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Abstract. In the field of autonomous driving, online High-definition
(HD) map construction is crucial for planning tasks. Recent studies
have developed several high-performance HD map construction models
to meet the demand. However, the point sequences generated by re-
cent HD map construction models are jittery or jagged due to predic-
tion bias and impact subsequent tasks. To mitigate this jitter issue, we
propose the Anti-Disturbance Map construction framework (ADMap),
which contains Multi-scale Perception Neck (MPN), Instance Interactive
Attention (IIA), and Vector Direction Difference Loss (VDDL). By ex-
ploring the point sequence relations between and within instances in a
cascading manner, our proposed ADMap effectively monitors the point
sequence prediction process, and achieves state-of-the-art performance
on the nuScenes and Argoverse2 datasets. Extensive results demonstrate
its ability to produce stable and reliable map elements in complex and
changing driving scenarios.†

Keywords: Autonomous driving · HD map · Anti-disturbance

1 Introduction

In the field of autonomous driving, high-definition (HD) map construction [11,
15,16,24,26] is a very important task. It involves converting the sensor-collected
information into instance-level vector representations, such as lane lines, road
boundaries, and pedestrian crossings. These representations enable the vehicle
to capture detailed road topology and ground semantics information while driv-
ing, which can be effectively applied to downstream regulation tasks. In recent
years, early HD map construction works [3,9,12,19,28,29] predicts dense ground
information, which results in redundancy in model computation and annotation.
HDMapNet [11] groups dense pixel segmentation results into sparse vectorized
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Fig. 1: Performance and visualization comparison between ADMap and baseline. The
two endpoints of the line segment in the left figure indicate results of the multi-modal
and camera-only frameworks, respectively. The right figure shows that ADMap effec-
tively mitigates the point sequence jitter problem. † has the same meaning as in Table 1.

instances, but requires complex post-processing process. VectorMapNet [16] pre-
dicts vectorized instances for the first time, using an autoregressive decoder to
predict the instance points in an ordered manner. MapTR [14] predicts vec-
torised instances end-to-end and resolves feature ambiguities caused by different
point order directions effectively. MapTRv2 [15] adds decoupled self-attention
to capture intra-instance point relations in parallel.

Although previous HD maps construction methods [11,14–16] achieve promis-
ing results, these methods still suffer from the following issues. Firstly, existing
methods do not fully consider inter-instance and intra-instance interactions, re-
sulting in incomplete interaction between instance points and map topology
information, which leads to inaccurate prediction points. In addition, these
methods neglect multi-scale features in the BEV maps and inaccurately con-
struct instances for different sizes. Furthermore, previous methods only using L1
loss [5, 14, 22] or cosine embedding loss [14, 15] for distance supervision, which
does not effectively utilize the geometric relationship between point sequences to
constrain the prediction process. As shown in Figure 1, we can find that the pre-
dicted points in instances tend to be jittered or shifted caused by the above issues.
These results can cause the constructed instance vectors to become distorted or
jagged, thus seriously affect the quality and utility of the online high-precision
maps.

To address these issues and predict point sequence topology more accu-
rately, we propose the Anti-Disturbance Map construction (ADMap) framework,
which contains Instance Interactive Attention (IIA), Multi-scale Perception Neck
(MPN), and Vector Direction Difference Loss (VDDL). To capture multi-scale
features in the BEV maps, we propose Multi-scale Perception Neck (MPN). MPN
improves the accuracy of constructing instances with significant size differences
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in the scene without increasing inference time. To investigate inter-instance and
intra-instance interactions, we propose Instance Interactive Attention (IIA). IIA
flexibly encodes instance-level and point-level information, feature interactions
between instance embeddings to further help the network capture the relation-
ships between point-level embeddings. And more accurate point-level informa-
tion makes the construction more accurate. To better utilize the geometric rela-
tionship between point sequences, we propose Vector Direction Difference Loss
(VDDL). VDDL models the association between instance points and vector di-
rection differences, and uses vector direction differences as losses to constrain the
construction process of point sequences more precisely. Besides, the difference
in real vector direction is utilised to assign varying weights to the points in the
instances, ensuring that the model can effectively capture the rapidly changing
map information in the scene.

