare the single-view reconstruction results for chair samples at
10,000 iterations (out of a total of 80,000 iterations). As shown in Figure 16, our
reconstructed novel views demonstrate improved accuracy and reduced floating
noise.



Mesh2NeRF 7

Fig. 10: Comparison on test views for scenes from the Sketchfab dataset. Ours
(Mesh2NeRF NGP) outperforms NeRF baseliens in the displayed challenging scenes.



8 Y. Chen et al.

Fig. 11: Comparison on test views for scenes from ABO dataset. For every visualized
object, we show two renderings from each method. Our results (Mesh2NeRF NeRF vs.
NeRF and Mesh2NeRF NGP vs. Instant NGP) are more accurate and capture finer
details in renderings compared to the baselines using the same network architecture.



Mesh2NeRF 9

Fig. 12: Comparison on test views for scenes from the Poly Haven dataset at a res-
olution of 1024 × 1024. Without modifying the training process, Mesh2NeRF NGP
outperforms Instant NGP in generating high-resolution renderings.



10 Y. Chen et al.

Fig. 13: Qualitatively comparison of NeRF generation conditioned on 3-view input on
unseen objects in ShapeNet Cars (left part of the figure) and Chairs (right part).



Mesh2NeRF 11

Fig. 14: Qualitatively comparison of NeRF generation conditioned on 4-view input on
unseen objects in ShapeNet Cars (left part of the figure) and Chairs (right part).



12 Y. Chen et al.

Fig. 15: Qualitatively comparing conditional NeRF generation of KITTI Cars images.
We show the input in-the-wild image, rendered novel views of the generated NeRFs,
and extracted meshes.

Fig. 16: Qualitatively comparing single-view NeRF reconstruction of ShapeNet test
Chair images at 10,000 training iterations. Mesh2NeRF outperforms SSDNeRF, high-
lighting the effectiveness of our direct supervision.



Mesh2NeRF 13

References

1. Johnson, J., Ravi, N., Reizenstein, J., Novotny, D., Tulsiani, S., Lassner, C., Bran-
son, S.: Accelerating 3d deep learning with pytorch3d. In: SIGGRAPH Asia 2020
Courses, pp. 1–1 (2020)

2. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

3. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Contin-
uous 3d-structure-aware neural scene representations. Advances in Neural Informa-
tion Processing Systems 32 (2019)

4. Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks
using large learning rates. In: Artificial intelligence and machine learning for multi-
domain operations applications. vol. 11006, pp. 369–386. SPIE (2019)

5. Zhou, Q.Y., Park, J., Koltun, V.: Open3d: A modern library for 3d data processing.
arXiv preprint arXiv:1801.09847 (2018)


	Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation (Supplementary Material)

