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Abstract. Our paper introduces a novel two-stage self-supervised ap-
proach for detecting co-occurring salient objects (CoSOD) in image groups
without requiring segmentation annotations. Unlike existing unsuper-
vised methods that rely solely on patch-level information (e.g . clustering
patch descriptors) or on computation heavy off-the-shelf components for
CoSOD, our lightweight model leverages feature correspondences at both
patch and region levels, significantly improving prediction performance.
In the first stage, we train a self-supervised network that detects co-
salient regions by computing local patch-level feature correspondences
across images. We obtain the segmentation predictions using confidence-
based adaptive thresholding. In the next stage, we refine these inter-
mediate segmentations by eliminating the detected regions (within each
image) whose averaged feature representations are dissimilar to the fore-
ground feature representation averaged across all the thresholded cross-
attention maps (from the previous stage). Extensive experiments on three
CoSOD benchmark datasets show that our self-supervised model outper-
forms the corresponding state-of-the-art models by a huge margin (e.g .,
on the CoCA dataset, our model has a 13.7% F-measure gain over the
SOTA unsupervised CoSOD model). Notably, our self-supervised model
also outperforms several recent fully supervised CoSOD models on the
three test datasets (e.g ., on the CoCA dataset, our model has a 4.6%
F-measure gain over a recent supervised CoSOD model). Our code is
available at: https://github.com/sourachakra/SCoSPARC
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1 Introduction

Co-salient object detection (CoSOD) identifies co-existing salient objects among
a collection of images, leveraging shared semantic information across image re-
gions within the group, resulting in more accurate localization compared to
single-image salient object detection (SOD) models [7,38,40,47,49,54,69]. Both
tasks, CoSOD and SOD, encompass joint segmentation and detection activities,
necessitating segmentation labels, which are resource-intensive to acquire due to
their time-consuming nature, as evidenced in the existing literature [15,17,68].

The reliance on annotations poses a challenge for the existing fully supervised
CoSOD models [15,17,68,72,77]. To alleviate this burden, certain approaches [26,
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Image DVFDVD (local) Ours (local) Ours (local + global) Ground truth

Fig. 1: Co-saliency detections on the pocket watch image group from the CoCA dataset
[77]: Row 1: original image, Row 2: predictions from DVFDVD [2] that only mines local
patch-level correspondences, Row 3: our predictions with only local (patch) feature
correspondence, Row 4: our predictions with both local (patch) and global (region)
feature correspondences, which produces the best results, Row 5: Ground truth.

27,41] have focused on unsupervised co-segmentation and co-saliency detection,
having several potential real-world applications such as e-commerce, content-
based image retrieval, satellite imaging, biomedical imaging, etc. However, these
models demonstrate significantly poorer prediction performance compared to
their fully supervised counterparts due to their inefficient utilization of unlabeled
data at different scales (patch and region levels). For example, Amir et al. [2]
only mines local patch-level features such as clustering of ViT patch descriptors
for co-segmentation. Also, for some models [5,65] the performance improvement
comes mostly from using heavy off-the-shelf components (such as SAM [35],
STEGO [21], DCFM [68], Stable Diffusion [50], etc.) that make their models
computation-heavy and hence unfit for real-time applications.

In this paper, we present a lightweight model that leverages feature corre-
spondences at both patch and region levels to improve unsupervised CoSOD
performance. We take advantage of the self-supervised features in visual trans-
formers (ViTs) [3, 12] and their self-attention maps [3] to develop a simple yet
effective self-supervised CoSOD model that uses both patch and region level
feature correspondences, which we call SCoSPARC.

As part of our self-supervised approach, we first train a network to com-
pute cross-attention maps that highlight commonly occurring salient regions via
local patch-level feature correspondences across images in the group. We show
that these correspondences form strong signals for unsupervised CoSOD. We
design this network to optimize two losses: 1) the Co-occurrence loss, which con-
straints the foreground image regions to have similar feature representations and
at the same time, it forces the foreground and background feature representa-
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tions within each image to be as dissimilar as possible, 2) the Saliency loss, in
order to maximize the saliency of the detected regions.

