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1 Appendix

Fig. 1: Visualization of visual perturbations.

1.1 More Visualization of Perturbations

Visual perturbations. Visual perturbations involve the modification of images
or video frames to introduce noise, blur, environmental interference, and post-
processing in appearance that a system might encounter in real-world scenarios.
Examples of visual perturbations can be found in Fig. 1

Acoustic perturbations. Acoustic perturbations alter audio data to test the
durability of speech recognition and audio processing systems. We introduce
noise, signal adjustments, filtering, physical interference, and post-processing
that a system might affected. Examples of acoustic perturbations are in “acous-
tic_perturb_example” folder.
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Table 1: Illustration of textual perturbations Misspelling(MS), Misspunctuation(MP),
Grammar error(GE) and Character missing(CM) for two example sentence under low(L),
medium(M) and high(H) perturbation levels.

Textual perturbations. Textual perturbations involve the modification of text
data to introduce errors or variations, akin to those that might caused by human-
writing and machine communication in natural language processing. Examples
included in Tab. 1

1.2 Performance Evaluation

Referring Image Segmentation. As shown in Tabs. 2 to 10, we test State-of-the-art
models’ performance in dataset RefCOCO/+/g [7, 17] in low, medium, and high
perturbation levels. After a detailed evaluation, we noticed that PolyFormer [6]
stands out with the highest mIoU across all perturbation levels in different
datasets, further interpreting our hypothesis on its robustness due to its special
polygon representation. SEEM [19], while having lower scores on MIoU and
Precision at 50-70, still shows its promising ability to resilience on perturbation,
especially in its work on Precision at a high level, which can prove that this
model still has a good understanding of the object’s overall shape.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.58 0.65 0.61 0.55 0.46 0.22 0.51 0.57 0.53 0.48 0.37 0.17 0.44 0.49 0.45 0.39 0.30 0.13
PolyFormer [6] 0.70 0.82 0.78 0.71 0.57 0.21 0.64 0.75 0.71 0.64 0.50 0.18 0.57 0.66 0.62 0.55 0.42 0.14
X-Decoder [18] 0.60 0.69 0.66 0.61 0.51 0.24 0.52 0.61 0.58 0.53 0.44 0.19 0.44 0.51 0.48 0.44 0.35 0.15
ETRIS [12] 0.64 0.75 0.70 0.62 0.46 0.14 0.57 0.66 0.61 0.53 0.38 0.11 0.49 0.56 0.51 0.43 0.29 0.08
SEEM [19] 0.59 0.66 0.64 0.62 0.55 0.34 0.54 0.61 0.60 0.57 0.51 0.30 0.47 0.53 0.51 0.47 0.40 0.22

Table 2: Robustness of referring image segmentation on RefCOCO Validation set with
low (L), medium (M) and high (H) perturbation levels.

Video object segmentation. In Tab. 14, We show a detailed evaluation of state-of-
the-art methods on the YouTube-VOS [11] dataset under ’Clean’, ’Static’, and
’Dynamic’ mode of perturbations. Among all the evaluated methods, Cutie [2]
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Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.64 0.73 0.69 0.63 0.53 0.25 0.56 0.64 0.60 0.54 0.43 0.19 0.48 0.54 0.50 0.44 0.33 0.13
PolyFormer [6] 0.72 0.84 0.81 0.75 0.58 0.19 0.66 0.78 0.75 0.68 0.52 0.17 0.58 0.68 0.65 0.58 0.42 0.13
X-Decoder [18] 0.62 0.71 0.69 0.65 0.53 0.22 0.55 0.65 0.62 0.58 0.47 0.18 0.46 0.54 0.51 0.46 0.36 0.12
ETRIS [12] 0.68 0.80 0.76 0.68 0.51 0.14 0.61 0.71 0.67 0.59 0.43 0.11 0.52 0.61 0.56 0.47 0.31 0.07
SEEM [19] 0.63 0.70 0.69 0.66 0.58 0.34 0.57 0.65 0.63 0.61 0.53 0.28 0.49 0.56 0.54 0.50 0.43 0.22

Table 3: Robustness of referring image segmentation on RefCOCO Test-A set with
low (L), medium (M) and high (H) perturbation levels.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.53 0.58 0.53 0.47 0.39 0.21 0.47 0.52 0.47 0.41 0.33 0.16 0.40 0.44 0.40 0.34 0.26 0.12
PolyFormer [6] 0.67 0.77 0.73 0.66 0.54 0.25 0.61 0.70 0.66 0.59 0.47 0.20 0.55 0.63 0.58 0.52 0.41 0.17
X-Decoder [18] 0.51 0.58 0.55 0.52 0.44 0.24 0.46 0.52 0.49 0.45 0.37 0.18 0.40 0.45 0.42 0.38 0.31 0.15
ETRIS [12] 0.60 0.68 0.62 0.54 0.41 0.16 0.52 0.59 0.53 0.44 0.32 0.11 0.46 51 0.45 0.37 0.26 0.09
SEEM [19] 0.50 0.56 0.54 0.52 0.47 0.31 0.47 0.52 0.50 0.48 0.42 0.26 0.41 0.45 0.43 0.40 0.35 0.22

