
1

Differentiable Convex Polyhedra Optimization
from Multi-view Images

– Supplementary Materials –

A Compactness Analysis

In this section, we present the properties of the reconstructed mesh through
detailed numerical metrics. We provide the average counts of vertices, polygo-
nal faces, and triangulated faces across each category from our reconstruction
experiments. Notably, there appears to be a general correlation between the
vertex and face counts of both the reconstructed and the original ground truth
(GT) meshes. This observation underscores the efficiency and adaptability of our
method.

Plane Car Chair Lamp Table Sofa Telephone Vessel Loudspeaker Cabinet Display bench Rifle

#Vertices 541.6 453.6 269.78 548.78 188.14 229.74 182.62 307.88 217.18 190.6 170.32 230.92 410.3
#Polygons 300.15 257.99 166.21 305.48 125.02 146.13 122.53 185.24 139.82 126.51 115.87 146.72 236.76
#Triangles 1020.96 843.44 475.84 1034.52 313.56 396.0 302.32 552.32 370.96 317.84 278.32 398.48 756.64

#GT Vertices 16K 37K 2.6K 7K 1.1K 6K 3.1K 21K 4K 1.9K 1.3K 4.4K 6.1K

Table A: Reconstructed mesh property, here we show the average number of vertices,
average number of polygons, and average number of triangulated faces of each category.

B Runtime Efficiency

In this section, we examine the run time and memory usage in relation to varying
numbers of convex polyhedra and hyperplanes.

#Convexes 1 2 4 8 16 32 64 128 256 512

#Planes 8 Time(Sec) 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.09
Memory (MB) 0.5 0.5 0.5 0.5 0.8 0.8 0.8 1.0 1.8 3.0

#Planes 16 Time(Sec) 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.06 0.1 0.16
Memory (MB) 0.5 0.5 0.5 0.5 0.8 1.0 1.2 2.0 3.8 7.0

#Planes 32 Time(Sec) 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.1 0.17 0.33
Memory (MB) 0.5 0.8 0.8 0.8 1.0 1.2 2.2 3.8 7.5 14.5

#Planes 64 Time(Sec) 0.02 0.02 0.02 0.03 0.04 0.06 0.1 0.17 0.33 0.66
Memory (MB) 0.8 0.8 1.2 1.0 1.2 2.2 4.2 7.8 15.0 29.8

#Planes 128 Time(Sec) 0.02 0.03 0.04 0.05 0.06 0.09 0.17 0.33 0.66 1.31
Memory (MB) 1.0 1.0 1.2 1.5 2.5 4.2 7.8 15.2 30.2 60

#Planes 256 Time(Sec) 0.02 0.027 0.036 0.054 0.98 0.18 0.34 0.64 1.28 2.61
Memory (MB) 1.2 1.5 1.8 2.5 4.2 7.8 15.2 30.2 60.5 120.6

Table B: Runtime information about our method, in particular, we show speed and
memory usage w.r.t different number of convex polyhedra and hyperplanes.



2

Fig.A: Screenshots from the attached video. Row 1, 3: Ground truth mesh. Row 2,
4: Optimized mesh.

C Visulization of optimization Process

We’ve included a video showcasing the optimization process for reconstructing
a bunny from multiple viewpoints. The convex polyhedra begin in a random
arrangement. Roughly every 10 seconds, operations for densification and convex
spawning take place. The procedure utilizes a total of 32 convex polyhedra and
undergoes 10,000 iterations.

D File Format

To enhance the efficiency of storing, loading, and sharing shapes represented
as convex polyhedra, we’ve developed a .cvx file format, reminiscent of .obj
files. Each line in this format specifies a unique geometric entity. A ’p’ at the
beginning of a line identifies a hyperplane, accompanied by the components of
its normal vector (nx, ny, nz) and the plane offset. Lines that start with ’c’
indicate a convex polyhedron, defined by the indices of intersecting hyperplanes.
The ’t’ character signals a translation of a convex polyhedron, directly linked
to the polyhedron defined by the preceding ’c’ lines. This data structure, also
utilized in the optimization of convex polyhedra, proves to be extremely versatile,
facilitating various operations such as densification, spawning, and removal.



3

The example below demonstrates how a .cvx file defines two cubes, each with
a size of 2, and centers that are spaced 4 units apart.

1 p 0 0 1 1
2 p 0 0 -1 1
3 p 0 1 0 1
4 p 0 -1 0 1
5 p 1 0 0 1
6 p -1 0 0 1
7 p 0 0 1 1
8 p 0 0 -1 1
9 p 0 1 0 1

10 p 0 -1 0 1
11 p 1 0 0 1
12 p -1 0 0 1
13 c 0 1 2 3 4 5
14 c 6 7 8 9 10 11
15 t 0.0 0.0 0.0
16 t 4.0 0.0 0.0


