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A Comparison with Prior Audio-Visual Learning
Strategies

We have specified the key differences between the egocentric action anticipation
task and saliency prediction task in the second paragraph of Sec. 2 in the main
paper. The experiment results also validate that our proposed spatial-temporal
separable fusion strategy performs better in our task than other fusion strategies
designed for saliency prediction and action recognition (please refer to Tab. 2
in the main paper). In this section, we further compare our model with typical
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Table 1: Comparison with typical audio-visual learning methods for audio-visual
saliency prediction and recognition. If more than one fusion strategies have been tried
in one method, we only show the strategy leading to the best performance.

Methods View Fusion Cntr Architecture Task

Tavakoli et al. [26] Exo Concatenation w/o CNN Saliency Prediction
Min et al. [22] Exo Correlation Analysis w/o CNN Saliency Prediction
Tsiami et al. [27] Exo Bilinear w/o CNN Saliency Prediction
Yao et al. [32] Exo Inner Product w/o CNN Saliency Prediction
Change et al. [1] Exo Bilinear w/o CNN Saliency Prediction
Jain et al. [12] Exo Bilinear w/o CNN Saliency Prediction
Wang et al. [28] Exo Concatenation w/o CNN Saliency Prediction
Xiong et al. [31] Exo Self-Attentation w/o CNN Saliency Prediction

Nagrani et al. [23] Exo Attention Bottleneck w/o Transformer Video Classification
Huang et al. [10] Exo Self-Attention w/ Transformer Video Classification
Gao et al. [6] Exo Linear w/o LSTM Action Recognition
Kazakos et al. [15] Exo Linear w/o CNN Action Recognition
Wang et al. [29] Exo Weigted Sum w/o CNN Action Recognition
Xiao et al. [30] Exo Self-Attentation w/o CNN Action Recognition
Liu et al. [19] Exo Linear w/o CNN Action Recognition
Senocak et al. [25] Exo Linear w/o CNN Action Recognition
Praveen et al. [24] Exo Self-Attention w/o CNN Emotion Recognition
Chudasama et al. [2] Exo Self-Attention w/o Transformer Emotion Recognition

CSTS (Ours) Ego Spatial-Temporal w/ Transformer Gaze AnticipationSeparable

audio-visual learning methods for saliency prediction and recognition tasks in
terms of model design.

In Tab. 1, all prior methods are designed for exocentric videos (i.e., third-
person videos) that have a fixed camera viewpoint through all frames. Though
various fusion approaches are used in these methods, they fuse audio-visual em-
beddings jointly in time and space. In contrast, the egocentric gaze anticipation
task has the unique challenges of moving viewpoint together the latency between
the audio stimuli and human reactions. To address these challenges, our model
uses a novel spatial-temporal separable fusion strategy which has not been stud-
ied in prior work. The experiments in Tab. 2 of the main paper shows that our
method achieves the best performance in egocentric gaze anticipation task com-
pared with prior audio-visual learning strategies. In addition, using contrastive
learning to boost audio-visual representations in a specific task is still an un-
derstudied area. Huang et al . [10] use inter- and intra- contrastive loss to learn
aligned audio and visual embeddings. However, they straightforwardly apply
contrastive loss on the raw embeddings right after the encoders. In our model,
we innovatively propose to adopt contrastive loss on the embeddings after fusion
layers (i.e., post-fusion contrastive learning). We also validate its advantage in
Tab. 3 of the main paper. These key differences consolidate our contributions
and clearly distinguish our model from other audio-visual learning methods.
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Table 2: Zero-shot experiments on Aria dataset. All baselines and our model are
trained only on Ego4D training set. We consider F1 score as the primary metric in our
experiments. The green row refers to our model, and the best results are highlighted
with boldface. See Sec. C.1 for further discussion.

