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Abstract. Egocentric gaze anticipation serves as a key building block
for the emerging capability of Augmented Reality. Notably, gaze behav-
ior is driven by both visual cues and audio signals during daily activities.
Motivated by this observation, we introduce the first model that lever-
ages both the video and audio modalities for egocentric gaze anticipa-
tion. Specifically, we propose a Contrastive Spatial-Temporal Separable
(CSTS) fusion approach that adopts two modules to separately cap-
ture audio-visual correlations in spatial and temporal dimensions, and
applies a contrastive loss on the re-weighted audio-visual features from
fusion modules for representation learning. We conduct extensive abla-
tion studies and thorough analysis using two egocentric video datasets:
Ego4D and Aria, to validate our model design. We demonstrate that au-
dio improves the performance by +2.5% and +2.4% on the two datasets.
Our model also outperforms the prior state-of-the-art methods by at least
+1.9% and +1.6%. Moreover, we provide visualizations to show the gaze
anticipation results and share additional insights into audio-visual repre-
sentation learning. The code and data split are available on our website
(https://bolinlai.github.io/CSTS-EgoGazeAnticipation/).
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1 Introduction

A person’s eye movements during their daily activities are reflective of their in-
tentions and goals (see [18] for a representative cognitive science study). The
ability to predict the future gaze targets of the camera-wearer from egocentric
videos, known as egocentric gaze anticipation, is therefore a key step towards
understanding and modeling cognitive processes and decision making. Further-
more, this capability could enable new applications in Augmented Reality and
Wearable Computing, especially in social scenarios – for example, providing
memory aids for patients with cognitive impairments, or reducing the latency
of content delivery in such AR systems. However, forecasting the gaze fixations
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Fig. 1: The problem setting of egocentric gaze anticipation. τo denotes the observation
time, and τa denotes the anticipation time. Given the video frames and audio signals of
the Input Video Sequence, the model seeks to predict the gaze fixation distribution for
the time steps in the Gaze Anticipation Sequence. Green dots indicate the gaze targets
in future frames and the heatmap shows the gaze anticipation result from our model.

of a camera-wearer using only the egocentric view (i.e., without eye tracking
at testing time) is very challenging due to the complexity of egocentric scene
content and the dynamic nature of gaze behaviors.

We argue that audio signals can serve as an important auxiliary cue for ego-
centric gaze forecasting. Consider the example in Fig. 1. In the input sequence,
the camera view shifts from the paper held by the camera wearer to the standing
speaker who asks a question. Then the sitting speaker on the far right answers the
question, which is captured by the audio stream. In the anticipation sequence,
the camera wearer’s gaze shifts towards the sitting person’s head after hearing
her response. In this case, the audio stream (the sitting person’s response) is
an important stimulus that triggers this gaze movement. The influence of au-
dio signals on eye movements is also evidenced by neuroscience research (e.g.,
[50]). Therefore, we address the problem of forecasting the gaze fixation of the
camera-wearer in unseen future frames using a short egocentric video clip and
corresponding audio. As shown in Fig. 1, fusion of the audio and video cues
enables the model to correctly predict the future attention to the seated subject
(i.e., the audio stream cues the model to anticipate a shift and the video stream
makes it possible to identify which face is speaking).

Although many works have addressed egocentric gaze estimation [23–25, 29,
30, 33, 34, 55], the egocentric gaze anticipation task is largely understudied [68].
Moreover, how to leverage both the visual modality and the audio modality for
egocentric gaze modeling has not been explored yet. Existing methods on audio-
visual learning [5–7,20,46,49,59,64] commonly fuse visual and audio embeddings
simultaneously in time and space. However, such a fusion mechanism is not ideal
under the egocentric setting, where the camera wearer’s reaction to the audio
stimuli causes a drastic change of camera viewpoint. In Fig. 1, as a reaction
to the question and answer, the camera wearer shifts the attention from the
paper to the standing person and then to the sitting person. The viewpoint
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and scene also have changed because of head movement (see the first and last
frame). Moreover, due to the natural delay of reaction time, the audio stimulus
and gaze reaction will not occur at the same time. Therefore, predicting the
future gaze behavior demands a model that can (1) learn possible viewpoint and
scene change driven by the audio stream over time and (2) locate the potential
future gaze target in the visual space. Fusing two modalities in time and space
simultaneously may result in limited performance in the two targets because
of spurious audio-visual correlations. Hence, a spatial-temporal separable fusion
model is a better solution for egocentric gaze anticipation task.

