
Differentiable Convex Polyhedra Optimization
from Multi-view Images

Daxuan Ren1, Haiyi Mei,2, Hezi Shi1,
Jianmin Zheng�1, Jianfei Cai1,3, and Lei Yang2

1 College of Computing & Data Science, Nanyang Technological University, Singapore
2 Sensetime Research

3 Department of Data Science & AI, Monash University Monash University
{daxuan001, hezi001}@e.ntu.edu.sg, {meihaiyi, yanglei}@sensetime.com,

asjmzheng@ntu.edu.sg, jianfei.cai@monash.edu

Fig. 1: A novel method optimizes differentiable convex polyhedra w.r.t image losses,
bridging the gap between compact shape representation and easily obtained image
supervision.

Abstract. This paper presents a novel approach for the differentiable
rendering of convex polyhedra, addressing the limitations of recent meth-
ods that rely on implicit field supervision. Our technique introduces a
strategy that combines non-differentiable computation of hyperplane in-
tersection through duality transform with differentiable optimization for
vertex positioning with three-plane intersection, enabling gradient-based
optimization without the need for 3D implicit fields. This allows for ef-
ficient shape representation across a range of applications, from shape
parsing to compact mesh reconstruction. This work not only overcomes
the challenges of previous approaches but also sets a new standard for
representing shapes with convex polyhedra.



2 D. Ren et al.

1 Introduction

The quest for shape representation in computer graphics and computer vision
has led to significant advancements, exploring various paradigms such as point
clouds, voxels, meshes, implicit fields, and geometric primitives. Among these,
the technique of using a combination of simple geometric primitives to represent
more complex shapes is a promising way of capturing the geometric essence of
objects [4,7,33,39,40,43,53,54]. Particularly, representing shapes via a set of con-
vex polyhedra has shown potential in many downstream applications [19,20], in-
cluding parsing shapes to semantically meaningful pieces, efficient physics-based
simulations, collision detection, and compact mesh representations for efficient
rendering and storage. Despite its potential, a fundamental challenge remains:
how to enable the differentiable construction and optimization of convex poly-
hedra. This capability is crucial for leveraging gradient-based optimization tech-
niques, thus enhancing the adaptability and precision of shape representations
within learning-based frameworks.

Recent advances in shape representation with primitives have predominantly
relied on supervision from implicit fields [4,7,13,16,39,40,53,54], such as Signed
Distance Functions (SDF) or occupancy fields. While effective, these methods
necessitate watertight meshes for training, which can be difficult to acquire.
Apart from this, preprocessing the dataset into a set of discrete sample points
with ground truth implicit values imposes a huge burden on both computation
resources and storage. Additionally, during training, all of these methods define
shape compositing operations such as intersecting planes and uniting convex
polyhedra in approximated ways, like sigmoid for converting SDF into occu-
pancy, and softmin and softmax for intersection and union, leading to inaccu-
rate overall SDF or occupancy fields or biased gradient estimate. Also, since the
gradient of each sample point w.r.t all the primitives needs to be cached during
training, the consumption of GPU memory also imposes a barrier for scaling up
the models.

This paper presents an approach that provides a new direction for eliminating
the dependency on implicit fields. It is grounded on purely explicit surface models
and leverages images rendered in a differentiable manner for supervision. This
strategy offers a more flexible solution for gradient-based optimization of shape
representation through a collection of convex polyhedra.

Specifically, our method combines highly efficient non-differentiable compu-
tations with the adaptability of differentiable operations. Utilizing the duality
transform concept [6, 34], we precisely identify the hyperplanes that form each
vertex of a convex polyhedron—an inherently non-differentiable task. With the
hyperplane intersections mapped to each vertex of the polyhedron, we then em-
ploy a differentiable linear system solver to calculate the vertex positions by
solving for the intersection of three planes. This approach ensures the seamless
backpropagation of gradients from image-based losses to the plane parameters
defining the convex polyhedron, making the whole optimization process differ-
entiable. Since our method only requires images as training data, it removes the



DiffConvex 3

requirements for ground truth meshes, unlocking training data with orders of
magnitude larger size.

In our approach, each vertex location is directly solved explicitly as three-
plane intersection, which makes the reconstructed mesh much more accurate
in representing the shape compared to previous methods that leverage implicit
fields, and offers more accurate gradients around shape boundaries as well.

Consequently, our method paves the way for more efficient and scalable shape
representation learning, making it particularly advantageous for applications
where high fidelity is required.

We showcase the broad applicability and superior effectiveness of our method
through its successful deployment in a diverse array of applications. Our tech-
nique excels in shape reconstruction, where it achieves high-fidelity represen-
tations of complex geometries, especially on parts with detailed geometry. In
textured multiview reconstruction, it seamlessly integrates diverse visual per-
spectives into coherent, detailed models, underscoring its ability to handle var-
ied data inputs. Additionally, our approach demonstrates its strength in shape
parsing by accurately decomposing complex shapes into semantically meaning-
ful components. All these applications illustrate not only the versatility of our
method but also its capacity to deliver enhanced performance and efficiency.

