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A Implementation Details

A.1 SlotLifter

Architecture Design
Scene Encoding We employ a U-net-like encoder EΦ with ResNet34 [3] to
extract 2D image features, similar to IBRNet [11]. This architecture truncates
after layer3 as the encoder and adds two up-sampling layers with convolutions
and skip-connections as the decoder. Instead of extracting two sets of feature
maps for coarse and fine networks as IBRNet, we extract a shared feature map.
In addition, we concatenate multi-view images with their corresponding ray
directions and camera positions to provide more spatial information, enabling
slots to learn 3D information from 2D multi-view features via Slot-Attention.
Given extracted feature maps, we obtain slots via Slot-Attention and 3D point
features via feature lifting described in Sec. 3.2. We add the point positional
embedding Ep in Eq. (3), which considers point location p and ray direction d
simultaneously by:

Ep “ MLPpConcatprPosEmbppq,PosEmbpdqsqq,

where PosEmb is a Fourier transformation with a frequency of 10 while MLP is
used to fuse point location and ray direction information and project positional
embedding to the same dimension as point features.
Point-slot Joint Decoding Our point-slot joint decoding contains an allocation
transformer and an attention-based point-slot mapping module. The allocation
transformer consists of four transformer layers, and each layer includes a cross-
attention layer, a 1D convolution layer, and a self-attention layer. We use 1D
convolution and self-attention to model the relationship among points along a
ray. The design is based on the insight that spatially adjacent points are more
likely to be associated with the same slot. Additionally, We use the weighted
sum of attention weights to estimate the density value in Eq. (4). As this design
may restrict the scale of density by the attention weights between slots and point
features, the density obtained from Eq. (4) is multiplied by a learnable parameter
sσ to rescale it.
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Table A.1: Training configuration for our SlotLifter. The values in parentheses are
adopted for the ScanNet and DTU datasets.

Training

Scene Batch Size 4 (2)
Ray Batch Size 1024

LR 5e-5
LR Warm-up Steps 10000

LR Decay Steps 50000
Max Steps 250K

Num. Source Views 1 (4)
Grad. Clip 0.5

Scene Encoding

Feature Dimension 64 (32)
Slot Dimension 256

Iterations 3
σ Annealing Steps 30000

Point-slot Decoding
Num. Layers 4

Attention Heads 4
Feature Dimension 64

Table A.2: Image resolution and the number of slots on different datasets.

Dataset CLEVR567 Room-Chair Room-Diverse Room-Texture

Resolution 128ˆ128 128ˆ128 128ˆ128 128ˆ128
Number of slots 8 5 5 5

Dataset Kitchen-Shiny Kitchen-Matte DTU MVS ScanNet

Resolution 128ˆ128 128ˆ128 400ˆ300 640ˆ480
Number of slots 5 5 8 8

Hyperparameters and Training Details We train our SlotLifter by
sampling 1024 rays for each scene with a learning rate of 5 ˆ 10´5, a linear
learning rate warm-up of 10000 steps, and an exponentially decaying schedule.
All the images are resized to 128ˆ128 for synthetic data and 640ˆ480 for real-
world data. Image resolution and the number of slots K used on different datasets
are shown in Tab. A.2. To encourage SlotLifter to segment the background
properly, we use the locality constraint proposed by uORF [14]. Specifically, we
set a background bound and enforce every point outside the bound being mapped
to the empty slot or the first slot. The locality constraint is imposed for the
first 50K iterations, preventing SlotLifter from segmenting the background as
2 separate objects. Note that our SlotLifter does not require a background-
aware Slot-Attention like uORF since our slots are initialized by learnable queries,
enabling Slot-Attention to learn to individually segment the background and
foreground objects. On ScanNet and DTU MVS, we adopt the coarse-to-fine
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Table A.3: Efficiency and performance comparisons on Room-Diverse. We
evaluate all the methods on an NVIDIA RTX 3090 GPU.