To address the challenges in our task, we propose a novel Contrastive Spatial-
Temporal Separable (CSTS) audio-visual fusion method for egocentric gaze
anticipation. Specifically, we input the egocentric video frames and the corre-
sponding audio spectrograms into a video encoder and an audio encoder respec-
tively. Then we develop a spatial fusion module and a temporal fusion module
in parallel based on self-attention mechanism for modeling the spatial and tem-
poral audio-visual correlation separately, exactly addressing the aforementioned
demands. The output representations from the two branches are merged by
channel-wise reweighting and fed into a visual decoder to predict the future gaze
target. We also propose a novel strategy that uses a multi-modal contrastive
loss [2] on the reweighted representations (referred to as post-fusion contrastive
loss) from the fusion modules to facilitate audio-visual correspondence learning.
We demonstrate the benefits of our approach on two egocentric video datasets
that capture social scenarios and everyday activities: Ego4D [16] and Aria [37].
The proposed model achieves state-of-the-art gaze anticipation performance on
both datasets. Our contributions are summarized as follows:

• We introduce the first approach that utilizes video and audio signals for
egocentric gaze anticipation.

• We propose a novel CSTS model that leverages a spatio-temporal separable
fusion module and a post-fusion contrastive learning scheme to facilitate
audio-visual representation learning for egocentric gaze anticipation.

• We present comprehensive experiment results on the Ego4D [16] and Aria [37]
datasets. Our ablation studies show audio modality can improve the perfor-
mance by +2.5% and +2.4% respectively in F1 score on Ego4D and Aria. The
experiments also demonstrate our model outperforms prior state-of-the-art
method by +1.9% and +1.6% in F1 score on the two datasets.

2 Related Work

Egocentric Gaze Modeling. Modeling human gaze behavior in egocentric
videos is an important topic in egocentric vision. Most prior efforts target at
egocentric gaze estimation [23–25, 29, 33, 34]. Huang et al . [24] propose learn-
ing temporal attention transitions from video features that reflect drastic gaze
movements. Li et al . [34] and Huang et al . [23] utilize the correlation of gaze
behaviors and actions, modeling them jointly with a convolutional network. Lai
et al . [29] encode global scene context into a single global token and explicitly
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model the global-local correlations in the visual embedding for gaze estimation.
In contrast, egocentric gaze anticipation, which seeks to predict future gaze tar-
gets from past video frames, addresses an understudied dimension of modeling
gaze. Zhang et al . [68] introduce this task and utilize a convolutional network
and a discriminator to generate future video frames, which are further used to
anticipate future gaze targets. They enhance their model by adding an additional
branch for gaze forecasting [67]. All previous efforts on both egocentric gaze es-
timation and anticipation model gaze behavior from only the visual properties
of the video stream, and do not consider the relationship between audio signals
and gaze behavior. In this work, we introduce the first model that leverages both
visual and audio signals for egocentric gaze anticipation task.

Audio-Visual Saliency Prediction. Audio-visual saliency prediction is a
well-studied problem in computer vision [9, 40, 47, 48, 51, 53]. Another related
research topic is sound source localization [5, 19–22, 52] which localizes sound
source in the image/video corresponding to a given audio stream. Here, we
mainly discuss previous approaches for fusing audio and visual representations
in saliency prediction problem. Early CNN-based approaches adopt a late-fusion
strategy [41,58–61] for saliency prediction. Recently, new findings suggest audio-
visual fusion at the intermediate features is a more effective way to leverage
advantages of both modalities [1,8,56,65] for saliency prediction. Jain et al . [26]
investigate two fusion methods at the middle level which achieve new state of
the art on multiple datasets. Yao et al . [66] propose to incorporate the audio
signal at multiple decoder layers by using an inner-product operation. Similarly,
Chang et al . [6] and Xiong et al . [64] merge audio features into visual features
at multiple levels of the visual encoder. Notably, our problem differs from the
audio-visual saliency prediction in two aspects: First, the goal of our task is
forecasting gaze behavior in the future, while saliency prediction focuses more
on studying human’s attention mechanism in the current video frame. Second,
our problem focuses egocentric videos that capture the changing viewpoint when
people respond to audio and visual stimuli, while saliency prediction uses videos
captured from a fixed viewpoint, and fail to reflect gaze reaction to real-time
events. Apart from the difference on problem settings, we also want to em-
phasize that the transformer-based fusion methods have not been applied in the
audio-visual saliency prediction problem. Moreover, we propose a well-motivated
spatio-temporal separable fusion module to address this challenging problem