Methods F1 Score Recall Precision

GazeMLE [17] 44.0 59.0 35.0
AttnTransit [11] 43.1 57.5 34.5
I3D-R50 [5] 41.5 77.2 28.4
MViT [4] 44.1 59.7 35.0
GLC [16] 46.9 72.8 34.6
DFG [34] 39.3 80.4 26.0
DFG+ [33] 43.1 76.4 30.0
CSTS 50.8 62.2 42.9

B More Dataset Details

The Ego4D [9] eye-tracking subset is collected in social settings (i.e., social inter-
action benchmark) and totals 31 hours of egocentric videos from 80 participants.
All videos have a fixed 30 fps frame rate and spatial resolution of 1088×1080,
and audio streams are recorded with a sampling rate of 44.1kHz. We use the
train/test split released in [16] in our experiments, i.e., 15310 video segments
for training and the other 5202 video segments for testing.

The Aria [21] dataset contains 143 egocentric videos (totaling 7.3 hours) col-
lected with Project Aria glasses. It covers a variety of indoor everyday activities
including cooking, exercising and spending time with friends. All videos have a
fixed 20 fps frame rate and spatial resolution of 1408×1408. A sliding window is
used to trim long videos into 5-second video segment with a stride of 2 seconds.
We use 107 videos (10456 segments) for training and 36 videos (2901 segments)
for testing. We will release our split to facilitate future studies in this direction.

Note that Ego4D and Aria are the two largest public datasets that provide
all necessary data and labels (i.e., egocentric videos, aligned audio streams and
eye-tracking data) for egocentric audio-visual gaze anticipation.

C Additional Experiment Results

C.1 Experiments about Model Generalization Capability

To validate the generalization capability of our model, we compare our model
with prior state-of-the-art models in a zero-shot setting. Specifically, We train
our model and all baselines with Ego4D training set and test them with Aria
test set. Note that the Aria data is invisible to all models during training. The
results are presented in Tab. 2. Our model outperforms the best egocentric gaze
anticipation model (DFG+) by +7.7% and also exceeds the strongest baseline
(GLC) by +3.9% in F1 score (primary metric). The remarkable improvement
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Table 3: Comparison with prior state-of-the-art models on egocentric gaze estimation.
The green row refers to our model. The best results are highlighted with boldface.
See Sec. C.2 for further discussion.

Methods Ego4D Aria

F1 Score Recall Precision F1 Score Recall Precision

Center Prior 14.9 21.9 11.3 28.9 21.7 43.1
GazeMLE [17] 35.4 49.7 27.5 58.7 63.4 54.7
AttnTransit [11] 36.4 47.6 29.5 59.2 60.2 58.3
I3D-R50 [5] 37.5 52.5 29.2 60.9 69.5 54.2
MViT [4] 40.9 57.4 31.7 61.7 71.2 54.5
GLC [16] 43.1 57.0 34.7 63.2 67.4 59.5
CSTS 43.7 58.0 35.1 64.5 69.6 60.1

suggests that, with our novel fusion and contrastive learning approaches, our
model is able to generalize better to other unseen data, which is critical for
applying it to real-world problems.

C.2 Experiments on Egocentric Gaze Estimation

In addition to egocentric gaze anticipation, we also evaluate the advantage of our
model in another gaze modeling problem – egocentric gaze estimation. Instead of
forecasting future gaze, egocentric gaze estimation requires gaze target prediction
in the current video frames. We use the same experiment setup from the recent
state-of-the-art method [16].

As demonstrated in Tab. 3, the prior work [16] has shown the superiority of
using a transformer-based architecture for egocentric gaze estimation. By incor-
porating the audio modality, CSTS surpasses the backbone MViT [4] (vision-only
counterpart) by +2.8% on both Ego4D on Aria in terms of F1 score. These re-
sults indicate the audio modality also makes important contributions to the per-
formance on egocentric gaze estimation. Furthermore, our model outperforms
GLC [16] by +0.6% and +1.3% on Ego4D and Aria respectively, achieving a
new state-of-the-art performance for this problem. However, our method has a
smaller performance improvement on the gaze estimation task compared to gaze
anticipation. The possible reason is that the audio stream has a stronger connec-
tion with future gaze targets than current gaze behaviors because of the natural
latency between the audio stimuli and human reactions.