In summary, this paper has the following contributions:

– We introduce a novel method for making the construction of convex polyhe-
dra differentiable, enabling gradient-based optimization without reliance on
implicit fields.

– Our approach combines non-differentiable computation via duality transform
with differentiable optimization, allowing for effective and accurate shape
representation.

– We demonstrate the versatility and efficiency of our method across a range of
applications, from shape reconstruction, textured multiview reconstruction,
to shape parsing.

2 Related Work

This section briefly discusses related topics, focusing on shape representations,
especially with geometric primitives, and differentiable rendering.

2.1 Shape Representations

Voxels directly expand pixels from 2D images into 3D space, representing shapes
with a regular grid of cubic cells (voxels). Each cell can store information such
as material properties, occupancy, or color. This representation is well-suited for
volumetric data, offering straightforward manipulation and visualization. How-
ever, it is often limited by high memory consumption [23,31,36,47].
Point clouds represent a shape as a collection of discrete points in space, cap-
turing the surface geometry without explicit connectivity information. This rep-
resentation is widely used in 3D scanning and reconstruction, where raw data



4 D. Ren et al.

typically form a point cloud. Despite its popularity, the lack of surface connectiv-
ity requires additional processing for applications that demand explicit surface
models. Recently, many methods have been proposed for various tasks based on
point clouds, ranging from shape understanding [35, 37, 48], shape reconstruc-
tion [51] to shape generation [28].
Meshes use vertices, edges, and faces in a connected topology to represent
shapes. Triangular and quadrilateral meshes are the most common, offering de-
tailed and flexible representations of complex surfaces. Meshes are a cornerstone
in modern computer graphics for modeling, rendering, animation, and geometric
analysis [5, 8, 29,45,49].
Implicit fields (or implicit surfaces) define shapes through scalar fields, with
the surfaces represented as level sets of the implicit functions (e.g., the set of
points whose signed distance function values are zero). This representation sup-
ports complex topologies and smooth surfaces, and is also favored for blending
and modeling smooth transitions between shapes. In recent years, leveraging
implicit fields has become a hot topic for its capability of representing smooth
shapes with complicated topology and easy integration into deep learning frame-
works. Implicit fields have been widely used for shape learning [9, 24, 32] and
differentiable rendering in computer vision [25,46,50,52,55].
Hybrid Approaches represent shapes using both an implicit field and a sur-
face mesh via differentiable iso-surface extraction methods. For instance, Deep
Marching Cubes [18] adapts the classic marching cubes algorithm for differen-
tiable use, enabling the extraction of surface geometry from volumetric represen-
tations through learnable parameters. Deep Marching Tetrahedra [41] further
extends this approach by introducing differentiability into the process of con-
verting scalar fields to meshes via deformable tetrahedron grids. This facilitates
the optimization of complex geometries using gradient descent. FlexiCube [42]
proposes a differentiable iso-surface extraction method based on Dual Marching
Cubes, offering efficient and flexible shape optimization.
Primitive-based representations model shapes by combining basic geometric
entities such as planes, spheres, cubes, cylinders, quadrics, superqudrics [33,43].
While they might not be as flexible or might not capture as much detail as other
representations, they offer advantages on shape parsing, compactness, editability,
etc. One prominent representation is Constructive Solid Geometry (CSG) [4,
7, 16, 39, 40, 53, 54], which models complex objects by combining simple solid
primitives using Boolean operations (union, intersection, difference). Among the
existing methods, CVXNet [7] and BSPNet [4] are most similar to ours. Both
of them represent shapes implicitly as the union of a set of convex polyhedra,
which result from intersecting hyperplanes.

2.2 Differentiable Rendering

Differentiable rendering bridges the gap between 3D model representation and
image-based loss functions, allowing for the optimization of shape parameters di-
rectly from image data. Differentiable rendering can be roughly categorized into
three categories: rasterization-based, physical-based, and implicit field based.



DiffConvex 5

Rasterization based differentiable renderers [15,21,27,38] generally offer fast ren-
dering, which use a “soft” version of rasterization and shading to allow gradients
to propagate, however it generally only support explicit triangle mesh as shape
representation. Unlike rasterization based differentiable renderers, physical-based
differentiable renderers are built on top of ray tracing techniques and support a
border spectrum of light transport phenomena such as reflection, refraction, and
transparent objects [2,10,17,22,30], these methods can support shape representa-
tion other than triangle mesh, as long as explicit boundaries or a continuous and
boundary consistent reparameterization is provided. With the research advance-
ment in the field of implicit fields, the renders for implicit fields [1,12,25,44,46,52]
also become popular. Typically, these methods use volume rendering to integrate
radiance along the ray direction and employ alpha compositing to determine
each pixel’s color. Additionally, 3DGS [14] proposed a hybrid approach that
represents scenes with gaussian balls, combining rasterization with volumetric
rendering to generate images. These methods have recently gained significant
attention due to the flexibility and continuous nature of implicit fields. However,
none of these method can be applied directly to in our case, since: 1) there is no
explicit surface mesh available, 2) a continuous and boundary-consistent repa-
rameterization is hard to design, especially with potential self-intersecting con-
vex polyhedra, and 3) volume rendering require untractable amount of VRAM
when paired with the primitive-based representations discussed in Sec.2.1. For a
512x512 image with 64 convex polyhedra, each defined by 64 hyperplanes, and
each ray sampling 512 points for ray integration, the total number of queries per
image becomes impractically high (512x512x64x64x512 = 549,755,813,888). This
exceeds the capacity of contemporary GPU memory. These challenges motivated
the approach described in this work.