While previous approaches [26, 27] have used similar losses, we differ in
two main aspects: 1) we avoid using separate off-the-shelf saliency models for
training, instead directly leveraging intermediate self-attention maps from our
backbone encoder to construct our saliency signal, and 2) we directly use fea-
ture descriptors from our backbone encoder for constructing the foreground and
background feature embeddings, averaged via cross-attention maps, rather than
training separate sub-networks (details in Sec. 3.1). This allows us to effectively
leverage the feature encodings from our backbone encoder to construct both
of our co-occurrence and saliency signals during training, thus maintaining our
model’s computational efficiency and facilitating fast inference. Next, we intro-
duce a prediction confidence-based adaptive thresholding method for threshold-
ing the cross-attention maps to generate intermediate CoSOD segmentations.
While prior works [20, 62] have used adaptive thresholding based on the class
confidence in the context of semi-supervised learning, we use adaptive thresh-
olds based on the confidence of the co-saliency predictions, for our task of self-
supervised CoSOD. Our model at this stage outperforms the SOTA unsupervised
US-CoSOD model [5] by a significant margin. For enforcing region-level feature
correspondence, we next identify connected components (image regions) in the
intermediate segmentation masks and eliminate regions whose feature represen-
tations are dissimilar to the average foreground feature representation obtained
from the thresholded cross-attention maps. Our experiments demonstrate a sig-
nificant improvement in performance over existing methods.

In Fig. 1, we show CoSOD predictions from three different methods: 1) the
DVFDVD model [2] that only mines local patch-level feature correspondences via
clustering of patch descriptors, 2) our predictions with only local (patch-level)
feature correspondence, 3) our predictions with both local (patch-level) and more
global (region-level) feature correspondences, which produces the best results.
Fig. 1 demonstrates the two main contributions of our work: 1) our local patch-
level feature correspondence learning network produces better results compared
to the existing models e.g . DVFDVD [2] which only clusters the local ViT patch
descriptors, 2) using both local (patch-level) and global (region-level) feature
correspondences for CoSOD helps improve the results. We summarize our main
contributions as follows:

– We propose a simple yet effective two-stage self-supervised approach for
CoSOD that leverages feature correspondences (of self-supervised ViT fea-
tures) at different scales in an image group.

– We introduce a confidence-based adaptive thresholding approach for the
cross-attention maps, outperforming the conventional fixed threshold of 0.5
commonly used in binary segmentation tasks.

– We show that our method outperforms existing unsupervised CoSOD mod-
els on three benchmarks (e.g ., on the CoCA dataset, our model has a 13.7%
F-measure gain over the SOTA unsupervised CoSOD model) while also out-
performing several recent supervised CoSOD methods on these datasets.
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2 Related Work

Self-supervised learning: Unlike supervised methods that necessitate human
annotation, self-supervised learning involves training networks with automati-
cally generated pseudo-labels that capture characteristics such as image contexts
or handcrafted cues in order to accomplish a pretext task (e.g . colorization, ro-
tation prediction, etc.) using unlabeled data [3, 6, 19, 23, 48, 55]. For instance,
DINO [3] employs a student-teacher framework where the two networks observe
different and randomly transformed input parts, and the student network learns
to predict the mean-centered output of the teacher network. Studies based on
the DINO ViT features have leveraged these features for tasks such as object
discovery [52,60], semantic segmentation [21,57], and category discovery [58]. In
Masked Auto Encoder [22], patches of the input image are randomly masked, and
the pretext task involves learning to reconstruct the missing pixels through auto-
encoding. These studies have demonstrated that the representations derived from
the self-attention maps of ViTs contain valuable localization information [2,3,80].
Our work incorporates both the patch-level ViT feature descriptors and the self-
attention maps from DINO to guide our self-supervised network training.

Co-salient object detection: Graphical models are employed to capture
pixel relationships within an image collection [28, 31–33, 63, 73], followed by the
extraction of co-salient objects characterized by consistent features. Some ap-
proaches leverage supplementary object saliency details to identify salient objects
prior to implementing CoSOD [34,75,76]. Other methodologies focus on delineat-
ing shared attributes among input images [15,17,18,37,42,53,64,66,72,77,78,81],
complementing semantic information with classification data. Comprehensive in-
sights into CoSOD can be found in related surveys [10,16,70].

Unsupervised segmentation: Multiple approaches in unsupervised se-
mantic segmentation leverage self-supervised feature learning methods [9,30,43,
56, 60]. Other works tackle unsupervised co-segmentation [2, 4, 26, 29, 41] and
CoSOD [27, 71], where Li et al. [41] rank image complexities using saliency
maps for unsupervised co-segmentation. Hsu et al. [26] propose an unsuper-
vised co-attention model, and in [27], their unsupervised graphical model jointly
handles single-image saliency and object co-occurrence in CoSOD. Recently,
Liu et al. [46] introduced a self-supervised CoSOD model using an unsuper-
vised graph clustering algorithm for detection, refining sample affinity with
pseudo-labels. Additionally, Xiao et al. [65] presented a zero-shot CoSOD (ZS-
CoSOD) approach that is based on group prompt generation and subsequent co-
saliency map generation. Chakraborty et al. [5] proposed unsupervised and semi-
supervised CoSOD models using segmentation frequency statistics that leveraged
pre-trained models to generate pseudo-labels for training. Although ZS-CoSOD
and US-CoSOD improved unsupervised CoSOD performance, relying on several
off-the-shelf components made them computationally heavy. Our method out-
performs all of these unsupervised models while maintaining a lightweight design
with minimal computational parameters.