Table 4: Robustness of referring image segmentation on RefCOCO Test-B set with
low (L), medium (M) and high (H) perturbation levels.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.58 0.66 0.61 0.56 0.46 0.23 0.51 0.57 0.53 0.48 0.40 0.18 0.43 0.48 0.44 0.39 0.29 0.12
PolyFormer [6] 0.65 0.75 0.72 0.66 0.53 0.20 0.57 0.66 0.63 0.57 0.45 0.16 0.50 0.58 0.55 0.49 0.37 0.12
X-Decoder [18] 0.60 0.69 0.66 0.62 0.52 0.24 0.51 0.59 0.56 0.52 0.42 0.19 0.44 0.51 0.49 0.44 0.35 0.15
ETRIS [12] 0.56 0.65 0.60 0.53 0.40 0.12 0.48 0.55 0.51 0.45 0.32 0.09 0.40 0.46 0.41 0.35 0.23 0.06
SEEM [19] 0.58 0.65 0.63 0.60 0.54 0.34 0.51 0.57 0.55 0.53 0.47 0.28 0.44 0.50 0.48 0.45 0.39 0.21

Table 5: Robustness of referring image segmentation on RefCOCO+ Validation set
with low (L), medium (M) and high (H) perturbation levels.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.63 0.71 0.68 0.62 0.52 0.25 0.55 0.63 0.59 0.53 0.42 0.18 0.47 0.53 0.49 0.43 0.33 0.14
PolyFormer [6] 0.68 0.79 0.76 0.70 0.56 0.19 0.60 0.71 0.68 0.62 0.48 0.15 0.53 0.62 0.59 0.53 0.40 0.12
X-Decoder [18] 0.61 0.70 0.68 0.64 0.54 0.22 0.54 0.63 0.61 0.57 0.46 0.18 0.44 0.52 0.49 0.44 0.35 0.13
ETRIS [12] 0.62 0.73 0.68 0.61 0.42 0.12 0.53 0.63 0.59 0.52 0.37 0.09 0.44 0.51 0.47 0.40 0.27 0.06
SEEM [19] 0.62 0.70 0.69 0.66 0.59 0.34 0.56 0.63 0.62 0.59 0.53 0.29 0.48 0.54 0.53 0.50 0.43 0.22

Table 6: Robustness of referring image segmentation on RefCOCO+ Test-A set with
low (L), medium (M) and high (H) perturbation levels.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.52 0.58 0.53 0.47 0.39 0.21 0.46 0.50 0.46 0.42 0.32 0.17 0.39 0.43 0.38 0.33 0.25 0.12
PolyFormer [6] 0.58 0.65 0.61 0.56 0.45 0.21 0.52 0.59 0.55 0.50 0.40 0.18 0.46 0.52 0.48 0.43 0.33 0.14
X-Decoder [18] 0.52 0.59 0.56 0.52 0.45 0.24 0.45 0.51 0.48 0.44 0.37 0.19 0.39 0.44 0.41 0.38 0.31 0.14
ETRIS [12] 0.47 0.52 0.47 0.41 0.29 0.11 0.40 0.44 0.39 0.33 0.24 0.09 0.34 0.37 0.31 0.25 0.17 0.06
SEEM [19] 0.49 0.54 0.52 0.50 0.49 0.29 0.44 0.48 0.47 0.44 0.39 0.25 0.40 0.44 0.42 0.39 0.34 0.20

Table 7: Robustness of referring image segmentation on RefCOCO+ Test-B set with
low (L), medium (M) and high (H) perturbation levels.

achieves the highest performance on the Clean dataset. However, it lacks resilience
when it comes to perturbations, which can be attributed to its heavy reliance on
pixel- and object-level consistency across frames. DEVA [3], leveraging its unique
technique of decoupling video on external data and bi-directional propagation,
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Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.55 0.60 0.55 0.48 0.38 0.17 0.47 0.51 0.46 0.39 0.30 0.13 0.38 0.42 0.37 0.30 0.21 0.08
PolyFormer [6] 0.64 0.74 0.69 0.61 0.47 0.18 0.57 0.67 0.62 0.54 0.40 0.15 0.50 0.58 0.54 0.46 0.33 0.12
X-Decoder [18] 0.58 0.65 0.62 0.56 0.46 0.22 0.50 0.56 0.53 0.49 0.39 0.18 0.44 0.49 0.46 0.40 0.31 0.13
ETRIS [12] 0.53 0.61 0.55 0.47 0.33 0.11 0.45 0.51 0.46 0.38 0.26 0.08 0.38 0.42 0.36 0.29 0.19 0.06
SEEM [19] 0.56 0.62 0.60 0.56 0.49 0.29 0.49 0.55 0.52 0.49 0.43 0.24 0.43 0.48 0.46 0.42 0.35 0.18