Model PSNRÒ LPIPSÓ NV-ARIÒ ARIÒ GPU MemoryÓ Training TimeÓ

uORF 25.96 0.1729 56.9 65.6 24 GB 6 days
BO-uORF 26.96 0.1515 62.5 72.6 24 GB 6 days

ours(N=256) 29.83 0.1345 76.1 88.7 3.5 GB 10 hours
ours(N=512) 29.84 0.1277 76.2 88.0 6 GB 19 hours
ours(N=1024) 29.80 0.1180 77.5 90.3 12 GB 30 hours

Table A.4: Ablations on the number of rays with different image sizes.
Increasing the number of rays sightly improves rendering and segmentation quality,
while reducing image size slightly decreases both rendering and segmentation quality.

Number of rays
ScanNet (640ˆ480) Room-Diverse (128ˆ128) Room-Diverse (64ˆ64)

PSNRÒ NV-FG-ARIÒ PSNRÒ LPIPSÓ NV-ARIÒ ARIÒ PSNRÒ LPIPSÓ NV-ARIÒ ARIÒ

256 27.27 19.8 29.83 0.1345 76.1 88.7 29.55 0.0792 69.2 82.4
512 27.92 32.3 29.84 0.1277 76.2 88.0 29.57 0.0731 69.9 83.2
1024 28.36 31.1 29.80 0.1180 77.5 90.3 29.57 0.0687 70.2 82.4

sampling scheme on ScanNet following previous methods, sampling 64 points along
each ray for the coarse sampling and another 64 points for the fine sampling. We
found that the coarse-to-fine sampling scheme aids SlotLifter in rendering novel
views with higher quality. The training configuration is summarized in Tab. A.1.
Additionally, we found the background occlusion regularization loss from [6,13]
is helpful on the Kitchen-Matte and Kitchen-Shiny datasets for preventing the
background slot segmenting foreground objects but it has little effect on the
rendering quality. We only use this loss on the Kitchen-Matte and Kitchen-Shiny
datasets because we didn’t find it helpful on other datasets.

A.2 Baselines

uORF and BO-uORF The experimental results of uORF [14] on CLEVR-567,
Room-Chair, and Room-Diverse are taken from their paper. We trained the
BO-uORF model on CLEVR-567, Room-Chair, Room-Diverse, and ScanNet
using the official implementation of uORF and BO-QSA. As (BO-)uORF only
accepts single source view input, we selected the closest view to the target view
as the source view for it. Unfortunately, due to design limitations, such as model
architecture, adversarial loss, perceptual loss, etc., we could not train the BO-
uORF model at the resolution of 640ˆ480. Therefore, we had to use a resolution
of 128ˆ128 following their original settings. We use 8 slots for uORF as same as
our method.

OSRT We trained OSRT [8] on CLEVR-567, Room-Chair, Room-Diverse, and
ScanNet using the implementation recommended by the authors on the project

https://github.com/KovenYu/uORF
https://github.com/YuLiu-LY/BO-QSA
https://github.com/stelzner/osrt
https://osrt-paper.github.io/#code
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website of OSRT. We observed that OSRT’s performance of scene decomposition
is highly sensitive to the batch size used during training, which is also mentioned
in the implementation. Due to the computational limitations, we trained the
OSRT for 250K iterations using a batch size of 64 and sampling 2048 rays for
each scene with 2 Nvidia A100 GPUs. To train OSRT on the ScanNet dataset,
we resized all images to 128ˆ128.

GNT We trained GNT [10] on ScanNet using their official implementation.
We trained GNT for 250K iterations with their config gnt_full.txt in their
repository, which uses a learning rate of 5 ˆ 10´4, samples 2048 rays for each
scene, and selects 10 nearby source views to render the target view.