Contrastive Audio-Visual Representation Learning. Our work draws from
a rich literature on leveraging contrastive learning to learn audiovisual feature
representations [2–4,15,17,28,38,39,42–45]. These works learn correspondences
between audio and visual signals in an self-supervised manner, constructing pos-
itive pairs from matching video frames and audio segments, and negative pairs
from all other pairwise combinations. We employ a similar contrastive loss to
learn correspondences between co-occurring audio and visual features. However,
while prior methods calculate contrastive loss on the raw embedding from each
modality, we propose to apply contrastive loss on re-weighted audio and visual
representations from our proposed spatial and temporal fusion mechanism.
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Fig. 2: Overview of the proposed model. The video embeddings ϕ(x) and audio em-
beddings ψ(a) are obtained by two transformer-based encoders. We then model the
correlations of visual and audio embeddings using two separate branches – (1) spatial
fusion, which learns the spatial co-occurence of audio signals and visual objects in each
frame, and (2) temporal fusion, which captures the temporal correlations and possible
gaze movement. A contrastive loss is adopted to facilitate audio-visual representation
learning. We input fused embeddings into a decoder for final gaze anticipation results.

3 Method

The egocentric gaze anticipation problem is illustrated in Fig. 1. Given egocentric
video and audio samples from time t− τo to t, the goal is to predict the future
gaze in each subsequent video frame from t to t + τa seconds. We denote the
input video and audio as x and a, respectively, and model the gaze fixation as a
probabilistic distribution on a 2D image plane (following [29,34]).

Notably, visual and audio signals have correlations in both spatial and tempo-
ral dimensions for gaze modeling. Spatially, the visual region that has a stronger
correlation with the audio content (e.g ., faces correlated with speech) is more
likely to be the potential future gaze target. Temporally, events in the audio
signal may drive both egocentric viewpoint change (via head movement) and
gaze movements as the camera wearer responds to new sounds. Our key insight
is that separate spatial and temporal fusion channels can be a more effective
way to model audio-video correlations in gaze anticipation problem.

Fig. 2 demonstrates the overview of our model. We exploit the transformer-
based encoders ϕ(x) and ψ(a) to extract the representations of the video frames x
and audio signals a. We then employ a Contrastive Spatial-Temporal Separable
(CSTS) audio-visual fusion approach. Specifically, a spatial fusion module cap-
tures the correlation between audio embeddings and spatial appearance-based
features; a temporal fusion module captures the temporal correlation between
the visual and audio embeddings; and a contrastive loss is applied on fused audio-
visual embeddings to facilitate the representation learning. Finally, spatially and
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temporally fused audio-visual features are merged and fed into a decoder for fu-
ture gaze anticipation.

3.1 Audio and Visual Feature Embedding

Visual Feature Embedding. We adopt the multi-scale vision transformer
(MViT) architecture [12] as the video encoder ϕ(x). ϕ(x) splits the 3D video ten-
sor input into multiple non-overlapping patches, and thereby extracts T×H×W
visual tokens with feature dimension D from x.
Audio Feature Embedding. We follow [27] to adopt a sliding window ap-
proach for audio signal preprocessing. Specifically, for a video frame at time step
ti, the corresponding audio segment has a range of [ti − 1

2∆tw, ti +
1
2∆tw]. We

then use STFT to convert all audio segments into log-spectrograms and feed the
processed audio segments into a transformer-based audio encoder ψ(a). Since
the audio stream has more sparse information than video stream, we adopt a
light-weighted transformer architecture (inspired by [11, 14]) for the audio en-
coder ψ(a). In this way, ψ(a) extracts T ×M tokens with feature dimension D
from the audio inputs a.