3 Methods

Overview. The essence of our approach is to employ the intersections and unions
of a set of halfspaces to depict shapes. To equip these shapes with differentiabil-
ity, we initially construct convex polyhedra from the intersections of halfspaces
using non-differentiable duality transforms and record the IDs of three planes
that intersect to form each vertex. Subsequently, we recompute the vertex po-
sitions of polyhedra through a differentiable process for finding the intersection
of three planes. This enables the vertex positions to be differentiable, allowing
the straightforward application of a differentiable renderer to calculate image
loss and facilitating the backpropagation of gradients to the plane parameters.
Notably, the union of convex polyhedra is seamlessly managed by the renderer,
utilizing mechanisms such as the z-buffer or ray-object intersections, thereby
obviating the need for explicit handling. Fig. 2 illustrates these processes.

3.1 Differentiable Rendering of Convex Polyhedra

Differentiable rendering of convex polyhedra involves the computation of gradi-
ents of plane parameters θ w.r.t image loss L: ∂L

∂θ = ∂L
∂I · ∂I

∂θ .



6 D. Ren et al.

Fig. 2: Overview of the proposed method. Given a set of hyperplanes, we use duality
transform to map them into the dual space. We then compute the convex hull of the
dual vertices. Each facet of the dual convex hull represent a intersection point in the
primal domain. Once the plane IDs for each intersection vertex are recorded, we can
recompute the vertex location via differentiable linear equation solvers.

However, directly evaluating ∂I
∂θ is difficult, see Sec.2.2. Thus, we choose an

indirect approach by constructing the mesh of the convex polyhedron where the
vertex position is differentiable w.r.t plane parameters. After this, we can use
standard differentiable renderer to obtain the final gradients:

∂L
∂θ

=
∂L
∂I︸︷︷︸

Differentiable Image Loss

· ∂I
∂V︸︷︷︸

Differentiable Rendering

· ∂V
∂θ︸︷︷︸

Differentiable Vertex Location

(1)

3.2 Halfspace Intersections about a Point

In Euclidean space Rn, a halfspace is the set of points x ∈ Rn satisfying a linear
inequality of the form aTx ≤ b, where a ∈ Rn is a nonzero vector, b ∈ R is a
scalar, and aTx represents the dot product of a and x.

A convex set (polyhedron) is a subset of Rn that, for every pair of its points,
the line segment connecting the two points is contained in the set. Formally,
a set C ⊆ Rn is convex if for every x, y ∈ C and every λ ∈ [0, 1], the point
λx+ (1− λ)y is also in C.

The convex set generated by intersecting a set of halfspaces is defined as
follows. Let {Hi}ki=1 be a collection of halfspaces in Rn, where each halfspace
Hi is defined by a linear inequality aTi x ≤ bi with ai ∈ Rn and bi ∈ R. The
intersection of these halfspaces, denoted by C, is defined as:

C =

k⋂
i=1

H=

{
x ∈ Rn | aTi x ≤ bi, ∀i = 1, . . . , k

}
. (2)

Duality Transform. The duality transform is a powerful tool in computational
geometry that allows us to view the problem from a different perspective. To
give a concrete example, a line in 2D Euclidean space has two parameters, i.e.,
the slope m and the Y-intercept n. Therefore, we can draw a point in the dual
domain with coordinate (m,n). This mapping between the line in the primal



DiffConvex 7

domain and the point in the dual domain (and vice versa) is known as the duality
transform. Duality transform can be very useful in many computation geometry
applications, such as the construction of convex hull, Delaunay triangulation,
Voronoi diagram, and in our case, halfspace intersections.
Halfspace Intersection with Duality Transform. Given a set of halfspaces
defined by linear inequalities aTi x ≤ bi for i = 1, . . . , k, and a feasible point
x0 that satisfies all these inequalities, the duality transform involves converting
each halfspace into a point in the dual domain and vice-versa. This transfor-
mation facilitates the identification of all vertices generated by intersecting the
halfspaces. Specifically, the dual of a hyperplane aTi x = bi is defined by a point
with coordinates (

aix

bi
,
aiy

bi
,
aiz

bi
) in the dual domain. By computing the convex

hull of these points in the dual domain, we can effectively identify the bound-
aries of the intersection of halfspaces in the primal domain. Notably, each facet
of the dual convex hull corresponds to a vertex in the primal domain formed by
intersecting the hyperplanes corresponding to the vertices of the dual facet [34].
This approach can significantly simplify the computation by converting a poten-
tially complex halfspace intersection problem into a convex hull problem in the
dual domain. Once the three planes that intersect into each convex polyhedron
vertex is know, the position of the vertex can be computed differentially via the
solution of a system of linear equations. Specifically, if a vertex in the primal
space is formed by the intersection of n hyperplanes, then the position of this
vertex, denoted by x, can be found by solving the system: Ax = b where A is a
matrix whose rows are the normal vectors of the hyperplanes aTi for i = 1, . . . , n,
and b is a vector containing the offsets of these hyperplanes, with each entry bi
corresponding to the distance from the origin to the hyperplane. Formally, this
system can be written as: a