B Additional Discussions

B.1 Potential Improvements

Although SlotLifter exhibits superior performance in novel-view synthesis
and scene decomposition compared to state-of-the-art 3D object-centric learning
methods, its scene decomposition performance still falls short under real-world
settings. This is particularly noteworthy considering the recent success of 2D
object-centric models on real-world images (see in Tab. A.5). We attribute this
undesired effect to the unconstrained point-slot mapping process. As elaborated
in Sec. 3.2, the slots are mapped to the 3D points which are later projected to the
target view image. With only reconstruction loss, the information in the target
image can be backpropagated to both slots and lifted point features. This adds
no direct guidance or constraints on slot learning and can easily make the learned
slots attend to features that best render the scene instead of decomposing it.

Table A.5: Quantitative segmentation
results on ScanNet. FG-ARI is evaluated
on the input view(s). “MV” indicates 3D
multi-view inputs.

Model Modality FG-ARIÒ NV-FG-ARIÒ PSNRÒ

Slot-Attention [5] 2D 31.1 - -
DINOSAUR [9] 2D 47.6 - -

OSRT [8] MV 29.8 29.7 13.34
SlotLifter MV 32.0 31.1 28.36

SlotLifter w/ Lfeat MV 36.1 35.7 25.38

To account for this issue we con-
sidered guiding slots to decompose
scenes with semantic priors in pre-
trained models. Inspired by recent
object-centric learning methods DI-
NOSAUR [9] and VideoSAUR [15]
that replace image reconstruction with
feature reconstruction, we propose to
improve the scene decomposition ca-
pability of SlotLifter by adding a feature reconstruction loss. Specifically, we
first extract DINOv2 [7] features Ĥ for the target view as ground truth. Similar
to the color prediction in Eq. (5) we add an MLP to predict a feature grid h
and render 2D features H . Next, we add the feature reconstruction loss over the
predicted target-view feature, i.e. Lfeat “ 1 ´ DpH, Ĥq, where D denotes the
cosine similarity. As shown in Tab. A.5, this feature reconstruction loss improves
the segmentation performance on ScanNet, but it harms the rendering quality
of novel view images, decreasing the PSNR to 25.38. This result reveals the key
conflict between the high-level semantic guidance and the low-level appearance

https://osrt-paper.github.io/#code
https://osrt-paper.github.io/#code
https://osrt-paper.github.io/#code
https://github.com/stelzner/osrt
https://github.com/VITA-Group/GNT
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Table A.6: Quantitative results of OSRT in synthetic scenes. We present the
best performance of our reimplemented OSRT. The performance of OSRT is hindered
by its requirements for large amounts of data and computational demands.

Model
CLEVR-567 Room-Chair Room-Diverse

NV-ARIÒ FG-ARIÒ PSNRÒ NV-ARIÒ FG-ARIÒ PSNRÒ NV-ARIÒ FG-ARIÒ PSNRÒ

OSRT: [8] 3.1 10.3 20.73 5.4 24.0 20.99 7.4 39.3 24.58
uORF [14] 83.8˘0.3 87.4˘0.8 29.28 74.3˘1.9 88.8˘2.7 29.60 56.9˘0.2 67.8˘1.7 25.96

SlotLifter 87.0˘2.8 91.3˘1.8 36.09 89.7˘0.5 91.9˘0.3 34.63 77.5˘0.7 84.3˘2.9 29.97

Training
Scenes

Test
Scenes

Input Input
View

Seen
Novel View

Unseen
Novel View Input Input

View
Seen

Novel View
Unseen

Novel View

Fig. A.1: Qualitative results of OSRT. OSRT tends to overfit training scenes and
training views, making it difficult to generalize to unseen scenes and unseen views.

guidance which is commonly shared in object-centric models. Adding 3D geome-
try or temporal constraints (e.g ., shape and temporal consistency) that reveal
objectness can potentially solve this problem and we leave it as an important
future work.

On the other hand, the superior performance on ScanNet and DTU implies
better scene encoding in SlotLifter, supporting potential conjectures that
these latent slots work similarly to latent feature grids with point features
interpolated over them for better novel-view synthesis. This echoes the success of
feature-grid-based methods (e.g ., Plenoxels [1]) for improving the performance of
NeRF.