C.3 Additional Experiments on Contrastive Learning

In our model, we propose to use the audio-visual representations obtained after
fusion (i.e. uv and ua) to calculate contrastive loss (i.e., post-fusion contrastive
learning). As a comparison, we also implement a baseline by feeding the raw em-
beddings from the encoders (i.e. ϕ(x) and ψ(a)) to the contrastive loss which is
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Table 4: Study of different strategies for contrastive loss implementation. Post Cntr
refers to our proposed post-fusion contrastive learning strategy, and the green row
refers to the complete CSTS model. The best results are highlighted with boldface.
See Sec. C.3 for further discussion.

Methods Ego4D Aria

F1 Score Recall Precision F1 Score Recall Precision

STS + Vanilla Contr 39.0 53.7 30.6 59.1 66.5 53.1
STS + S-Contr 38.5 53.5 30.0 59.0 66.3 53.1
STS + T-Contr 38.9 54.0 30.5 59.0 66.7 53.0
STS + Cross Contr 38.9 54.4 30.2 59.3 66.8 53.3
STS + Post Contr 39.7 53.3 31.6 59.9 66.8 54.3

denoted as Vanilla Contr. To further investigate the contribution of contrastive
learning, we also conduct experiments with three additional strategies:

Cross Contr. In our final model (CSTS), we use the new visual representation
uv = uv,s ⊗ uv,t and the new audio representation ua = ψ(a)⊗ ua,t as input to
the contrastive loss. In Cross Contr, we still use uv yet replace ua by reweighting
the audio representation ua,s after the spatial fusion with weight ua,t from the
temporal fusion, i.e. u∗a = ua,s ⊗ ua,t, as input to the contrastive loss. Please
refer to Fig. 2 in the main paper for the meaning of each notation.

S-Contr. We use the output from the spatial fusion module (uv,s,ua,s) to cal-
culate the contrastive loss.

T-Contr. We use the output from the temporal fusion module (uv,t,ua,t) to
calculate the contrastive loss.

We implement all contrastive learning baselines above on our proposed model
architecture and fusion strategy (i.e., STS). The results are summarized in
Tab. 4. Both S-Contr and T-Contr lag behind or perform on par with Vanilla
Contr. One possible reason is that conducting contrastive learning using features
obtained from only one fusion branch may compromise the representation learn-
ing of the other branch. Additionally, Cross Contr works on-par with Vanilla
Contr on Ego4D but performs better on Aria. It also consistently outperforms
S-Contr and T-Contr. This result validates our claim that implementing con-
trastive loss with reweighted representations from both spatial and temporal fu-
sion leads to more gains for egocentric gaze anticipation. Moreover, our proposed
strategy (reweighting the raw audio embedding ψ(a) rather than the fused em-
bedding after spatial fusion) outperforms Cross Contr. This is because in Cross
Contr ua,s is derived from spatial fusion, where each audio token is fused with
64 visual tokens in the spatial fusion branch resulting in the dilution of audio
features. All results further demonstrate the benefits of our proposed contrastive
learning strategy.
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C.4 Additional Visualization

We showcase more qualitative comparisons with all the baselines for egocentric
gaze anticipation in Fig. 1. We observe CSTS makes the most accurate predic-
tions. We also illustrate some typical failure cases in Fig. 2. In the first example,
our model makes an accurate prediction in the first frame but fails at the follow-
ing time steps due to the gaze movement. In the second example, the the camera
view and gaze target move from the left to the right. This drastic change causes
the mistake in our model’s predictions. Similar failures also happen in the pre-
dictions of all baselines. Notably, existing deep models tend to only successfully
anticipate steady gaze fixations or small gaze movements in the near future, and
can not effectively capture large gaze shifts. This is the a common limitation
shared by many existing works of future anticipation [13] in egocentric videos.