3.2 Spatial-Temporal Separable Fusion

Spatial Audio-Visual Fusion. The spatial fusion branch identifies correlations
between the audio signal corresponding to a video frame and its visual content in
space. We first use convolutional operations to generate the audio representation
za,s for spatial fusion with dimensions T×1×D from the audio embedding ψ(a).
This allows the model to extract a holistic audio embedding within each sliding
window. We then input the visual embedding ϕ(x) and pooled audio embedding
za,s into an in-frame self-attention layer σ. In this layer, we masked out all
cross-frame connections and only calculate the correlations among visual tokens
within each frame and the corresponding single audio token. Therefore, the input
to the spatial fusion consists of T groups of visual tokens, and T single audio
embeddings. Formally, we have:

ϕ(x) =
[
ϕ(x)(1), ..., ϕ(x)(T )

]
, (1)

za,s =
[
z(1)a,s, ..., z

(T )
a,s

]
, (2)

where ϕ(x)(i) ∈ R1×N×D, z(i)a,s ∈ R1×1×D with i ∈ {1, ..., T}, and N = H ×W .
Hence, the input from each time step is denoted as:

z(i)s =
[
ϕ(i)(x), z(i)a,s

]
∈ R1×(N+1)×D (3)

The in-frame self-attention operation for time step i can be written as:

σ(z(i)s ) = Softmax
(
Q(i)

s K(i)
s

T
/
√
D
)
V (i)
s ∈ R1×(N+1)×D, (4)
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where Q
(i)
s ,K

(i)
s ,V

(i)
s refer to query, key, and value of the spatial self-attention

at time step i, respectively. We apply Eq. (4) independently for each time step
i and have the following overall in-frame self-attention:

σ(zs) =
[
σ(z(i)s ), ..., σ(z(T )

s )
]
∈ RT×(N+1)×D. (5)

In practice, we input all tokens to the in-frame self-attention layer simultane-
ously, mask out cross-frame correlations and calculate Eq. (4) in one shot to
speed up training. We further add two linear layers after the self-attention out-
puts σ(zs), following the standard self-attention layer design. The output of the
spatial module is finally denoted as us ∈ RT×(N+1)×D.
Temporal Audio-Visual Fusion. The temporal fusion branch models relation-
ships between audio and visual content across time. We apply two convolutional
layers to integrate the embedding from each modality at each time step into a
single token. The resulting visual and audio tokens are denoted as zv,t ∈ RT×1×D

and za,t ∈ RT×1×D, respectively. Then we feed zt = [zv,t, za,t] ∈ R2T×1×D into
a cross-frame self-attention layer π that can be formulated as:

π(zt) = Softmax
(
QtK

T
t /

√
D
)
Vt ∈ R2T×1×D, (6)

where Qt,Kt,Vt are query, key and value matrices with dimension 2T × 1×D.
Similar to the spatial fusion, two additional linear layers are added after π(zt)
and result in the final temporal fusion output ut ∈ R2T×1×D.
Merging of Two Fusion Modules. After obtaining audio-visual representa-
tions from the two fusion modules, we merge the two branches by reweighting
the output from spatial fusion with the temporal weights from temporal fu-
sion in each channel, which produces a new representation for each modality
that has been refined by multimodal spatial and temporal correlation. Specif-
ically, we break down the output from spatial fusion us ∈ RT×(N+1)×D into
uv,s ∈ RT×N×D and ua,s ∈ RT×1×D, and the output from temporal fusion
ut ∈ R2T×1×D into uv,t ∈ RT×1×D and ua,t ∈ RT×1×D. The reweighted visual
representation is formulated as

uv = uv,s ⊗ uv,t ∈ RT×N×D, (7)

where ⊗ denotes element-wise multiplication with broadcast mechanism. uv is
then fed into a decoder to generate final prediction for future gaze target. We
follow [29] to add skip connections from the video encoder to the decoder and
optimize the network with a KL-Divergence loss Lkld.