T
1
...
aTn

x =

b1...
bn

 . (3)

The solution to this system gives the coordinates of the vertex in the primal
space. Since solving the linear system can be done in a differentiable fashion, ∂V

∂θ
can be obtained.

Having tackled vertex computation, we shift our attention to triangle face
generation. As optimizing the connectivity of vertices often falls outside the scope
of most differentiable renderers, we opt for directly utilizing the facets of the
convex hull constructed in the primal space through non-differentiable methods
and tessellate them into triangles. After computing the vertices and triangle
faces of a convex polyhedron, the mesh is fed into a differentiable renderer for
rendering.

3.3 Optimization Strategies

Having discussed the construction of an individual convex polyhedron, now we
turn to optimizing a set of convex polyhedra to represent a scene with com-



8 D. Ren et al.

Fig. 3: Small convex polyhedra and redundant planes will be removed to speed up the
optimization process. To better reconstruct the shape with high curvature, we employ
a densification process that constructs the mesh of the convex polyhedron, runs Loop
subdivision, and uses the recomputed convex hull equations of the subdivided mesh to
serve as the updated plane parameters.

plex geometries. Inspired by 3DGS [14], we adapted several heuristics during
optimization. Fig.3 illustrates an overview of operations on convex polyhedra.
Convex Initialization. We commence our scene construction with a prede-
termined quantity of convex polyhedra and planes. The initialization process
assigns a uniform size to all convex polyhedra, denoted by the same b value as
outlined in Eq. 2. Convexes are randomly initialized throughout the space.
Persistent Convex. To facilitate the intersection of hyperplanes through du-
ality, our method begins by securing a feasible starting point. Although identi-
fying a feasible solution such as determining the Chebyshev center of a linear
programming problem is relatively straightforward, we circumvent this necessity
by ensuring that the origin is always within the convex hull. This is accomplished
by introducing additional constraints to Eq. 2, mandating that all plane offsets
remain positive (b ∈ R+). This strategy ensures that the origin acts as a fea-
sible solution. Moreover, to provide spatial flexibility, we incorporate an extra
translation parameter for each convex. This adjustment allows for the seamless
relocation of the entire convex polyhedron within the three-dimensional space,
enhancing the adaptability of our approach.
Convex Purging. The treatment to convex polyhedra introduced above guar-
antees their persistence by consistently enclosing a viable region, thus preventing
from the elimination of small convex polyhedra throughout the optimization pro-
cess. To improve both the visual quality and computational efficiency, we adopt
a convex purging strategy. This strategy entails the removal of convex polyhedra
along with their associated parameters once their volumes are below a certain
predefined threshold.
Plane Purging. During optimization, if a plane does not contribute to the
computation of any vertex, it will not receive any gradient and never get updated.
Thus, we further prune inactive hyperplanes to expedite the optimization. This
can be done by removing all the hyperplanes that have a dual vertex falling
within the dual convex hull.
Convex Densification. Given the initialization of the convex polyhedron with
a relatively small number of planes, our approach initially struggles to accurately
reconstruct regions exhibiting high curvature. To address this limitation, we em-
ploy a densification strategy that reintroduces the necessary hyperplanes, and



DiffConvex 9

provides a balance between model sparsity and the need for detailed shape recon-
struction. Specifically, after a predetermined number of optimization iterations,
we activate a convex densification process aimed at enhancing the reconstruction
of areas with high curvature. This process is executed through a method akin to
mesh subdivision: for each convex polyhedron, we calculate the triangle mesh of
the convex polyhedron, apply one Loop subdivision iteration, and then recom-
pute the convex hull of the subdivided mesh. The plane equations derived from
the new convex hull are then utilized as the parameters for the planes in the
subseqent optimization iterations, ensuring a more accurate and comprehensive
representation of complex shapes.
Convex Spwaning. Convex purging, the process of discarding small convex
polyhedra, potentially risks entrapment in local minima and the loss of details.
To counteract this and ensure that a sufficient number of convex polyhedra
are employed for the final shape reconstruction, we introduce a convex spawn-
ing operation. This procedure involves randomly re-initializing removed convex
polyhedra within the space. Through practical applications, we have found that
this random spawning approach is effective in maintaining an adequate count of
convexes for the final reconstruction. Nonetheless, we acknowledge the possibil-
ity of more sophisticated spawning strategies that could enhance this process,
suggesting a direction for future research.