D More Implementation Details

D.1 Implementation Details of Our Model

Architecture. Inspired by [7], we use a light-weight audio encoder composed of
four self-attention blocks from MViT [4]. The model architecture is further de-
tailed in Tab. 5. We initialize the video encoder with Kinetics-400 pretraining [14]
and initialize the audio encoder using Xavier initialization [8]. The resulting video
embeddings ϕ(x) have a dimension of T = 4, H = 8,W = 8, D = 768, and the re-
sulting audio embeddings ψ(a) have a dimension of T = 4,M = 64, D = 768. We
follow [18] to map audio-visual representation vectors to dimension D′ = 256 for
the contrastive loss. The output from the decoder is a downsampled heatmap
which is upsampled to match the input size using trilinear interpolation. Fol-
lowing [16], we add intermediate features from each video encoder block to the
corresponding decoder block output via skip connections to compensate for the
loss of low-level textures.
Training. We set both temperature factor T of contrastive loss and re-weight
parameter α as 0.05. Follow [16,17], we use a Gaussian distribution with kernel
size of 19 centered on the gaze location in each frame as the ground truth gaze
heatmap during training. The model is trained with AdamW [20] optimization
for 15 epochs. The momentum and weight decay are set as 0.9 and 0.05. The
initial learning rate is 10−4 which decreases with the cosine learning rate decay
strategy. The model is trained with a batch size of 8 across 4 GPUs.

D.2 Implementation Details of Baseline Fusion Strategies

We compare with multiple different audio-visual fusion strategies in main paper
Tab. 2. The details of each baseline are listed as follows:
Linear. We reshape the video embedding and audio embedding to the shape
N̂×D. We concatenate the two reshaped embeddings (resulting in the dimension
of N̂ × 2D) and input it to two linear layers. The dimension of the output is
N̂ ×D and we reshape it back to T ×H ×W ×D which is fed into the decoder.



Audio-Visual Egocentric Gaze Anticipation 7

Bilinear. We reduce the length of video tokens and audio tokens to 256 using
a linear layer respectively. Then we input the resulting video and audio tokens
into a bilinear layer. The output is fed into the decoder for gaze forecasting.
Concat. We reshape the audio embedding ψ(a) ∈ RT×H×W×D to the same
dimension as the video embedding ϕ(x) ∈ RT×H×W×D and concatenate them
along the channel to obtain an audio-visual representation with dimension of
T ×H×W ×2D. This representation is fed into the decoder for gaze forecasting.
Vanilla SA. In this baseline, we flatten the video embedding and audio em-
bedding into a list of tokens and thereby obtain T × (N +M) tokens in total,
where N = H ×W . Then we input all tokens to a standard self-attention layer
followed by multiple linear layers to perform fusion in the spatial and temporal
dimensions simultaneously. We split the output into a new visual embedding
incorporating audio information with dimension of T ×N ×D and a new audio
embedding incorporating visual information with dimension of T ×M ×D. The
new visual embedding is input into the decoder.
STS. This is a baseline using the same fusion strategy as our method but without
using the contrastive loss for training.

E Limitation and Future Work

In this paper, we propose a novel contrastive spatial-temporal separable fusion
model for audio-visual egocentric gaze anticipation. Our method is validated
on the Ego4D [9] and Aria [21] datasets. Our method has larger performance
improvement on the Aria dataset comparing with Ego4D dataset. We believe
this is because the multi-person social interaction setting from Ego4D dataset
incurs additional challenges for audio representation learning, like multiple peo-
ple and speakers present. Our current model design did not explicitly address
this challenging nature of multi-speaker social interactions. Another limitation
is that our model fails to anticipate the drastic gaze movements (see the failure
cases in Fig. 2). In addition, in this work we do not explore the spatial geometry
context provided by multi-channel audio signals. Our approach and experiments
sugggest several important future research directions:

• The proposed CSTS model can be applied to other video understanding tasks
related to the audio modality, such as action recognition, action localization,
and video question answering. We hope to further investigate our proposed
approach on these problem settings.

• A model explicitly designed for audio-visual representation learning in multi-
person, multi-speaker environments merits further investigation.

• A model that learns better temporal representations for anticipating large
gaze shifts remains to be explored.