3.3 Contrastive Learning for Audio-Visual Fusion

In addition to using KL-Divergence loss to supervise gaze anticipation, we pro-
pose to leverage the intrinsic alignment of visual and audio modalities to learn a
more robust audio-visual representation by using a contrastive learning scheme.
Multi-modal contrastive loss has been proved to be effective in self-supervised



8 B. Lai et al.

learning [2, 3]. Rather than calculating the contrastive loss directly on the raw
embedded features, we innovatively propose to use the reweighted video and au-
dio representations from the spatial and temporal fusion modules, which has not
been studied in prior works. In our experiments, we show this is a more effective
representation learning method for egocentric gaze anticipation.

To this end, we reweight the raw audio embedding ψ(a) ∈ RT×M×D from
the audio encoder by temporal weights ua,t from the temporal fusion module in
a similar way to Eq. (7). We then get the reweighted audio feature as

ua = ψ(a)⊗ ua,t ∈ RT×M×D (8)

We don’t use an additional learnable token to aggregate information from other
tokens as prior works did [2, 3, 35]. We instead average all tokens of uv and
ua respectively to obtain the single-vector representations u′v, u′a ∈ R1×D and
then map them to a low-dimensional common space using linear layers followed
by L2 normalization. It can be formulated as wv = Norm (f1(u

′
v)) and wa =

Norm (f2(u
′
a)), where f1(·), f2(·) are linear layers. The resulting visual vector

and audio vector are denoted as wv, wa ∈ R1×D′
, where D′ is the new dimension

of the common space. Within each mini-batch, corresponding audio and visual
embeddings are considered as positive pairs, and all other pairwise combinations
are considered as negative. Following [35], we calculate video-to-audio loss and
audio-to-video loss separately. The video-to-audio contrastive loss is defined as

Lv2a
cntr = − 1

|B|

|B|∑
i=1

log
exp(w

(i)
v

T
w

(i)
a /T )∑

j∈B exp(w
(i)
v

T
w

(j)
a /T )

, (9)

where B is the training batch B = {1, 2, . . . , n} and T is the temperature factor.
Superscripts (i) and (j) denote the i-th and j-th samples in the batch. The
audio-to-video loss is defined in a symmetric way. Finally, the contrastive loss is
defined as Lcntr = Lv2a

cntr + La2v
cntr. Lkld and Lcntr are linearly combined with a

parameter α for the final training loss, i.e., L = Lkld + αLcntr.

3.4 Implementation Details

In our experiments, we set the observation time τo as 3 seconds and the an-
ticipation time τa as 2 seconds. For video input, we sample 8 frames from the
observable segment and resize to a spatial size of 256×256. For audio input, fol-
lowing [27], we first resample the audio signal to 24kHz and set a time window
with ∆tw = 1.28s to crop the audio segment corresponding to each video frame.
We then convert it to a log-spectrogram using a STFT with window size 10ms
and hop length 5ms. The number of frequency bands is set as 256 resulting in
a spectrogram matrix of size 256×256. The output of the decoder is the gaze
distribution on 8 frames uniformly sampled from the 2-second anticipation time.
More details about model architecture and training hyper-parameters can be
found in supplementary.
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4 Experiments

4.1 Experiment Setup

Datasets. We conduct experiments on two egocentric datasets that contain
aligned video and audio streams and gaze tracking data – Ego4D1 [16] and
Aria [37]. Note that another widely used gaze estimation benchmark EGTEA
Gaze+ [34] does not release audio data and thus is not usable for our study. Other
popular egocentric video datasets, such as Epic-Kitchens [10] and Charades-
Ego [54], are also not applicable to our task because they don’t have eye-tracking
data. Please refer to the supplementary for more details on the two datasets, our
data preprocessing and train/test splits.
Evaluation Metrics. As suggested in recent work on egocentric gaze estima-
tion [29], AUC score can easily get saturated due to the long-tailed distribution
of gaze on 2D video frames. Therefore, we follow [29, 34] to adopt F1 score
(primary), recall and precision as our evaluation metrics.