Table 8: Robustness of referring image segmentation on RefCOCOg-umd Validation
set with low (L), medium (M) and high (H) perturbation levels.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.55 0.61 0.55 0.48 0.38 0.17 0.47 0.52 0.47 0.41 0.31 0.13 0.39 0.42 0.37 0.31 0.23 0.09
PolyFormer [6] 0.64 0.74 0.69 0.61 0.47 0.18 0.58 0.68 0.63 0.56 0.42 0.15 0.50 0.58 0.54 0.47 0.34 0.12
X-Decoder [18] 0.60 0.69 0.65 0.60 0.49 0.23 0.52 0.60 0.57 0.52 0.42 0.18 0.44 0.51 0.48 0.42 0.33 0.15
ETRIS [12] 0.53 0.60 0.55 0.47 0.34 0.11 0.46 0.52 0.46 0.38 0.27 0.08 0.38 0.42 0.36 0.30 0.19 0.05
SEEM [19] 0.57 0.64 0.62 0.58 0.52 0.31 0.51 0.58 0.56 0.52 0.45 0.26 0.45 0.51 0.48 0.45 0.37 0.20

Table 9: Robustness of referring image segmentation on RefCOCOg-umd Test set with
low (L), medium (M) and high (H) perturbation levels.

Method L M H
mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90 mIoU P@50 P@60 P@70 P@80 P@90

LAVT [13] 0.69 0.78 0.74 0.68 0.56 0.27 0.57 0.64 0.60 0.53 0.42 0.18 0.46 0.51 0.46 0.40 0.29 0.12
PolyFormer [6] – – – – – – – – – – – – – – – – – –
X-Decoder [18] 0.63 0.72 0.69 0.64 0.52 0.25 0.54 0.61 0.59 0.53 0.43 0.19 0.47 0.54 0.50 0.45 0.35 0.15
ETRIS [12] 0.49 0.56 0.50 0.43 0.30 0.09 0.45 0.51 0.45 0.38 0.26 0.08 0.38 0.41 0.37 0.30 0.19 0.05
SEEM [19] 0.61 0.69 0.67 0.63 0.56 0.34 0.53 0.60 0.58 0.54 0.47 0.26 0.46 0.51 0.49 0.45 0.38 0.21

Table 10: Robustness of referring image segmentation on RefCOCOg-google Validation
set with low (L), medium (M) and high (H) perturbation levels.

maintains its high performance in ’static’ perturbation which somehow preserves
the temporal consistency. Notably, DeAOT [15] accomplishes the best result
in ’dynamic’ perturbation, which can be further thanks to its decoupling of
object-agnostic and object-specific features in hierarchical propagation.

Referring video object segmentation. According to the data depicted in Tabs. 11
and 12, we recognize that SgMg [8] exhibits resilience against various types of
disturbances, a trait largely attributable to its backbone based on the Swin
Transformer, in contrast to other models that utilize a ResNet-based architecture.
In the remaining three models, OnlineRefer [9] stands out due to its per-frame
prediction mechanism, which provides it with the strongest robustness against
perturbations. In Tab. 13, we compare transformer-based model and ResNet-based
model separately; OnlineRefer [9] and SgMg [8] also maintain their performance.

1.3 Statistics of Generated Datasets

We show the statistics of generated datasets as shown in Tab. 15

1.4 Implementation of Image Perturbations

Distortions based on Noise.
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Method
Low Medium

Anno0 Anno1 Anno2 Anno3 Anno0 Anno1 Anno2 Anno3
J F J F J F J F J F J F J F J F

ReferFormer [10] 47.9 52.0 47.5 51.4 45.5 49.1 45.2 49.7 43.6 48.4 44.3 49.2 42.6 47.4 41.8 47.1
R2-VOS [5] 50.3 57.1 49.4 56.6 49.3 56.6 51.7 57.5 47.7 55.2 47.7 55.7 44.3 51.5 46.2 52.6
OnlineRefer [9] 51.4 57.7 50.4 56.8 52.5 58.9 52.2 58.2 48.0 54.2 50.3 56.1 46.9 53.6 46.9 53.5
SgMg [8] 58.2 62.9 57.0 62.9 57.5 62.8 56.5 61.6 51.3 57.3 55.3 61.0 49.9 55.1 51.0 57.2