• The visualization of correlation weights in the spatial fusion module indicates
the potential of our model for weakly-supervised/self-supervised sound lo-
calization and active speaker detection, which can be investigated in further
work.
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F Code and License

The usage of the Aria dataset is under the Apache 2.0 License1 , and the usage of
the Ego4D dataset is under the license agreement2 . Our implementation is built
on top of [3], which is under the Apache License3 . Our code and the train/test
split on Aria dataset will be available at: https://bolinlai.github.io/CSTS-
EgoGazeAnticipation/.
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Fig. 1: Additional egocentric gaze anticipation results from our model and other base-
lines. Green dots indicate the ground truth gaze location. The first two examples are
from the Ego4D dataset, and the last example is from the Aria dataset.
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Fig. 2: Failure cases of our model and baselines. Green dots indicate the ground truth
gaze location. The first example is from the Ego4D dataset, and the second example is
from the Aria dataset.
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Stages Operators Output Size

V
id

eo
E
nc

od
er
ϕ
(x

)

video frames - 8 × 256 × 256 × 3

video token embedding
Conv(3 × 7 × 7, 96)

stride 2 × 4 × 4
4 × 64 × 64 × 96

tokenization flattening (4 × 64 × 64) × 96

video encoder block1

[
MSA(96)

MLP (384)

]
× 1 (4 × 64 × 64) × 192

video encoder block2

[
MSA(192)

MLP (768)

]
× 2 (4 × 32 × 32) × 384

video encoder block3

[
MSA(384)

MLP (1536)

]
× 11 (4 × 16 × 16) × 768

video encoder block4

[
MSA(768)

MLP (3072)

]
× 2 (4 × 8 × 8) × 768

A
ud

io
E
nc

od
er
ψ
(a

)

audio spectrograms - 8 × 256 × 256 × 1

audio token embedding
Conv(3 × 7 × 7, 96)

stride 2 × 4 × 4
4 × 64 × 64 × 96

tokenization flattening (4 × 64 × 64) × 96

audio encoder block1

[
MSA(96)

MLP (384)

]
× 1 (4 × 4096) × 192

audio encoder block2

[
MSA(192)

MLP (768)

]
× 1 (4 × 1024) × 384

audio encoder block3

[
MSA(384)

MLP (1536)

]
× 1 (4 × 256) × 768

audio encoder block4

[
MSA(768)

MLP (3072)

]
× 1 (4 × 64) × 768

F
us

io
n

M
od

ul
es

conv1
Conv(768 × 1 × 8 × 8, 768)

stride 1 × 1 × 1
4 × 1 × 768

in-frame self-attention σ(·)
[
MSA(768)

MLP (3072)

]
× 1 4 × (64 + 1) × 768

conv2
Conv(768 × 1 × 8 × 8, 768)

stride 1 × 1 × 1
4 × 1 × 768

conv3
Conv(768 × 1 × 8 × 8, 768)

stride 1 × 1 × 1
4 × 1 × 768

cross-frame self-attention π(·)
[
MSA(768)

MLP (3072)

]
× 1 8 × 1 × 768

reweighting uv,s ⊗ uv,t 8 × 64 × 768

reweighting ψ(a) ⊗ ua,t 8 × 64 × 768

D
ec

od
er

decoder block1

[
MSA(1536)

MLP (3072)

]
× 1 (4 × 16 × 16) × 768

decoder block2

[
MSA(768)

MLP (1536)

]
× 1 (4 × 32 × 32) × 384

decoder block3

[
MSA(384)

MLP (768)

]
× 1 (4 × 64 × 64) × 192

decoder block4

[
MSA(192)

MLP (384)

]
× 1 (8 × 64 × 64) × 96

head
Conv(1 × 1 × 1, 1)

stride 1 × 1 × 1
8 × 64 × 64 × 1

Table 5: Architecture of the proposed model. Convolutional layers are denoted as
Conv(kernel size, output channels). The number of input channels in multi-head
self-attention is shown in the parenthesis of MSA. The dimension of the hidden layer
in multi-layer perceptron is listed in parenthesis of MLP . conv1 is the convolutional
layer in the spatial fusion module. conv2 and conv3 are convolutional layers in the
temporal fusion module.
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