4.2 Ablation Study

We first quantify the performance contribution of each key module from our
proposed method. Specifically, we denote the model only using our proposed
spatial fusion module as S-fusion, the model only using our proposed tempo-
ral fusion module as T-fusion, the model using both modules and our spatial-
temporal separable fusion strategy without the contrastive learning schema as
STS. We finally present the performance of our full CSTS model (i.e., STS +
contrastive learning). As demonstrated in Tab. 1, compared with models trained
solely on RGB frames (Vision only), S-fusion and T-fusion boost the F1 score
by +1.4% and +1.5% on Ego4D, and +1.1% and +1.1% on Aria. Moreover, the
STS model further achieves a F1 score of 39.2% on Ego4D and 59.3% on Aria.
These results suggest that both the spatial and and the temporal correlation
between video and audio signal play a vital role for egocentric gaze anticipation.
Contrastive loss further improves F1 score by +0.5% and +0.6% suggesting its
contributions to audio-visual representative learning. We also observe that the
full model doesn’t achieve the best in recall. This is because some incomplete
baselines don’t leverage audio modality as effectively as the full model and thus
produce more uncertainty in output, resulting in higher recall and lower preci-
sion. Therefore, we consider F1 as the primary metric. Similar phenomenon is
also observed in the following experiments.

4.3 Analysis on Fusion and Contrastive Learning Strategies

Directly feeding all visual and audio tokens into a fusion layer (i.e., joint fusion)
is a widely used approach for audio-visual saliency prediction [6, 59, 64] and
action recognition [14, 27, 62]. To show the superiority of the proposed spatial-
temporal separable (STS ) fusion approach in handling the unique challenges of

1We only use the subset collected in social scenarios [31,32].
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Table 1: Ablations on each key component of our proposed model. CSTS (highlighted
in green) refers to the complete model of our approach. The best results are highlighted
with boldface. Please refer to Sec. 4.2 for more discussions.

Methods Ego4D Aria

F1 Score Recall Precision F1 Score Recall Precision

Vision only 37.2 54.1 28.3 57.5 62.4 53.3
S-fusion 38.6 54.1 30.1 58.6 67.1 52.0
T-fusion 38.7 53.8 30.1 58.6 65.9 52.8
STS 39.2 53.7 30.8 59.3 66.8 53.3
CSTS 39.7 53.3 31.6 59.9 66.8 54.3

Table 2: Analysis on proposed fusion strategies. The best results are highlighted with
boldface. STS (highlighted in green) refers to the proposed spatial-temporal separable
fusion method (without contrastive learning). More discussions are in Sec. 4.3.

Methods Ego4D Aria

F1 Score Recall Precision F1 Score Recall Precision

Vision only 37.2 54.1 28.3 57.5 62.4 53.3
Linear 38.2 53.0 29.9 58.1 65.9 51.9
Bilinear 37.6 52.8 29.2 57.7 66.8 50.8
Concat. 38.1 53.6 29.5 58.0 66.8 51.2
Vanilla SA 38.5 53.3 30.1 58.0 67.2 51.1
STS 39.2 53.7 30.8 59.3 66.8 53.3

our task, we provide additional comparison with four joint fusion strategies that
are widely used in audio-visual saliency prediction and audio-visual action recog-
nition. Specifically, the four strategies are (1) fusing two modalities with a few
linear layers [14] (denoted as Linear); (2) feeding video and audio embeddings to
a single bilinear layer [26,66] (denoted as Bilinear); (3) concatenating audio and
visual embeddings along channel dimension (denoted as Concat.) as in [26, 27];
(4) feeding all embedded video and audio tokens together into a standard self-
attention layer (denoted as Vanilla SA), inspired by [36, 64]. We replace our
fusion modules with the four strategies in our framework for a fair comparison.
We elaborate the implementation details of each baseline in supplementary.