4 Experiments

4.1 Shape Reconstruction

Dataset We begin experiments with multiview reconstruction using the ShapeNet
dataset [3]. Our study focuses on a standard subset of 13 categories. Given that
our method does not include a learning component, we evaluate our approach
on 100 randomly selected shapes from each category, constrained by computa-
tional resource limitations. For each shape, we render 16 images from different
viewpoints to act as supervision data.
Implementation Details We implement our method using C++ with QHull
for duality related computation. To facility gradient base optimization, we imple-
mented a Python wrapper for it. Once the plane IDs for each convex polyhedron
vertex is outputted, we use PyTorch’s linear algebra solver to determine the
vertex position. We use a total of 32 convex polyhedra for our experiment. We
randomly initialize the convex polyhedra in space and proceed the optimization
steps as detailed in Sec.3.3. We optimize a total of 20000 steps, incorporating
10 densification and random spawning steps to refine our model further. We use
NVDiffRast [15] as our renderer and build our pipeline based on [22], due to the
code readability and ease of integration. Note that our implementation does not
receive any specialized treatments in [22] such as re-parameterization. Instead,
we simply reuse their rendering setup such as lighting and shading. Our pipeline
is supervised by purely image L1 loss. We use a learning rate of 1e−2 for convex
polyhedron translation and 1e−3 for hyperplanes.



10 D. Ren et al.

Fig. 4: Comparing our method with VP, CVXNet, and BSPNet on the ShapeNet
dataset. The visualization results show that our method generates better reconstruc-
tion, especially in the thin and detailed aspects of shapes.

Comparisons In our evaluation, we benchmark our method against other meth-
ods focused on shape representation through basic geometric primitives, such as
VP [43]with 32 cuboids (increased compare to their original paper), CVXNet [7]
with 64 convexes (same as their paper), and BSPNet [4] with 64 convexes (same
as their paper). Given that our approach does not have a “learning” component
and is designed to optimize convex parameters to “overfit” to individual shapes,
the metric of the baseline method is also “overfit” to the dataset, i.e. using train-
ing set as test set. Acknowledging our method’s lack of visual supervision for
internal structures, we employ a postprocessing step from OccNet [24] that sets
random cameras, renders multiple depth image and fuses them into a final sur-
face mesh. We use this method to effectively remove any internal structure from
both ground truth and output shapes, facilitating fair comparisons.

In Tab.1, we detail our evaluation through quantitative metrics, i.e., L1

Chamfer Distance, L2 Chamfer Distance (multiplied by 1000 for better view-
ing), and Normal Consistency. Our method outperforms the baselines on most
benchmarks. Qualitative comparisons are shown in Fig.4. These assessments
demonstrate that our method excels in the precise reconstruction of thin and
intricate details, for example, the Lamp category in Fig.4. However, we observe



DiffConvex 11

Table 1: Comparison of reconstruction results with baselines, measured by L1 Chamfer
Distance, L2 Chamfer Distance, and Normal Consistency. Our method outperforms the
baselines and achieves the best overall reconstruction results.

L1 Chamfer Distance L2 Chamfer Distance x1000 Normal Consistency
VP CVX BSP Ours VP CVX BSP Ours VP CVX BSP Ours

plane 0.036 0.023 0.017 0.011 0.997 0.419 0.242 0.084 0.709 0.836 0.791 0.958
car 0.054 0.023 0.031 0.019 2.157 0.346 0.739 0.363 0.729 0.877 0.675 0.937
chair 0.052 0.024 0.027 0.023 2.130 0.769 0.546 0.778 0.694 0.932 0.751 0.932
lamp 0.056 0.023 0.032 0.020 2.747 0.488 1.493 0.823 0.642 0.852 0.692 0.932
table 0.046 0.023 0.026 0.023 1.690 0.449 0.604 0.510 0.841 0.938 0.803 0.938
sofa 0.057 0.021 0.029 0.023 2.272 0.283 0.675 0.442 0.677 0.954 0.731 0.920
phone 0.043 0.019 0.025 0.022 1.382 0.216 0.446 0.346 0.882 0.966 0.820 0.962
vessel 0.045 0.028 0.025 0.015 1.571 0.687 0.558 0.382 0.679 0.802 0.707 0.935
speaker 0.060 0.027 0.041 0.038 2.696 0.591 1.564 1.482 0.730 0.944 0.710 0.869
cabinet 0.057 0.026 0.036 0.042 2.461 0.440 1.095 1.601 0.730 0.947 0.742 0.846
display 0.046 0.021 0.025 0.026 1.553 0.271 0.516 0.557 0.859 0.963 0.821 0.937
bench 0.043 0.021 0.022 0.016 1.513 0.371 0.389 0.254 0.716 0.870 0.725 0.936
rifle 0.034 0.036 0.016 0.010 1.022 1.514 0.215 0.070 0.712 0.700 0.714 0.926

mean 0.048 0.024 0.027 0.022 1.861 0.526 0.699 0.592 0.738 0.891 0.745 0.925

performance discrepancies between L1 and L2 Chamfer Distances, caused by
some floating convexes that have not been removed by the optimization. Ad-
ditionally, for categories with large cavities (e.g., cabinets), our method does
not perform as well, likely due to occlusion when relying solely on RGB image
supervision.