The existing unsupervised CoSOD methods suffer from limited performance
due to their reliance on handcrafted features and insufficient utilization of feature
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Fig. 2: The proposed two-stage self-supervised CoSOD model, SCoSPARC. In the first
stage, we train a network that leverages the local ViT feature correspondences across
all patches in the images in the group to obtain cross-attention heatmaps, which we
further threshold using a confidence-based adaptive threshold to obtain an intermediate
binary segmentation map. In the next stage, we refine these segmentations via region-
level feature correspondence using the average foreground token obtained from the
previous stage (after thresholding the cross attention map), followed by DenseCRF-
based segmentation refinement.

correspondences at multiple scales. Our study addresses this gap by introducing
a self-supervised CoSOD approach that effectively harnesses feature correspon-
dences at different scales to significantly enhance CoSOD performance.

3 Methodology

Given a group of N images I = {I1, I2, ..., IN} containing co-occurring salient
objects of a specific class, CoSOD aims to detect them concurrently and output
their co-salient object segmentation masks. In self-supervised CoSOD, the goal is
to predict the co-salient segmentations {ŷi}ni=1 without using any labeled data.

Here, we describe our self-supervised CoSOD model, SCoSPARC that em-
ploys ViT feature correspondences at both local and region levels to detect the
co-salient objects in an image group.
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Fig. 2 depicts the pipeline of our SCoSPARC model. In the first stage, we
leverage the patch-level (local) ViT feature correspondences across all patches
in the images in the group to obtain the cross-attention map. We threshold
this map using a confidence-based adaptive threshold to obtain an intermediate
binary segmentation map. In the next stage, we refine these intermediate seg-
mentations via region-level feature correspondence using the average foreground
token obtained from the previous stage (on thresholded cross attention maps).
Finally, we employ DenseCRFs [36] to ensure spatial continuity in the predicted
segmentations. We will detail each component in the following subsections.

3.1 Stage 1: Patch-level feature correspondences

Previous works on self-supervised learning (SSL) have shown that ViT [12] mod-
els (pretrained on ImageNet) using methods such as DINO [3] can provide great
features for segmentation tasks due to the explicit semantic information learned
via SSL [21,57]. Motivated by this, we employ the pre-trained ViT trained using
DINO as the feature encoder in our pipeline.

We first extract image patch features xpat
n from an image In in the im-

age group using our ViT Encoder as: Finit = [xpat
1 , . . . ,xpat

N ], where Finit ∈
RN×C×H×W (N , C, H, W are the number of images in the group, channel
number, height, and width respectively) and xpat

n = Encoder(In).
These features are processed by the residual block to generate residual fea-

tures Fres as:
Fres = Finit + conv1×1(Finit), (1)

where conv1×1 represents for the 1×1 convolution layer and Fres ∈ RN×C×H×W .
This layer when added to the DINO features generate strengthened residual
features that better capture the complex relationships in the data. This makes
training more efficient and allows faster network convergence.

First, we input the residual features Fres to our network. Next, we employ
self-attention by utilizing two 1 × 1 convolution layers. These layers yield two
distinct feature maps, namely the key map K ∈ RN×C×H×W and the query
map Q ∈ RN×C×H×W . After reshaping both K and Q to shape RNHW×C ,
we compute the feature similarity matrix FS as FS = 1√

d
KQ⊤, where FS ∈

RNHW×NHW , d = embedding dimension, and ⊤ denotes the transpose opera-
tion. Each row of FS represents the feature token similarities between a patch
(corresponding to the row) and all other patches of the N input images. The
feature similarity matrix FS is then reshaped to matrix FS′ ∈ RN×HW×NHW .
Next, we construct a 1D-map S′

n ∈ RHW from the matrix FS′ for each im-
age In in the group by computing the row-wise mean of FS′ as: S′

n(p) =
1

NHW

∑NHW
p′=1 FS′

p′ , where p denotes a patch in FSn and p′ is used to index
the NHW patches corresponding to the patch p. Each 1D-map S′

n ∈ RHW is
next reshaped to a 2D-map Sn ∈ RH×W . Maps Sn are then separately normal-
ized using min-max normalization.