Method
High Dynamic

Anno0 Anno1 Anno2 Anno3 Anno0 Anno1 Anno2 Anno3
J F J F J F J F J F J F J F J F

ReferFormer [10] 39.4 43.3 39.0 42.6 37.8 41.0 37.7 40.6 43.0 47.3 44.1 48.0 43.0 47.0 41.4 46.3
R2-VOS [5] 38.5 43.7 38.5 44.2 39.2 45.3 40.7 45.2 46.8 52.1 46.0 52.2 43.5 50.5 49.6 55.0
OnlineRefer [9] 39.1 43.3 43.4 47.6 42.9 47.2 43.5 47.2 50.5 56.3 49.9 55.2 49.5 54.5 44.3 50.4
SgMg [8] 47.8 51.5 48.9 51.9 46.2 50.6 46.1 50.3 53.3 58.5 53.7 58.5 54.9 60.2 51.4 56.3

Table 11: Robustness of referring video object segmentation methods under low (L),
medium (M), and high (H) perturbation levels. Methods in black use RestNet backbone
and the method in gray is Transformer based.

Method Environment Sensor
Snow Fog Frost Spatter Bright Defocus Gau. B Motion

ReferFormer [10] 42.8 46.2 45.9 50.3 41.4 45.3 45.9 49.5 48.2 53.0 41.8 45.3 42.8 46.3 41.0 44.8
R2-VOS [5] 44.3 49.4 48.2 54.1 36.7 42.6 48.0 54.7 53.8 59.6 45.8 50.1 47.6 52.2 45.7 50.3
OnlineRefer [9] 46.0 50.0 48.6 54.1 40.0 45.1 50.6 56.3 54.4 60.8 48.1 53.4 50.1 55.2 46.8 51.2
SgMg [8] 52.8 56.4 54.7 59.2 48.7 53.2 55.4 59.9 58.1 63.4 53.4 57.7 55.1 59.5 52.0 57.4

Sensor Transmission
Glass Impulse Shot Speckle Contrast Saturate JPEG Pixelate

ReferFormer [10] 39.6 42.5 42.7 47.2 41.1 45.4 43.4 47.2 45.3 49.5 49.0 53.1 48.0 52.1 43.6 47.5
R2-VOS [5] 43.1 48.2 41.3 48.5 40.5 46.6 41.2 47.3 46.7 52.2 54.5 60.3 52.6 58.6 48.8 54.2
OnlineRefer [9] 41.9 46.2 47.5 52.6 46.6 51.6 47.3 52.6 46.6 51.1 55.1 61.8 53.1 59.8 48.5 55.2
SgMg [8] 49.8 54.7 51.3 55.3 51.1 54.7 51.8 55.8 54.2 58.4 57.8 62.8 57.4 62.3 54.3 59.2

Table 12: Robustness of referring video object segmentation methods under different
textual and visual perturbations on AVS-Multi. Methods in black use RestNet backbone
and the method in gray is Transformer based.

1. Gaussian Noise. For an original image denoted as I, the addition of Gaussian
noise introduces a degraded version I ′, described by

I ′ = I + η (1)

where η, the noise, follows a Gaussian distribution with a mean of zero and a
variance of σ2, depicted as η ∼ N (0, σ2).

2. Shot Noise. The phenomenon of shot noise arises from the discrete nature of
photon or particle detection in imaging, which can be modeled by a Poisson
distribution.

3. Impulse Noise. In this scenario, select pixels in the original image I are
altered to extreme limits (e.g., maximum or minimum RGB values) based on
a probability p. The alteration process for a pixel located at (x, y) is defined
as

I ′(x, y) =


minimum value with probability p/2

maximum value with probability p/2

I(x, y) otherwise
(2)
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Table 13: Robustness of referring video object segmentation methods under none,
static and dynamic perturbations.

Method
Ref-YTVOS

Clean Static Dynamic
J F J F J F

MTTR [1] 54.0 56.4 43.0−9.0 45.5−10.9 44.5−9.5 47.4−9.0

SgMg [8] 57.7 60.0 52.4−5.3 54.5−5.5 51.9−5.8 54.3−5.7

ReferFormer [10] 54.8 56.5 41.1−13.7 37.8−18.7 37.4−17.8 37.9−18.6

R2-VOS [5] 56.1 58.4 45.3−10.8 47.4−11.0 44.9−11.2 46.8−11.6

OnlineRefer [9] 55.6 58.9 47.6−8.0 49.8−9.1 46.3−9.3 48.6−10.3

Table 14: Robustness of video object segmentation methods under low, medium, and
high perturbations. The subscript s and u denote seen and unseen object categories
respectively.