Fig. 5: We assess our convex polyhedron-based method against DBW [26] that is based
on boxes and superquadrics. Visual comparisons demonstrate that our approach yields
much better reconstruction results.

4.2 Multiview Reconstruction

In this experiment, we extend our model to real world examples, showcasing
its effectiveness across various settings and datasets. Given the nature of con-
vex polyhedra, which lack consistent tessellation and triangle topology for a
static texture mapping, we adapt the technique from NVDiffRec [27], applying



12 D. Ren et al.

volumetric textures while solely altering the geometry representation. Our eval-
uations span both synthetic and real-world captured datasets. We benchmark
our approach against models based on other geometric primitives, i.e. Differ-
entiableBlockWorlds [26]. We run our method with DTU datasets [11] as well
as other synthetic datasets with textures. The quantitative metric of [26] on
DTU dataset reported in Tab.2 is from the original paper, and the metric of
our method is generated with the same evaluation script from [26]. For synthetic
datasets (e.g., NeRF Datasets [25]), we only adopt the superquadric geometry
from DBW and use the same pipeline as NVDiffRec [27], and the metric is
computed using L1 Chamfer Distance (multiplied by 10 for better viewing). We
show qualitative comparison in Fig. 5, which demonstrates better geometry and
overall reconstruction quality of our method.

Table 2: Comparison of our method with the method of Differentiable Block Worlds
(DBW) [26] for multiview reconstruction. We can see that our method outperforms
DBW by a large margin.

DTU Mesh NeRF Synthetic
Method S24 S40 S55 S83 S105 Bob Spot Lego Chair Mic Drums Hotdog

L2 CD DBW [26] 3.25 1.16 2.98 3.43 5.21 0.71 1.03 0.91 1.07 1.06 1.07 1.40
L2 CD Ours 3.87 1.01 2.43 2.49 2.62 0.43 0.65 0.44 0.35 0.25 0.41 0.63

4.3 Shape Parsing

Fig. 6: Wireframes of the ex-
tracted meshes show the compact-
ness of our outputs.

We have demonstrated the reconstruction
ability of our method. Now we delve into a
detailed analysis of our reconstruction results,
focusing particularly on shape parsing and
segmentation capabilities of our method. Our
examples span both CAD model types, such
as rifles and airplanes, and organic shapes like
bunnies and bobs. Fig. 6 displays the wire
frames of the reconstructed meshes. We can
see from the figure that the output mesh is
dense in the region with geometric details and
sparse in flat regions. We also color-code individual convex polyhedra of the re-
constructed shapes, as shown in Fig. 7. Additionally, we manually group the
convexes to illustrate their correspondence with specific parts of the objects,
further highlighting our method’s adeptness in understanding and segmenting
complex shapes.

4.4 Ablation Study

An ablation study is conducted to understand the impact of various settings on
the performance of our method. Specifically, we explore the effects of convex den-



DiffConvex 13

Fig. 7: Four objects: Bob, Bunny, Bench, and Airplane. For each object, we show the
color-coded individual convex polyhedra on the left and manually grouped object parts
in the middle.

sification, convex spawning and the number of convexes utilized. Each of these
components can play a role in the overall effectiveness and efficiency of shape
reconstruction, and understanding their individual and combined contributions
is essential for refining the approach. We discuss the effect of each component in
the following sections and show numerical results in Tab.3

Fig. 8: Reconstruction using different numbers of convexes. A smaller number of avail-
able convex polyhedra leads to a higher abstraction level with a more prominent shape
parsing structure, while a higher number leads to better reconstruction results, espe-
cially on the region with geometry details.

Fig. 9: Left without convex
spawning, Right without den-
sification process.

Number of Convexes The number of available
convex polyhedra used in the model directly im-
pacts its capacity to reconstruct detailed shapes.
We conduct experiments by varying the num-
ber of convex polyhedra to visualize the balance
between reconstruction accuracy and abstraction
levels. Visual results are given in Fig. 8, where a
complex shape (dragon) is optimized with differ-
ent numbers of convex polyhedra. From the visu-
alization we can see that the higher number gives



14 D. Ren et al.

generally better reconstruction results but with the cost of less abstraction as
well as more computation overhead.

16 Convex 32 Convex 64 Convex 128 Convex 256 Convex 512 Convex -Densify16 -Spawn16

CD L2 0.32 0.14 0.08 0.05 0.05 0.05 0.46 0.54

Table 3: Quantitative results from different optimization configurations.

Densification As discussed in Sec. 3.3, we employed a process of adding ad-
ditional hyperplanes to a convex polyhedron to better capture regions of high
curvature or complex detail. We compare models optimized with and without the
implementation of convex densification to evaluate its influence on the fidelity
of the reconstructed shapes, as shown in Fig.9. We can see from the compar-
ison that the densification process drastically enhances the model’s ability to
represent curved surfaces, i.e., the heap of the bunny.
Convex Spawning In order to maintain the pre-specified number of convexes
throughout the optimization process, we re-introduce convex polyhedra during
optimization. This process is essential, as poor initial convex polyhedron location
can lead to under-reconstruction even when the initial number of convex is large.
We refer the readers to Fig. 9 for visual comparison.