Although the pixel values of ground truth maps are either 0 or 1, those of
the predicted feature similarity maps S contain intermediate intensity values
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(between 0 and 1), which indicate uncertainty and noise in the predictions. To
deal with these uncertain values, we employed a modified version of the Sigmoid
function [44] with a parameter k that controls the steepness of Sigmoid and
encourages the map values of Sn to be close to either 0 or 1. sth is the confidence
threshold. We represent the intermediate cross-attention maps M as:

Mn =
1

1 + e−k(Sn−sth)
, (2)

Due to the nature of the task (co-salient object detection), we expect the
detected co-salient regions across all images in the group to share similar feature
representations in terms of object semantics and at the same time have a high
saliency at an individual level. Therefore, we use a combination of two different
loss terms to train our network in a self-supervised manner: (1) the co-occurrence
loss Lcooc that measures the quality of the detected co-occurrent foreground
regions between an image pair, and (2) the saliency loss Lsal that estimates the
total saliency of the detected regions for an image. We define the co-occurrence
loss Lcooc between images In and Im as:

Lcooc =

N∑
n=1

N∑
m=n

exp(−d+nm)

exp(−d+nm) + exp(−d−nm)
(3)

d+nm = 1− cos(f(Mf
n,x

pat), f(Mf
m,xpat)) (4)

d−nm = 1− (cos(f(Mf
n,x

pat), f(Mb
n,x

pat)) + cos(f(Mf
m,xpat), f(Mb

m,xpat)))
(5)

where f(m,xpat) = 1
np

∑np

i=1 mi ⊗ xpat
i denotes the average ViT feature em-

bedding corresponding to the mask m and the patch descriptor xpat (np = total
number of patches in m). Mf

i = Mi is the foreground mask (which is the cross-
attention map) and Mb

i = 1−Mi is the background mask corresponding to the
image Ii. Here cos denotes the cosine-similarity function.

Trained with the self-distillation loss [24], the attention maps associated with
the class token from the last layer of DINO [3] have been shown to highlight
salient foreground regions [3, 61, 67]. Their findings revealed that the attention
heads of this model focus on significant foreground regions within an image.
Motivated by this observation, we consider the averaged attention map (across
all attention heads) from DINO as the foreground object segmentation. First,
we average the self-attention maps from the nh DINO attention heads to obtain
the averaged self-attention map SAi for an image Ii as: SAi =

1
nh

∑nh

j=1 AM j
i ,

where AM j
i is the attention map from the DINO attention head j for the image

Ii. Map SAi is normalized by min-max normalization. Subsequently, the saliency
loss Lsal is computed as:

Lsal = 1− 1

N

N∑
n=1

Mn ⊗ SAn (6)
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The network is self-supervised using a combination of the co-occurrence and the
saliency loss terms as: Ltotal = Lcooc+λsalLsal, where λsal is the weight account-
ing for the saliency factor. Minimizing the saliency loss maximizes the average
saliency of the detections. For co-occurring non-salient objects, the saliency loss
is low and training/inference proceeds via the co-occurrence loss.

Confidence based adaptive thresholding: While we enforce the map intensity val-
ues to be close to 0 or 1 (as explained in the previous paragraph), we require
an additional thresholding step to obtain binary segmentation masks for each
image. We observed that a more confident attention map requires a lower thresh-
old and conversely, a less confident map requires a higher threshold in order to
accurately predict a binary segmentation map of the co-salient regions. Conse-
quently, the default threshold value of 0.5, used by the existing segmentation
models (via the argmax operator) does not produce the best performance. In-
formed by this observation, we adaptively threshold the predicted cross-attention
map Mn based on the confidence of the detected regions. To this end, we first
compute the average confidence of the detected regions in the map Mn as:

cM =
1

nc

∑
p:p≥M

Mp, (7)

where nc is the number of confident map pixels (with intensity greater than the
average intensity M) and cM denotes the average per-pixel confidence of the
predicted map Mn for an image In. Next, we set the adaptive threshold th as:

th = th0 + αc(bM − bM ), (8)

where th0 is the threshold offset, αc is a parameter, bM = 1 − cM , and bM
denotes the average value of bM over the training dataset. Finally, we threshold
each map Mn to obtain the segmentation mask Gn for the image In as:

Gn =

{
1 if Mn ≥ th

0 if Mn < th
(9)

3.2 Stage 2: Region-level feature correspondences

The regions highlighted in the thresholded segmentation maps G (obtained from
stage 1) do not always belong to the co-salient object in the image group as shown
in Sec. 4. This is because the patch-level feature correspondences fail to capture
the region-level semantics of the co-occurring object. To solve this problem, we
eliminate regions whose features are dissimilar with the averaged patch token
embeddings of the detected common foreground regions.