B.2 Further Discussions about Previous Methods

(BO-)uORF As shown in Tab. 5 and Fig. 4, BO-uORF failed to render novel
views and decompose scenes in complex real-world scenes, achieving only a PSNR
of 12.72 and a NV-FG-ARI of 0.0. Moreover, to demonstrate that the failure of
BO-uORF is not due to lower resolution, we trained our SlotLifter with a
resolution of 128ˆ128 and achieved a PSNR of 29.31.

OSRT We present the quantitative results of OSRT in Tab. A.6 and visualize
qualitative results in Fig. A.1. The performance of OSRT is hindered by its
requirements for large amounts of data and computational demands, especially
on CLEVR-567 which only has 1000 training scenes. We observed that the OSRT
tended to overfit training scenes ( Fig. A.1 ), making it difficult to generalize
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Fig. A.2: Qualitative results of OSRT from the implementation recommended
by the authors of OSRT. OSRT performs well on seen views (e.g ., 0˝, 120˝), but
has difficulty in unseen views (e.g ., 60˝, 180˝).

to unseen scenes. We attempted a larger batch size of 256 and trained OSRT
for more iterations (750K), but the overfitting issue persisted. We also visualize
the results provided by this implementation in Fig. A.2, which demonstrates a
similar experimental phenomenon that OSRT performs well on seen views (e.g .,
0˝, 120˝), but has difficulty in unseen views (e.g ., 60˝, 180˝). Quantitatively,
on the CLEVR-567 dataset, OSRT achieved 47+ PSNR on training scenes, but
only 20.73 on test scenes. Similarly, on the ScanNet dataset, OSRT achieved 27+
PSNR on training scenes, but only 13.34 on test scenes. These results demonstrate
that OSRT may memorize all the training scenes with its powerful transformer
encoder-decoder, requiring a lot of data to overcome the overfitting problem. The
number of training scenes used in our paper might not be sufficient to train the
OSRT(1000 for CLEVR-567 and Room-Chair, 5000 for Room-Diverse, and 100
for ScanNet), leading to the failure case. We attribute this ineffectiveness to its
lack of inductive bias for 3D scenes, which is a main distinction between OSRT
and our SlotLifter.

C Limitations and Future Work

Inference efficiency While our SlotLifter has significantly improved training
efficiency compared to other 3D object-centric models, its inference efficiency is
not satisfactory compared with light field methods (e.g ., COLF and OSRT). The
primary reason for this issue is that NeRF representations require the sampling
of a large number of points with expensive computations, most of which are
wasted on irrelevant vacant points. Although light field methods, such as OSRT,
are very efficient for inference, they lack the use of 3D information and require
a lot of data and computation commands to overcome the overfitting problem.
Some recent works, such as those based on point clouds [12], surfels [2], and
Gaussian Splatting [4,16], have demonstrated high efficiency for inference and
good utilization of 3D information, which could be integrated into future work
to improve the inference efficiency.

Details of Complex Object As depicted in Fig. A.5 and Fig. A.6, the
SlotLifter encounters challenges in accurately rendering and segmenting chair
legs from different angles, particularly when dealing with real chairs in Room-
Texture. A primary issue contributing to this difficulty lies in ray sampling.

https://github.com/stelzner/osrt
https://github.com/stelzner/osrt
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NeRF-based techniques typically employ ray sampling during the training pro-
cess to reduce computational load. For example, in our case, we sample 1024
rays from an image with 128 ˆ 128 “ 16384 pixels. Consequently, the majority
of rays focus on the background and larger objects, leaving finer details like
chair legs with limited attention. While increasing the number of sampled rays
could address this issue, it would also escalate the computational demands. The
integration of Gaussian Splatting [4] has the potential to assist in balancing
computational requirements with rendering quality. Moreover, we have observed
that this problem exists in other approaches as well. Nevertheless, it appears to
be mitigated in uOCF [6] due to its training with the object prior, which could
potentially aid our SlotLifter in addressing this particular challenge.