5 Conclusion and Limitation

We have presented a new method for making the optimization of convex poly-
hedra differentiable w.r.t rendering loss. The key idea is to leverage a non-
differentiable duality transform to identify planes intersecting at individual con-
vex polyhedron vertices, which enables the process of solving vertex positions
differentiable through the solution of three-plane intersections. The extensive ex-
perimentations and detailed ablation studies have demonstrated the effectiveness
of our method. Our work will also benefit the research community by offering a
new avenue for exploring shape representation with convex polyhedra via differ-
entiable rendering techniques.
Limitation Despite its effectiveness, our method has certain limitations. Repre-
senting shapes as sets of convex polyhedra results in a loss of detail compared to
ordinary meshes and implicit representations. This limitation also restricts cur-
rent experiments to individual objects rather than entire scenes. The non-static
mesh topology prevents predefined parameterization (UV unwrapping) for sur-
face textures, necessitating volumetric textures. Additionally, the densification
and purging process is somewhat heuristic. Our method relies on differentiable
mesh rendering, inheriting their limitations, such as the lack of gradients for
implicit edges (from triangle self-intersections). This can slow down the opti-
mization process and cause it to get stuck in a local minimum. While these
limitations do not significantly impact overall reconstruction performance, they
highlight areas for further exploration.



DiffConvex 15

Acknowledgements This work is supported by MOE AcRF Tier 1 Grant of
Singapore (RG12/22), and also by the RIE2025 Industry Alignment Fund – In-
dustry Collaboration Projects (IAF-ICP) (Award I2301E0026), administered by
A*STAR, as well as supported by Alibaba Group and NTU Singapore. Daxuan
Ren was also partially supported by Autodesk Singapore.

References

1. Bangaru, S.P., Gharbi, M., Luan, F., Li, T.M., Sunkavalli, K., Hasan, M., Bi, S.,
Xu, Z., Bernstein, G., Durand, F.: Differentiable rendering of neural sdfs through
reparameterization. In: SIGGRAPH Asia 2022 Conference Papers. pp. 1–9 (2022)

2. Bangaru, S.P., Li, T.M., Durand, F.: Unbiased warped-area sampling for differen-
tiable rendering. ACM Transactions on Graphics (TOG) 39(6), 1–18 (2020)

3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

4. Chen, Z., Tagliasacchi, A., Zhang, H.: Bsp-net: Generating compact meshes via
binary space partitioning. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 45–54 (2020)

5. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam (2018), http://www.blender.
org

6. De Berg, M.: Computational geometry: algorithms and applications. Springer Sci-
ence & Business Media (2000)

7. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.:
Cvxnet: Learnable convex decomposition. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 31–44 (2020)

8. Guo, K., Zou, D., Chen, X.: 3d mesh labeling via deep convolutional neural net-
works. ACM Transactions on Graphics (TOG) 35(1), 1–12 (2015)

9. Hao, Z., Averbuch-Elor, H., Snavely, N., Belongie, S.: Dualsdf: Semantic shape
manipulation using a two-level representation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7631–7641 (2020)

10. Jakob, W., Speierer, S., Roussel, N., Nimier-David, M., Vicini, D., Zeltner,
T., Nicolet, B., Crespo, M., Leroy, V., Zhang, Z.: Mitsuba 3 renderer (2022),
https://mitsuba-renderer.org

11. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view
stereopsis evaluation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 406–413 (2014)

12. Jiang, Y., Ji, D., Han, Z., Zwicker, M.: Sdfdiff: Differentiable rendering of signed
distance fields for 3d shape optimization. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 1251–1261 (2020)

13. Kania, K., Zieba, M., Kajdanowicz, T.: Ucsg-net–unsupervised discovering of con-
structive solid geometry tree. arXiv preprint arXiv:2006.09102 (2020)

14. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

15. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
39(6) (2020)

http://www.blender.org
http://www.blender.org


16 D. Ren et al.

16. Li, P., Guo, J., Zhang, X., Yan, D.M.: Secad-net: Self-supervised cad reconstruction
by learning sketch-extrude operations. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 16816–16826 (2023)

17. Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray
tracing through edge sampling. ACM Transactions on Graphics (TOG) 37(6), 1–
11 (2018)

18. Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: Learning explicit surface
representations. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2916–2925 (2018)

19. Lien, J.M., Amato, N.M.: Approximate convex decomposition. In: Proceedings of
the twentieth annual symposium on Computational geometry. pp. 457–458 (2004)

20. Lien, J.M., Amato, N.M.: Approximate convex decomposition of polyhedra. In:
Proceedings of the 2007 ACM symposium on Solid and physical modeling. pp.
121–131 (2007)

21. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. The IEEE International Conference on Computer Vision
(ICCV) (Oct 2019)