Method
YTVOS

Clean Static Dynamic
Js Fs Ju Fu Js Fs Ju Fu Ju Fs Ju Fu

AOT [14] 83.9 88.8 79.9 88.5 79.0−4.9 83.1−5.7 72.4−7.5 80.5−8.0 77.2−6.7 81.0−7.8 68.9−11.0 76.7−11.8

DEAOT [16] 84.2 89.2 80.2 88.8 81.6−2.6 85.7−3.5 75.5−4.7 83.5−5.0 81.4−2.8 86.2−3.0 74.4−5.8 82.4−6.4

XMem [4] 84.3 88.6 80.3 88.6 79.5−4.8 83.4−5.2 74.4−5.9 82.3−6.3 77.5−6.8 81.2−7.4 70.9−9.4 78.0−10.6

DEVA [3] 85.0 89.4 79.7 88.0 81.8−3.2 86.1−3.3 75.7−4.0 83.7−4.3 79.8−5.2 83.8−5.6 71.6−8.1 79.2−8.8

Cutie [2] 85.6 90.0 80.6 88.3 81.6−4.0 85.7−4.3 75.5−5.1 83.5−4.7 79.7−5.9 83.7−6.3 71.6−9.0 79.0−9.3

Dataset RefCOCO/+/g DAVIS YTVOS Ref-DAVIS Ref-YTVOS AVS-s4 AVS-ms3
# Image 21928 3455 3859 3455 3455 10852 2120
# Text 126261 - - 1200 12913 - -
# Audio - - - - - 10852 2120

Table 15: Statistics of Generated Datasets

4. Speckle Noise. Speckle noise is described through a multiplicative noise
formula:

I ′ = I · (1 + ρ · η) (3)

Here, ρ signifies the speckle noise’s intensity, and η is the Gaussian-distributed
noise component.

Effects based on Blur. The act of blurring involves the convolution (∗) of a source
image I with a specific blur kernel K to produce a blurred output I ′, represented
as

I ′ = I ∗K (4)

1. Defocus Blur. This mimics the blurring seen when an image is out of focus
due to the camera lens’s characteristics, achieved by convolving the input
image with a disc-shaped kernel.

2. Glass Blur. This simulates the look of viewing through a textured or
patterned glass by utilizing an uneven kernel for convolution.

3. Motion Blur. Caused by swift movement of the camera or objects within
the frame, this blur is modeled by convolving the image with a linear kernel
aligned with the motion direction.
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4. Gaussian Blur. This involves smoothing the image by convolving it with a
Gaussian kernel, where the blur extent is governed by the kernel’s standard
deviation.

Interference from the Environment. Environmental effects or weather conditions
are often recreated using alpha blending methods. This technique merges a
weather effect layer W with the base image I to formulate a mixed image I ′ as

I ′ = (1− αW ) · I + αW ·W (5)

with αW dictating the mix ratio.

1. Snow Effect. The simulation of snow involves creating a layer filled with
random white regions to mimic snowfall.

2. Frost Effect. By applying a semi-transparent whitening layer on the image,
the frost effect is simulated, creating a weighted blend with the original
image.

3. Fog Effect. This effect generates a foggy appearance by linearly interpolating
between the original image and a uniform gray-scale image.

4. Spatter Effect. To replicate water droplets on a lens or window, a layer with
semi-transparent dark marks is combined with the original image. A mask
is applied to manage the effect’s presence in certain areas by designating
transparent and affected regions.

Manipulations in Post-processing.

1. Brightness. This modification increases the image’s overall brightness by
adding a brightness value b to each pixel (x, y) in I:

I ′(x, y) = I(x, y) + b (6)

2. Contrast. By scaling the image tones about the mean intensity J , the
contrast is adjusted:

I ′ = α · (I − J ) + J (7)

Here, α is the factor adjusting the contrast intensity.
3. JPEG Compression. This introduces the artifacts associated with the

JPEG compression technique.
4. Pixelate. Reducing the image resolution, this effect aggregates pixels into

blocks, assigning the average block value to each pixel within.

1.5 Implementation of Text Perturbations

Human-based issue. Human-based issues in text pertain to errors or variations
commonly introduced by individuals during the writing or typing process.
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1. Misspelling. For introducing misspellings throughout a text, we can con-
ceptualize a function that probabilistically replaces correctly spelled words
with their misspelled variants

T ′ =

{
T [i] if p[i] > C

M(T [i]) otherwise
, i ∈ (1,m) (8)

where m represents the number of words in text T , C is the probability
threshold, and M(·) is the misspelling method that established based on
LLM.