Our mask refinement algorithm is outlined in Algorithm 1. First we obtain
the average token embedding FG corresponding to the masks G across all images
by averaging the ViT patch embeddings. Next, we implement connected com-
ponent labeling [11] on the masks G in order to get sub-masks L corresponding
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Algorithm 1 Stage 2: Region-level mask refinement

Input: Image group I = {In}Ni=1, intermediate segmentation mask G = {Gn}Ni=1

Output: Refined segmentation mask R = {Rn}Ni=1

1: Obtain the average token embedding FG corresponding to the masks G across all
images as:
FG = 1

N

∑N
i=1

1
Ar(Gi)

∑
xpatch
i ⊗Gi,

Ar(A) = area of region A.
2: for i = 1 to n do
3: Apply connected component labeling on mask Gi to generate Li masks for each

component.
4: Map Ri ← all-zero map (same size as Gi)
5: for j = 1 to Li do
6: Obtain the feature embedding FGij corresponding to the mask region Gij by

averaging the patch embeddings as: FGij = 1
Ar(Gij)

∑
xpatch
i ⊗Gij .

7: Compute the similarity between the token embeddings FG and FGij as: d =
cos(FG, FGij ), cos is the cosine distance.
if df ≥ dthf then:
Ri = Ri ∪Gij

end if
8: end for
9: end for

10: return Refined masks, R = {Rn}Ni=1

to the disconnected regions in these masks. For each sub-mask in each image,
we compute the feature token similarity of the sub-mask with respect to the
averaged token embedding FG and only retain sub-masks beyond a threshold
similarity score dthf .

Postprocessing using DenseCRFs: Finally, we improve the co-salient segmenta-
tions Rn obtained in the previous step by enforcing spatial coherence and pre-
serving object boundaries in the predictions using DenseCRFs following previous
work [25,39] for every image In in the image group.

4 Experimental Results

4.1 Setup

Datasets and evaluation metrics: For training our self-supervised SCoSPARC
model, we used images from COCO9213 [59], a subset of the COCO dataset [45]
containing 9,213 images selected from 65 groups, and from the DUTS class
dataset [77] that contains 8,250 images in total distributed across 291 groups.
We evaluate our methods on three popular CoSOD benchmarks: CoCA [77],
Cosal2015 [71], and CoSOD3k [16]. CoCA and CoSOD3k are challenging real-
world co-saliency evaluation datasets, containing multiple co-salient objects in
some images, large appearance and scale variations, and complex backgrounds.
Cosal2015 is a widely used dataset for CoSOD evaluation.
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Our evaluation metrics include the Mean Absolute Error (MAE↓) [8], max-
imum F-measure (Fmax

β ↑) [1], maximum E-measure (Emax
ϕ ↑) [14], and S-

measure (Sα ↑) [13].

Implementation details: We use the ViT-B model (with patch size = 8 and
patch descriptor dimension d = 768) trained using DINO as our backbone feature
extractor. For training, we set the sample size as the minimum of 24 or the total
group size. At inference, all samples (resized to 224 × 224) in the group are
input at once. We used the Adam optimizer to train our stage 1 network for
80 epochs. The total training time is around 10 hours. The inference speed of
the model is 20.5 FPS (without DenseCRF) and 4.1 FPS (with DenseCRF).
All experiments are run on an NVIDIA Quadro RTX 8000 GPU. In Eq. 2,
we empirically set the parameter k to 6.66 and the threshold parameter sth to
0.65. We set the saliency loss weight λsal to 0.3. Increasing this value produced
segmentations highlighting salient regions but not co-occurring. Decreasing this
value highlighted commonly occurring background regions e.g. sky, roads, etc.
as being co-salient. We empirically set the embedding similarity threshold as
dthf = 0.75 in Algorithm 1. In Eq. 8 we empirically set αc to 1 and th0 to 0.5 (a
widely used segmentation threshold). More details in the supplementary.

4.2 Quantitative evaluation

Ablation Studies: In Tab. 1 we ablate the performance of our model using the dif-
ferent components, namely, the co-occurrence loss (Co-oc.), saliency loss (Sal.),
confidence based adaptive thresholding (CAT), region-level feature correspon-
dence (RFC), and DenseCRF (d-CRF). In order to ablate the contribution of
our co-occurrence loss, we first developed a baseline method (a variant of our
stage 1 network, labeled ID-0), where we constructed the feature similarity ma-
trix S as: S = F ′

initF ′T
init where, F ′

init = SA×Finit, weighting patch features
Finit by self-attention weights from DINO (map SA) to obtain F ′

init. This iden-
tifies co-occurring regions among salient foreground regions from DINO, without
any training. In the table below, we see that our trained ID-1 model significantly
outperforms the ID-0 baseline. Also, we observe that the saliency loss is useful for
the Cosal2015 and the CoSOD3k test datasets. This could be attributed to the
fact that CoCA focuses more on segmenting the common objects in complex con-
texts, while Cosal2015 plays a more critical role in testing the ability of models
to detect salient objects, as highlighted by [78]. Nevertheless, we use the saliency
loss in order to have a more generalized model. The confidence based adaptive
thresholding (CAT) step in row 3 leads to an improved performance across most
metrics compared to using a fixed threshold of 0.5 in rows 1 and 2. Our region-
level feature correspondence leads to a consistent improvement in performance
by all metrics and across all the three test datasets. Finally, the DenseCRF post
processing step leads to a consistent improvement in performance across all met-
rics and datasets. While DenseCRFs improved segmentation performance of our
model, even without this we outperform the SOTA unsupervised US-CoSOD
(Tab. 2) by a significant margin (see Tab. 1).
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Table 1: Quantitative ablation studies of the proposed components in our model.