22. Loubet, G., Holzschuch, N., Jakob, W.: Reparameterizing discontinuous integrands
for differentiable rendering. ACM Transactions on Graphics (TOG) 38(6), 1–14
(2019)

23. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-
time object recognition. In: 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS). pp. 922–928. IEEE (2015)

24. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4460–
4470 (2019)

25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean Conference on Computer Vision. pp. 405–421. Springer (2020)

26. Monnier, T., Austin, J., Kanazawa, A., Efros, A.A., Aubry, M.: Differentiable
Blocks World: Qualitative 3D Decomposition by Rendering Primitives. In: NeurIPS
(2023)

27. Munkberg, J., Hasselgren, J., Shen, T., Gao, J., Chen, W., Evans, A., Müller, T.,
Fidler, S.: Extracting triangular 3d models, materials, and lighting from images.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8280–8290 (2022)

28. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751
(2022)

29. Nicolet, B., Jacobson, A., Jakob, W.: Large steps in inverse rendering of geom-
etry. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 40(6)
(Dec 2021). https://doi.org/10.1145/3478513.3480501, https://rgl.epfl.
ch/publications/Nicolet2021Large

30. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: A retargetable
forward and inverse renderer. ACM Transactions on Graphics (TOG) 38(6), 1–17
(2019)

31. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: Proceedings of the IEEE international conference on computer vision.
pp. 1520–1528 (2015)

https://doi.org/10.1145/3478513.3480501
https://doi.org/10.1145/3478513.3480501
https://rgl.epfl.ch/publications/Nicolet2021Large
https://rgl.epfl.ch/publications/Nicolet2021Large


DiffConvex 17

32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 165–
174 (2019)

33. Paschalidou, D., Ulusoy, A.O., Geiger, A.: Superquadrics revisited: Learning 3d
shape parsing beyond cuboids. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10344–10353 (2019)

34. Preparata, F.P., Shamos, M.I.: Computational geometry: an introduction. Springer
Science & Business Media (2012)

35. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

36. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5648–5656 (2016)

37. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in neural information processing
systems 30 (2017)

38. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)

39. Ren, D., Zheng, J., Cai, J., Li, J., Jiang, H., Cai, Z., Zhang, J., Pan, L., Zhang,
M., Zhao, H., et al.: Csg-stump: A learning friendly csg-like representation for
interpretable shape parsing. arXiv preprint arXiv:2108.11305 (2021)

40. Ren, D., Zheng, J., Cai, J., Li, J., Zhang, J.: Extrudenet: Unsupervised inverse
sketch-and-extrude for shape parsing. In: European Conference on Computer Vi-
sion. pp. 482–498. Springer (2022)

41. Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. Advances in Neural
Information Processing Systems 34, 6087–6101 (2021)

42. Shen, T., Munkberg, J., Hasselgren, J., Yin, K., Wang, Z., Chen, W., Gojcic, Z.,
Fidler, S., Sharp, N., Gao, J.: Flexible isosurface extraction for gradient-based
mesh optimization. ACM Transactions on Graphics (TOG) 42(4), 1–16 (2023)

43. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstrac-
tions by assembling volumetric primitives. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2635–2643 (2017)

44. Vicini, D., Speierer, S., Jakob, W.: Differentiable signed distance function render-
ing. Transactions on Graphics (Proceedings of SIGGRAPH) 41(4), 125:1–125:18
(Jul 2022). https://doi.org/10.1145/3528223.3530139

45. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Gener-
ating 3d mesh models from single rgb images. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 52–67 (2018)

46. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689 (2021)

47. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based con-
volutional neural networks for 3d shape analysis. ACM Transactions On Graphics
(TOG) 36(4), 1–11 (2017)

48. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5),
1–12 (2019)

https://doi.org/10.1145/3528223.3530139
https://doi.org/10.1145/3528223.3530139


18 D. Ren et al.

49. Wen, C., Zhang, Y., Li, Z., Fu, Y.: Pixel2mesh++: Multi-view 3d mesh generation
via deformation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 1042–1051 (2019)

50. Wu, Q., Liu, X., Chen, Y., Li, K., Zheng, C., Cai, J., Zheng, J.: Object-
compositional neural implicit surfaces. arXiv preprint arXiv:2207.09686 (2022)

51. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf:
Point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 5438–5448 (2022)

52. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. Advances in Neural Information Processing Systems 34, 4805–4815 (2021)

53. Yu, F., Chen, Q., Tanveer, M., Amiri, A.M., Zhang, H.: Dualcsg: Learning dual
csg trees for general and compact cad modeling. arXiv preprint arXiv:2301.11497
(2023)

54. Yu, F., Chen, Z., Li, M., Sanghi, A., Shayani, H., Mahdavi-Amiri, A., Zhang, H.:
Capri-net: Learning compact cad shapes with adaptive primitive assembly. arXiv
preprint arXiv:2104.05652 (2021)

55. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. Advances in Neural
Information Processing Systems (NeurIPS) (2022)


	Differentiable Convex Polyhedra Optimization from Multi-view Images 