2. Miss-punctuation. To insert random punctuation into a text, we envision
a function that introduces punctuation at probabilistic intervals within the
text. The text transformation can be modeled as:

T ′ =

{
T [i] if p[i] > C

P (T [i]) otherwise
, i ∈ (1, n) (9)

where n represents the number of potential insertion points in text T , C is
the probability threshold, and P (·) is the punctuation insertion method that
operates based on a given severity level.

Sensor interference.

1. Character Missing. It occurs when characters are omitted from the text, po-
tentially due to sensor errors, or transmission issues, which can be represented
by

T ′ =

{
T [i] if p[i] > C

skip otherwise
, i ∈ (1, n) (10)

where C is the probability threshold and n is the length of character in text
T .

1.6 Implementation of Acoustic Perturbations

Noise-based distortions. As we described in image-based perturbation, noise-based
distortions in audio can be expressed as

A′ = A+ η (11)

where A is the origin audio, η is the noise and when we sum them up, we can
get an audio with noise A′.

1. Gaussian Noise. Gaussian noise is associated with a noise that is sampled
from a Gaussian distribution with zero mean and variance σ2, written as
η ∼ N (0, σ2).



Benchmarking the Robustness of Referring Perception Models under Perturbations 9

2. Background Noise. Consider you are in a location with consistent ambient
sounds, such as a cafe, an office, or outside with the sounds of nature or city
life. Background noise can be considered any unwanted sound that interferes
with the original audio signal. Unlike Gaussian noise, which is random and has
a specific statistical distribution, background noise can be more complex and
varied, encompassing a range of sounds from other human voices, machinery,
wind, water, and more.

3. Impulse Noise. Impulse noise is characterized by sudden, short, and sharp
sound spikes at irregular intervals. These noises are typically of a higher
amplitude compared to the typical human-heard sound level.

Signal-level adjustment.

1. Amplitude Gain. Amplitude gain is the process of increasing the amplitude
of an audio signal. It can be mathematically represented as

A′ = G ·A (12)

where G is the gain factor by which the signal’s amplitude is multiplied.
2. Tanh Distortion. It applies the nonlinear tanh (hyperbolic tangent) function

to the audio signal, creating a warm distortion effect, which can be written
as

A′ = tanhA (13)

Filtering effect. In audio processing, filtering effects involve selectively altering
specific frequencies within an audio signal to achieve various outcomes, such as
enhancing clarity, reducing noise, or shaping the tonal balance.

1. Peak Filter. Peak Filter boosts or cuts a specific frequency range around a
center frequency. It can be represented by its effect on the frequency spectrum
of the audio signal, altering the amplitude of the specified band.

2. Low-pass Filter. It Allows frequencies below a certain cutoff frequency
to pass while attenuating frequencies above the cutoff. It’s used to remove
high-frequency noise or to simulate the effect of sounds being muffled.

3. High-pass Filter. Similar to the low-pass filter but allows frequencies above
a certain cutoff frequency to pass while attenuating frequencies below the
cutoff. It’s used to remove low-frequency rumble or to make sounds appear
thinner.

Physical interference.

1. Air Absorption. It Models the attenuation of sound as it travels through
air, affecting frequencies differently based on distance. The equation can be
summarized as

A′(f, d) = A(f) · e−α(f)·d (14)

where A′(f, d) is the amplitude of the frequency component f after traveling
a distance d; A(f) is the original amplitude of the frequency component f ;
α(f) is the absorption coefficient at frequency f ; and d is the distance the
sound has traveled through the air.
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2. Room Reverberation. It simulates the effect of sound reflecting off surfaces
in an enclosed space, creating echoes and reverb, using the concept of con-
volution in signal processing. The equation for applying room reverberation
through convolution is given by

A′ = A · Iroom (15)

where Iroom is the impulse response of a specific room.

Post-processing manipulations.

1. Time Mask. Time Mask temporarily obscures a portion of the audio signal.
The effect of a Time Mask can be represented by

A′[i] =

{
0 if istart ≤ i ≤ iend

A[i] otherwise
(16)

where istart and iend are randomly selected indices within the audio signal’s
duration by given proportion.

2. MP3 Compression. It Compresses the audio signal into the MP3 format,
reducing file size with potential quality loss.

Table 16: Summary of considered tasks, metrics, referring modality, and datasets.
Task RIS VOS R-VOS AVS Q3M

Inputs Image, Text Video, Mask Video, Text Video, Audio Images, Text

1.7 Dataset Creation Details

In this section, we discuss the detailed data creation process. As shown in Tab. 16,
we demonstrate the input types for each task. In our data creation process, we
consider the noises that happened in all modalities including visual, textual and
acoustic.