Component CoCA [77] CoSal2015 [71] CoSOD3k [16]
ID Co-oc. Sal. CAT RFC D-CRF MAE ↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑ MAE ↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑ MAE ↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑

0 0.145 0.387 0.696 0.559 0.195 0.551 0.678 0.575 0.167 0.543 0.698 0.590
1 ✓ 0.105 0.565 0.756 0.678 0.075 0.851 0.892 0.823 0.077 0.801 0.868 0.793
2 ✓ ✓ 0.105 0.564 0.754 0.678 0.072 0.853 0.895 0.830 0.075 0.810 0.869 0.798
3 ✓ ✓ ✓ 0.105 0.567 0.756 0.679 0.069 0.840 0.893 0.832 0.069 0.802 0.878 0.808
4 ✓ ✓ ✓ ✓ 0.095 0.601 0.776 0.701 0.067 0.851 0.898 0.838 0.067 0.814 0.882 0.812
5 ✓ ✓ ✓ ✓ ✓ 0.092 0.614 0.782 0.711 0.062 0.869 0.905 0.851 0.064 0.827 0.889 0.820

Table 2: Comparison of our model with state-of-the-art models on three benchmarks.
Our self-supervised SCoSPARC achieves state-of-the-art performance for unsupervised
CoSOD (upper block) and outperforms recent supervised CoSOD methods (e.g. DCFM,
CoRP, UFO) while being comparable to the SOTA (lower block). “Train” indicates the
training dataset: “1”: COCO9213, “2”: DUTS-Class, “3”: COCOSEG, “-”: no training.

CoCA Cosal2015 CoSOD3k
Method Train MAE↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑ MAE↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑ MAE↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑

UCCDGO [27] (ECCV 2018) - - - - - - 0.758 - 0.751 - - - -
TokenCut [60] (CVPR 2022) - 0.167 0.467 0.704 0.627 0.139 0.805 0.857 0.793 0.151 0.720 0.811 0.744
DVFDVD [2] (ECCVW 2022) - 0.223 0.422 0.592 0.581 0.092 0.777 0.842 0.809 0.104 0.722 0.819 0.773
SegSwap [51] (CVPRW 2022) - 0.165 0.422 0.666 0.567 0.178 0.618 0.720 0.632 0.177 0.560 0.705 0.608
SAM CSD [46] (CEE 2023) 1 - - - - 0.092 0.782 0.847 0.782 0.108 0.703 0.810 0.723
ZS-CoSOD [65] (ICASSP 2024) - 0.115 0.549 - 0.667 0.101 0.799 - 0.785 0.117 0.691 - 0.723
US-CoSOD [5] (WACV 2024) 1 0.116 0.546 0.743 0.672 0.070 0.845 0.886 0.840 0.076 0.779 0.861 0.801
Group TokenCut 1+2 0.106 0.596 0.781 0.701 0.091 0.823 0.867 0.815 0.097 0.757 0.833 0.776
SCoSPARC (ours) 1 0.099 0.580 0.767 0.693 0.063 0.860 0.902 0.850 0.067 0.808 0.877 0.816
SCoSPARC (ours) 2 0.092 0.602 0.782 0.703 0.065 0.863 0.901 0.847 0.066 0.824 0.885 0.818
SCoSPARC (ours) 1+2 0.092 0.614 0.782 0.711 0.062 0.869 0.905 0.851 0.064 0.827 0.889 0.823