As shown in Tab. 2, Linear, Bilinear, Concat. and Vanilla SA methods have
limited improvement over the vision-only baseline, suggesting that previous fu-
sion strategies for audio-visual saliency prediction and general action recognition
are sub-optimal for our problem setting. In contrast, our proposed fusion strategy
(STS) yields larger performance boost (+2.0% on Ego4D and +1.8% on Aria)
even without using the contrastive loss, which shows the benefits of spatial-
temporal separable fusion mechanism. The possible reason is that prior joint
fusion methods are designed for third-person videos without a drastic viewpoint
change. However, forecasting gaze in egocentric view has the unique challenges
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Table 3: Analysis on the proposed contrastive learning schema. Post Contr denotes
our post-fusion contrastive learning. STS + Post Contr refers to the complete CSTS
model. The best results are highlighted with boldface. More discussions are in Sec. 4.3.

Methods Ego4D Aria

F1 Score Recall PrecisionF1 Score Recall Precision

Vanilla SA 38.5 53.3 30.1 58.0 67.2 51.1
SA + Vanilla Contr 38.5 52.4 30.5 58.4 67.0 51.8
SA + Post Contr 38.9 54.4 30.3 58.8 66.4 52.8
STS 39.2 53.7 30.8 59.3 66.8 53.3
STS + Vanilla Contr 39.0 53.7 30.6 59.1 66.5 53.1
STS + Post Contr 39.7 53.3 31.6 59.9 66.8 54.3

Anticipation Time (s) Anticipation Time (s)

Ego4D

F1
 S

co
re

F1
 S

co
re

Aria

Fig. 3: The performance of gaze anticipation in each frame. Our model (CSTS) con-
sistently outperforms all prior methods by a notable margin.

caused by camera movement and the latency of gaze response to audio stimuli.
Our approach fuses two modalities in space and time separately and hence avoids
spurious correlations that may happen in joint fusion baselines.

We also evaluate the benefits of our proposed post-fusion contrastive learning
scheme in Tab. 3. Here, we consider another baseline (denoted as Vanilla Contr)
that calculates the contrastive loss using raw video and audio embeddings (i.e.,
ϕ(x) and ψ(a) in Fig. 2), as is typical in prior work [15, 17, 38, 57]. Our novel
strategy of adding contrastive loss on fused features is denoted as Post Contr.
Vanilla Contr makes only minor differences on Vanilla SA model and even slightly
reduces performance when accompanied by our proposed STS mechanism. In
contrast, our proposed Post Contr scheme improves the performance of Vanilla
SA by +0.4% and 0.8% and improves STS by +0.5% and +0.6% on the two
datasets. These results further suggest that post-fusion contrastive learning is
more robust for audio-visual learning in our task. More experiments of different
contrastive learning strategies are provided in supplementary.
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Table 4: Comparison with state-of-the-art models on egocentric gaze anticipation. We
also adapt previous egocentric gaze estimation approaches to the anticipation setting
for a more thorough comparison. The best results are highlighted with boldface. The
green row shows our model performance. Please refer to Sec. 4.4 for more discussions.

Methods Ego4D Aria

F1 Score Recall Precision F1 Score Recall Precision

Center Prior 13.6 9.4 24.2 24.9 17.3 44.4
GazeMLE [34] 36.3 52.5 27.8 56.8 64.1 51.0
AttnTrans [24] 37.0 55.0 27.9 57.4 65.5 51.0
I3D-R50 [13] 36.9 52.1 28.6 57.4 63.6 52.2
MViT [12] 37.2 54.1 28.3 57.5 62.4 53.3
GLC [29] 37.8 52.9 29.4 58.3 65.4 52.6
DFG [68] 37.2 53.2 28.6 57.4 63.6 52.3
DFG+ [67] 37.3 52.3 29.0 57.6 65.5 51.3
CSTS 39.7 53.3 31.6 59.9 66.8 54.3

4.4 Comparison with State-of-the-art Methods

Most existing works on egocentric gaze modeling target at egocentric gaze es-
timation rather than anticipation. In order to provide a thorough comparison,
in addition to comparing against SOTA egocentric gaze anticipation models
(DFG [68], DFG+ [67]), we also adapt the recent SOTA egocentric gaze esti-
mation model GLC [29] and all baselines from [29] (I3D-Res50 [63], MViT [12],
GazeMLE [34] and AttnTrans [24]) to the anticipation task.