Dynamic and static perturbations. For image-level tasks, i.e., RIS and Q3M, we
just consider static perturbations where the perturbation type and severity do
not change across time. For video-level tasks, we additionally consider a dynamic
perturbation mode where the perturbation type and perturbation severity can
change over time. To implement this, we treat each frame independently and
randomly select perturbation type and severity with a uniform distribution.

Severity. For each perturbation type, we create 5 severity in the toolbox while
only three of them are benchmarked in the R2-Bench. We attach the perturbation
synthesis toolbox in the supplementary for detailed parameter settings for each
perturbation type.
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Perturbation type. In all dataset creation, we consider a maximum of 2 per-
turbations. The composition of perturbations follows the sequential order from
source→environment→sensor→transmission. The noise types are selected ran-
domly following a uniform distribution.

1.8 More Details about R2-Agent

In this section, we demonstrate the details of the user study for data selection
evaluation and show more results of the model analysis.

Data selection evaluation. To evaluate the data selection performance of R2-
Agent, we collect a dataset with paired perturbation types, evaluation metrics
and data samples with corresponding human instruction. A total of 50 pairs are
collected for the evaluation.

For the accuracy calculation, we separately consider each perturbation type,
metrics and sample and calculate the accuracy between the human-annotated
ones and R2-Agent selected ones.

For the human rating, we conduct a user study where the given instruction, all
possible samples and R2-Agent selected samples are presented. The participants
are asked to rate the rationality of the selection where 1 denotes reasonable and 0
means not. 7 participants participated in the user study. We average their rating
across all samples as the Rate metrics.

More details of model analysis. To enable R2-Agent to analyze the performance,
we first feed

– human instruction
– all perturbation types and corresponding explanations
– selected perturbations
– evaluation metrics
– captions of the evaluation set
– metrics of evaluation samples

to R2-Agent. After that, we give chain-of-thought prompts to encourage R2-Agent
to analyze several hard-coded questions, including

– Performance change
– Case analysis
– Improvement recommendation.

Specifically, the output of the performance change analysis is fed as additional
input to the improvement recommendation.

We demonstrate the prompts and corresponding responses in Fig. 2 and
Fig. 3.
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You are conducting a result analysis task. Given an instruction, perturbations and the
evaluation metrics. You need to analyze the potential reason for the different performance
changes. You may first analyze the perturbation types that have the largest and smallest
impacts. For example, assuming the instruction is “Skiing on the mountain” and the results of
J-index are {“motion blur”: -12.5, “snow”: -9.0,}, the analysis can be “The motion blur
perturbation has the largest impact on J-index suggesting the model fail to robustly segment
the object in skiing scenario. The potential reason for the performance degradation can be
due to 1) the motion blur can blur the object shape and appearance making the model failed
to accurately perceive the object semantics and 2) the scenario of skiing are typically with
snowing weather which introduces occlusions in the image. The further occlusion combined
with motion blur can result in a severe reduction of imaging quality. For the snow
perturbation, the model demonstrates a slightly mild performance degradation which can be
because the skiing scenes have already had snow effect thus further snowing demonstrates a
smaller performance drop.”

Now you need to consider instruction: {driving scenario in a forest}, perturbations: {"frost":
frost means the lens of the camera frozen, "fog": fog means the environment has fog
weather, "spatter": spatter means a spatter occlusion on the camera.} and evaluation results:
{“frost”: -12.5, “fog”: -9.0, "spatter": -7.2}. Can you analyze the results and provide an
explanation?

Prompt

Analysis:
The evaluation results for the driving scenario in a forest with perturbations of frost, fog, and
spatter are as follows:
•Frost: -12.5
•Fog: -9.0
•Spatter: -7.2
1.Frost: Frost perturbation demonstrates the largest impact on the evaluation metric. This
suggests that the model's performance significantly deteriorates when the lens of the
camera becomes frozen. Possible reasons for this degradation include:

1. Reduced Visibility: Frost on the lens can severely impair visibility, leading to blurred
or distorted images. This impairment in visual clarity hampers the model's ability to
accurately detect and identify objects in the driving scenario.

2. Altered Lighting Conditions: Frost may also affect the lighting conditions, causing
glare or diffused light, which can confuse the model's perception of the scene.

2.Fog: Fog perturbation shows a substantial but slightly lesser impact compared to frost. This
indicates that while foggy conditions negatively affect the model's performance, the impact
is not as severe as frost. Possible explanations for this impact include:

1. Reduced Visibility: Similar to frost, fog also diminishes visibility by scattering light and
obscuring objects in the environment. This reduction in visibility makes it challenging
for the model to distinguish objects accurately.