GCAGC [73] (CVPR 2020) 3 0.111 0.523 0.754 0.669 0.085 0.813 0.866 0.817 0.100 0.740 0.816 0.785
GICD [77] (ECCV 2020) 2 0.126 0.513 0.715 0.658 0.071 0.844 0.887 0.844 0.079 0.770 0.848 0.797
CoEGNet [15] (TPAMI 2021) 2 0.106 0.493 0.717 0.612 0.077 0.832 0.882 0.836 0.092 0.736 0.825 0.762
GCoNet [17] (CVPR 2021) 2 0.105 0.544 0.760 0.673 0.068 0.847 0.887 0.845 0.071 0.777 0.860 0.802
CSG [74] (TMM 2022) 3 0.106 0.532 0.739 0.671 0.062 0.841 0.895 0.845 0.087 0.753 0.842 0.788
DCFM [68] (CVPR 2022) 1 0.085 0.598 0.783 0.710 0.067 0.856 0.892 0.838 0.067 0.805 0.874 0.810
CoRP [81] (TPAMI 2023) 1 0.101 0.564 0.769 0.699 0.060 0.864 0.901 0.859 0.067 0.794 0.876 0.820
CoRP [81] (TPAMI 2023) 1+2 0.121 0.551 0.758 0.686 0.049 0.885 0.914 0.875 0.075 0.798 0.878 0.820
UFO [53] (TMM 2023) 3 0.095 0.571 0.782 0.697 0.064 0.865 0.906 0.860 0.073 0.797 0.874 0.819
MCCL [79] (AAAI 2023) 2+3 0.103 0.590 0.796 0.714 0.051 0.891 0.927 0.890 0.061 0.837 0.903 0.858
GEM [64] (CVPR 2023) 2+3 0.095 0.599 0.808 0.726 0.053 0.882 0.933 0.885 0.061 0.829 0.911 0.853
DMT [42] (CVPR 2023) 1+2 0.108 0.619 0.800 0.725 0.045 0.905 0.936 0.897 0.063 0.835 0.895 0.851
GCoNet+ [78] (TPAMI 2023) 1+2 0.088 0.626 0.808 0.734 0.058 0.880 0.919 0.876 0.065 0.822 0.894 0.839
GCoNet+ [78] (TPAMI 2023) 2+3 0.081 0.637 0.814 0.738 0.056 0.891 0.924 0.881 0.062 0.834 0.901 0.843

Comparison with the state-of-the-art (SOTA) methods: In Tab. 2 we compare
the performance of our model with the existing unsupervised CoSOD models
(upper block) as well as supervised CoSOD models (lower block).

In the upper block in Tab. 2, we see that our SCoSPARC outperforms all ex-
isting unsupervised CoSOD models. We introduce a baseline, Group TokenCut,
a modified version of the popular TokenCut [60] model used for single-image
foreground segmentation. In Group TokenCut, we calculate the second smallest
eigenvector of a graph (indicating the likelihood of a token belonging to a fore-
ground object) constructed across all patch-level tokens in the image group (from
all images), differing from TokenCut’s second smallest eigenvector computation
based on a single image. We outperform the SOTA for unsupervised CoSOD i.e.
the US-CoSOD model [5], by a significant margin (we achieve a 13.7% gain in
the F-measure metric over US-CoSOD on the CoCA dataset).
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Table 3: Comparison of our model with the SOTA supervised CoSOD model,
GCoNet+ using different amounts of labeled data for training.

CoCA [77] Cosal2015 [71] CoSOD3k [16]
Method Label MAE↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑ MAE↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑ MAE↓ Fmax

β ↑ Emax
ϕ ↑ Sα ↑

GCoNet+ [78] 50% 0.133 0.534 0.753 0.661 0.074 0.842 0.889 0.842 0.079 0.783 0.865 0.808
GCoNet+ [78] 75% 0.113 0.547 0.759 0.682 0.066 0.863 0.902 0.860 0.071 0.804 0.876 0.823
SCoSPARC (ours) 0% 0.092 0.614 0.782 0.711 0.062 0.869 0.905 0.851 0.064 0.827 0.889 0.823

Interestingly, in the lower block in Tab. 2, we see that SCoSPARC out-
performs several SOTA fully supervised CoSOD models such as DCFM [68],
CoRP [81], UFO [53], etc. Also, we outperform the recent MCCL [79] and
GEM [64] models on the CoCA dataset in terms of Fmax

β -measure and MAE.
In Tab. 3 we quantitatively compare the performance of our SCoSPARC

model with GCoNet+ [78] when limited data is available for training. Specifically,
we evaluated GCoNet+ using 50% and 75% training labels i.e. we randomly
selected a fraction of images from each image group in the training dataset as
the labeled set. We find that GCoNet+ has worse performance compared to
SCoSPARC using 50% labels across all metrics, and in the majority of metrics
using 75% labels. We attribute the poor performance of GCoNet+ to the fact
that this model overfits to the training data when limited data is available for
training. Other supervised models such as CoRP [81], DCFM [68], and UFO [53]
also perform poorly compared to our model due to the same reason. Our self-
supervised model, on the other hand, better leverages the patch and region
feature correspondences within the images without relying on labeled training
data (thus avoiding overfitting), which improves prediction performance.