As presented in Tab. 4, our method outperforms its direct competitor DFG+,
which is the previous SOTA model for egocentric gaze anticipation, by +2.4% F1
on Ego4D and +2.3% F1 on Aria. Note that the original DFG and DFG+ used
a less powerful backbone encoder, so for fair comparison, we reimplement their
method using the same MViT backbone as our method. We also observe that
methods originally designed for egocentric gaze estimation still work as strong
baselines for the egocentric gaze anticipation task. Our proposed CSTS model
also outperforms these methods, surpassing the recent SOTA for egocentric gaze
estimation – GLC by +1.9% F1 on Ego4D and +1.6% F1 on Aria. In addi-
tion, We also incorporate audio stream into the strongest baseline (GLC) by a
straightforward concatenation whose F1 score is 38.1% on Eg4D and 58.5% on
Aria. The marginal gain over GLC (+0.3%/+0.2%) suggests that simply using
audio stream in a strong baseline without specific design leads to sub-optimal
solution in egocentric gaze anticipation problem, which in turn validates the
effectiveness and necessity of our approach.

In addition, we evaluate gaze anticipation on each anticipation time step
independently and compare with previous methods in Fig. 3. Unsurprisingly,
the anticipation problem becomes more challenging as the anticipation time step
increases farther into the future. Our CSTS method consistently outperforms
all baselines at all future time steps. Moreover, we note that our model also
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Fig. 4: Egocentric gaze anticipation results from our model and other baselines. We
show the results of four future time steps uniformly sampled from the anticipation
segments. Green dots indicate the ground truth gaze location.

produces new SOTA results on egocentric gaze estimation, demonstrating the
generalizability and robustness of our approach across gaze modeling tasks. We
include these results in supplementary.

4.5 Visualization of Predictions

We visually showcase the anticipation results of CSTS and the baselines in Fig. 4.
We can see that GazeMLE [34] and AttnTransit [24] produce more uncertainty in
prediction heatmaps. Other methods fail to anticipate the true gaze target, and
are likely to be misled by other salient objects. Our CSTS approach produces the
best gaze anticipation results among all methods. We attribute this improvement
to our novel model design that effectively addresses the unique challenges of
forecasting gaze targets in egocentric view.
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Fig. 5: Visualization of the spatial correlation weights. All video frames are sorted in
a chronological order indexed by the numbers on the top-right corner.

4.6 Visualization of Learned Correlations

We provide further insight on our model by visualizing the audio-visual corre-
lations from the spatial fusion module. For each time step t, we calculate the
correlation of each visual token with the single audio token and map it back
to the input frames. The correlation heatmaps are shown in Fig. 5. In the first
example, the speaker in the middle speaks, then turns her head around to talk
with a social partner in the background (frame 1-3). We observe that our model
captures that the audio signal has the highest correlation with spatial region of
the speaker while she is speaking. Then, when she stops talking and turns her
head back, the correlation is highest in the background regions, indicating the
potential location of her social partner. The second example illustrates a simi-
lar phenomenon: the model captures the speaker at the beginning when she is
talking, then attends to background locations when she stops. These examples
suggest our model has the capability to model the audio-visual correlations in
spatial dimension to learn a robust audio-visual representation.

5 Conclusion

In this paper, we propose a novel contrastive spatial-temporal separable fusion
approach (CSTS) for egocentric gaze anticipation. Our key contribution is break-
ing down the fusion of the audio and visual modalities into a separate spatial
fusion module for learning the spatial co-occurrence of visual features and au-
dio signals, and a temporal fusion module for modeling the changing viewpoint
and scene driven by audio stimuli. We further adopt a contrastive loss on the
reweighted audio-visual representations from the fusion modules to facilitate
multimodal representation learning. We demonstrate the benefits of our pro-
posed model design on two egocentric video datasets: Ego4D and Aria. Our
work is a key step for probing into human cognitive process with computational
models, and provides important insights into multimodal representation learn-
ing, visual forecasting and egocentric video understanding.
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