2. Depth Perception Issues: Fog creates a sense of depth ambiguity, making it difficult
for the model to accurately estimate distances between objects. This can lead to
errors in object detection and localization.

3.Spatter: The spatter perturbation exhibits the smallest impact on the evaluation metric
among the three perturbations. While still notable, the decrease in performance is not as
significant as frost or fog. Potential reasons for this relatively mild impact include:

1. Partial Occlusion: Spatter occlusions on the camera introduce localized disruptions in
the image rather than widespread impairment of visibility. As a result, the model may
still retain some level of clarity in detecting objects despite the occlusions.

2. Adaptive Object Detection: The model may demonstrate a degree of robustness to
spatter occlusions by adapting its detection strategies to account for partial
obstructions. This adaptability allows the model to maintain a relatively stable
performance compared to scenarios with more severe perturbations like frost or fog.

In summary, the driving scenario in a forest is significantly affected by perturbations such as
frost and fog, which severely impair visibility and introduce challenges in object detection.
Conversely, perturbations like spatter, while still impactful, result in a relatively smaller
decrease in performance due to their localized nature and the model's potential adaptability
to partial occlusions.

Fig. 2: Illustration of performance change analysis using R2-Agent.
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…Now you need to consider instruction: {driving scenario in a forest}, perturbations: {"frost":
frost means the lens of the camera frozen, "fog": fog means the environment has fog
weather, "spatter": spatter means a spatter occlusion on the camera.} and evaluation results:
{“frost”: -12.5, “fog”: -9.0, "spatter": -7.2}. Can you analyze the results and provide an
explanation?

Prompt:

Recomm.: 1.Frost:
1. Anti-frost Technology: Incorporate anti-frost technology into the camera equipment 

used in the driving scenario. This technology can prevent the buildup of frost on the 
lens, ensuring clear and unobstructed vision even in cold and frost-prone 
environments.

2. Heating Mechanism: Implement a heating mechanism for the camera lens to prevent 
frost formation. Heating elements can be strategically placed to maintain the lens 
temperature above freezing, thereby minimizing the risk of frost buildup during 
operation.

3. Dynamic Image Enhancement: Develop algorithms for dynamic image enhancement 
that can effectively compensate for the distortion caused by frost. These algorithms 
can adjust image contrast, brightness, and sharpness in real-time to improve visibility 
and facilitate more accurate scene interpretation by computer vision models.

2.Fog:
1. Fog Penetration Algorithms: Design algorithms specifically tailored to penetrate 

foggy conditions and enhance visibility in captured images. These algorithms can 
leverage advanced image processing techniques to mitigate the adverse effects of 
fog, such as dehazing and fog removal filters.

2. Multi-Sensor Fusion: Integrate multiple sensors, such as LiDAR and radar, alongside 
visual cameras to complement image data with depth and environmental 
information. Fusion of data from different sensors can provide a more 
comprehensive understanding of the surroundings, enabling more robust perception 
and decision-making in foggy conditions.

3. Predictive Modeling: Develop predictive models that anticipate the presence of fog 
based on environmental factors such as temperature, humidity, and terrain 
characteristics. By predicting foggy conditions in advance, adaptive strategies can be 
employed to mitigate their impact on camera visibility, such as adjusting camera 
settings or activating supplementary sensors.

3.Spatter:
1. Automated Cleaning Mechanism: Implement an automated cleaning mechanism for 

the camera lens to remove spatter occlusions during operation. This mechanism can 
utilize techniques such as air blasts or wiper systems to periodically clear the lens 
surface and maintain optimal visibility.

2. Hydrophobic Coatings: Apply hydrophobic coatings to the camera lens to repel water 
and prevent spatter accumulation. These coatings create a protective barrier that 
reduces adhesion of water droplets and other contaminants, minimizing the need for 
manual cleaning and improving long-term performance in wet conditions.

3. Real-Time Occlusion Detection: Develop algorithms capable of detecting and 
identifying spatter occlusions in real-time. By actively monitoring the cleanliness of 
the camera lens, these algorithms can trigger cleaning actions or adjust processing 
strategies to mitigate the impact of spatter on image quality and model performance.

By implementing these improvement recommendations tailored to each perturbation type, 
the robustness and performance of computer vision systems in driving scenarios within 
forest environments can be significantly enhanced, enabling more reliable and accurate 
interpretation of the surrounding environment for various applications such as autonomous 
driving and advanced driver assistance systems

The evaluation results for the driving scenario in a forest with perturbations of frost, fog, and
spatter are as follows…

Analysis:

Prompt: Based on the evaluation results and your analysis, can you give some improvement
recommendation for each perturbation types?

Fig. 3: Illustration of solution recommendation analysis using R2-Agent.
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