In Tab. 4(a) we compare the inference speeds of our SCoSPARC (with
and without DenseCRFs) with other unsupervised CoSOD baselines, namely
SegSwap [51], DVFDVD [2], and Group TokenCut. SCoSPARC without the
DenseCRF step achieves the highest inference speed, in terms of the frames-per-
second (FPS). Tab. 1 and Tab. 2 show that our model outperforms all SOTA
unsupervised CoSOD models and remains competitive with the recent supervised
CoSOD models even without the DenseCRF post processing step. In Tab. 4(b)
we compare the computational complexity of recent supervised (DCFM, MCCL)
and unsupervised (US-CoSOD, ZS-CoSOD) methods with ours. Our model, with
only 1.77M trainable parameters, offers faster training compared to models like
DCFM and US-CoSOD, while also being less parameter-heavy than US-CoSOD
and ZS-CoSOD.

4.3 Qualitative evaluation

In Fig. 3 we qualitatively compare the CoSOD predictions from our self-supervised
SCoSPARC model with different baselines on three image groups, each from the
CoCA, CoSOD3k, and Cosal2015 datasets. We compare our model with the un-
supervised models US-CoSOD [5] and Group TokenCut, and with the supervised
models CoRP [81], DCFM [68], and UFO [53]. We observe that our SCoSPARC
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Table 4: (a) Comparison of the inference speeds of our SCoSPARC with other unsu-
pervised CoSOD baselines. (b) Comparison of the GFLOPs (measured on image size
224× 224) and number of parameters (total and trainable) of the compared methods.

Method Inference Speed (FPS)

SegSwap [51] 0.50
DVFDVD [2] 0.23
Group TokenCut 0.05
SCoSPARC (w/ d-CRF) 4.1
SCoSPARC (w/o d-CRF) 20.5

(a) Inference Speed (FPS)

Method GFLOPs Total params. Trainable params.

DCFM [68] 63.4 542.9M 542.9M
MCCL [79] 8.95 27M 27M
ZS-CoSOD [65] 385 1037M 0
US-CoSOD [5] 354 629M 542.9M
SCoSPARC 158 87.57M 1.77M

(b) GFLOPs and Parameters

Image
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Group 
TokenCut

U
n

su
p

er
vi

se
d

Su
p

er
vi

se
d

Fig. 3: Qualitative comparison of the performance of different baselines with our
SCoSPARC on three image groups, each selected from the CoCA, Cosal2015, and
CoSOD3k datasets. Our model produces the most accurate segmentations.

generates more accurate segmentations compared to other baselines. The unsu-
pervised US-CoSOD [5] and the Group TokenCut models produce masks with
several undesirable image regions (e.g . the non-co-occurring foregrounds) that
are responsible for their poor performances. While the supervised CoRP and
the DCFM models generate reasonable segmentations in most cases, they fail to
accurately detect the small objects for certain instances. For example, for the
Ladybird group from Cosal2015, in columns 1 and 2, most methods including
CoRP and DCFM produce several undesirable image regions (in the flowers)
while failing to accurately segment the small sized ladybird. Our model does not
suffer from such drawbacks. UFO [53] produces diffuse segmentation maps, often
leading to noisy predictions. In columns 2 and 3 of the car group, we see fail-
ure cases where all models including ours erroneously detect background regions
inter-leaving the windows as being salient. More results in supplementary.

In Fig. 4 we visualize the intermediate maps from our SCoSPARC model,
namely the self-attention map, SA from the DINO ViT backbone in column
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Image
Self-attention 

Map, SA
Cross-attention 

Map, S

Segmentation 
map, G (Stage 1) Ground Truth

Segmentation 
map, R (Stage 2)

Fig. 4: Visualizations of intermediate self-attention maps, cross-attention maps, and
segmentation maps for two instances from the handbag category from CoCA. The
yellow boxes highlight the regions eliminated using stage 2 of our SCoSPARC model.

2, the cross-attention map S (from stage 1) in column 3, the thresholded seg-
mentation map G (following confidence based adaptive threshold) in column
4, the final segmentation R (from stage 2) in column 5, and the ground truth
in column 6, for the handbag image group from the CoCA dataset. In column
4 in Fig. 4, we highlight the regions eliminated using our region-based feature
correspondence step (in stage 2) using dashed yellow boxes. We observe that
this step only retains the image regions that correspond well with the semantic
information of the co-occurring object (handbag in this case) while eliminating
undesirable image regions initially detected using local feature correspondence
in stage 1. More results in the supplementary.

5 Conclusion

We presented a novel self-supervised approach for CoSOD based on mining fea-
ture correspondences at multiple scales within a group of images. Our model
first finds local patch-level correspondences via a network trained to maximize
co-occurrence and saliency of the detected regions in a self-supervised manner.
We further employ a more global region-level correspondence to eliminate de-
tected regions that do not align well with the consensus feature representation
across the entire image group, which yields improved predictions. The proposed
model outperforms all existing unsupervised methods and several popular su-
pervised models for co-salient object detection. As future work, we would like to
investigate the use of stable diffusion models (which has shown promising results
for segmentation tasks) for self-supervised CoSOD using pseudo-labels from the
proposed method.
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