D Additional Visualizations

We provide more qualitative results of our SlotLifter in the following pages.
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Input View 0° 60° 180°120° 300°240°

Fig.A.3: Novel view synthesis and unsupervised segmentation on CLEVR-567.
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Input View 0° 60° 180°120° 300°240°

Fig.A.4: Novel view synthesis and unsupervised segmentation on Room-Chair.
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Input View 0° 60° 180°120° 300°240°

Fig.A.5: Novel view synthesis and unsupervised segmentation on Room-Diverse.
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Input View 0° 60° 180°120° 300°240°

Fig.A.6: Novel view synthesis and unsupervised segmentation on Room-Texture.
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Fig.A.7: Novel view synthesis and unsupervised segmentation on Kitchen-Shiny.
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Fig.A.8: Novel view synthesis and unsupervised segmentation on Kitchen-Matte.
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GT Seg. Our Seg.GT Novel View Our Novel View

Fig.A.9: Novel view synthesis and unsupervised segmentation on ScanNet.
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Our SegmentationGT Novel View Our Novel View

Fig.A.10: Novel view synthesis and unsupervised segmentation on DTU MVS.



16 Y. Liu and B. Jia et al.

References

1. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels:
Radiance fields without neural networks. In: Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

2. Gao, Y., Cao, Y.P., Shan, Y.: Surfelnerf: Neural surfel radiance fields for online
photorealistic reconstruction of indoor scenes. In: Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR) (2023)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

4. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics (TOG) 42(4)
(2023)

5. Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszko-
reit, J., Dosovitskiy, A., Kipf, T.: Object-centric learning with slot attention. In:
Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2020)

6. Luo, R., Yu, H.X., Wu, J.: Unsupervised discovery of object-centric neural fields.
arXiv preprint arXiv:2402.07376 (2024)

7. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

8. Sajjadi, M.S., Duckworth, D., Mahendran, A., van Steenkiste, S., Pavetić, F., Lučić,
M., Guibas, L.J., Greff, K., Kipf, T.: Object scene representation transformer. In:
Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2022)

9. Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao, T., Simon-Gabriel, C.,
He, T., Zhang, Z., Schölkopf, B., Brox, T., et al.: Bridging the gap to real-world
object-centric learning. In: Proceedings of International Conference on Learning
Representations (ICLR) (2023)

10. Varma, M., Wang, P., Chen, X., Chen, T., Venugopalan, S., Wang, Z.: Is atten-
tion all that nerf needs? In: Proceedings of International Conference on Learning
Representations (ICLR) (2022)

11. Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-
Brualla, R., Snavely, N., Funkhouser, T.: Ibrnet: Learning multi-view image-based
rendering. In: Proceedings of Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2021)

12. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf:
Point-based neural radiance fields. In: Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

13. Yang, J., Pavone, M., Wang, Y.: Freenerf: Improving few-shot neural rendering with
free frequency regularization. In: Proceedings of Conference on Computer Vision
and Pattern Recognition (CVPR) (2023)

14. Yu, H.X., Guibas, L.J., Wu, J.: Unsupervised discovery of object radiance fields.
In: Proceedings of International Conference on Learning Representations (ICLR)
(2022)

15. Zadaianchuk, A., Seitzer, M., Martius, G.: Object-centric learning for real-world
videos by predicting temporal feature similarities. In: Proceedings of Advances in
Neural Information Processing Systems (NeurIPS) (2023)



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 17

16. Zheng, S., Zhou, B., Shao, R., Liu, B., Zhang, S., Nie, L., Liu, Y.: Gps-gaussian:
Generalizable pixel-wise 3d gaussian splatting for real-time human novel view
synthesis. arXiv preprint arXiv:2312.02155 (2023)


	SlotLifter: Slot-guided Feature Lifting for Learning Object-centric Radiance Fields Supplementary Material