We validate the effectiveness of our proposed ADMap in nuScenes bench-
mark [1] and Argoverse2 benchmark [23]. ADMap achieves state-of-the-art per-
formance in both nuScenes and Argoverse2, compared to existing constructed
vectorized HD map models. In nuScenes dataset, ADMap improved performance
by 4.2% and 5.5% in camera-only and multimodal frameworks, compared to the
baseline method MapTR. The best performance of ADMapv2 (i.e., our proposed
ADMap framework on MapTRv2 [15] implementation) reaches 82.8%. ADMapv2
not only reduces inference latency but also improves performance of baseline
method MapTRv2. ADMap also performes well in Argoverse2. ADMapv2 im-
proves mAP by 62.9% while FPS remains 14.8, indicating that ADMap is an
efficient and high-precision framework for generating accurate and smooth map
topology in complex scenes. Our contributions are summarized as follows:

– We propose an End-to-end framework ADMap for stable vectorized HD maps
construction.

– In ADMap, our proposed MPN captures multi-scale information more pre-
cisely without increasing computational resources. The proposed IIA achieves
effective interaction between inter-instance and intra-instance information to
alleviate the problem of instance point position offset. The proposed VDDL
models the vector direction difference and supervises the construction pro-
cess of point order position using topological information.

– ADMap enables real-time construction of vectorized HD maps and achieves
state-of-the-art performance on both the nuScenes and Argoverse2 bench-
marks.

2 Related Work

2.1 Lane detection

In previous works, lane line detection was typically considered as a standalone
task. Information was gathered through sensors such as cameras and lidar to
identify and locate lane lines. LaneNet [18] proposes a semantic segmentation of
2D lane lines and clusters them. 3D-LaneNet [6] is a pioneering work in the field
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of monocular 3D lane lines, which proposes a new type of dual-path structure
that implements inverse perspective mapping (IPM) projection of features inside
the network. GenLaneNet [7] optimizes the anchor representation of 3D-LaneNet
and uses the anchor to predict 3D Lane in a more reliable coordinate system.
PersFormer [2] proposes a unified framework for 2D and 3D lane detection.
The framework introduces transformer into the spatial transformation module
to improve the robustness of features.

2.2 HD map construction

Traditional online local maps [3,9,12,13,17,20,29] are mostly based on semantic
segmentation of multiple perspective views, which are converted to bird’s eye
view (BEV) using IPM projection and splicing, and then go through a compli-
cated post-processing to get the map elements. HDMapNet [11] constructs the
HD map from the generated semantic segmentation results, instance embedding,
and direction prediction. However, it requires complicated post-processing and
has low accuracy. VectorMapNet [16] achieves end-to-end HD map construction
by aligning the construction task with the target detection paradigm and gen-
erating ordered point sets one by one through Polyline Generator. MapTR [14]
generates map elements directly using the Deformable DETR-based object de-
tection paradigm. It introduces permutation-equivalent in the model to address
the order uniqueness constraints during point sequence matching.

ADMap utilizes features between instance embeddings to model the rela-
tionships between point-level embeddings. Also, the introduction of vectorial
direction differences also supervises the point order position more finely.

3 Method

3.1 Overview

As shown in Figure 2, ADMap takes a multiview image and a point cloud as
inputs. The features of the multi-view image I = {I1, ..., IM} are extracted by
the 2D backbone. The 2D image is then converted to a BEV perspective by LSS-
base view transformer so as to obtain camera BEV features Fcam ∈ RH×W×C .
The point cloud P ∈ Rn×C is voxelized and placed into a 3D backbone to
obtain lidar BEV features Flidar ∈ RH×W×C . Fusion Layers fuses camera BEV
features and lidar BEV features into fusion BEV features Ffusion ∈ RH×W×C .
Then fusion BEV features inputs into the multi-scale perception neck (Section
3.2), which fuses the multi-scale BEV features from top to bottom. This ensures
that the network can predict instances of different scales in the scene accurately.
We add instance interactive attention (Section 3.3) in decoder, which helps the
network to better capture associations between point levels through extracted
instance embeddings. Furthermore, the details of vector direction difference loss
are presented in Section 3.4.
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Fig. 2: Schematic diagram of the overall framework of ADMap. The figure displays the
MPN and IIA proposed in this paper. The process is performed only during training
when indicated by the dashed line, and during both training and inference when indi-
cated by the solid line. In decoder, Instance-Points query are defined to represent the
topology of the map, and self-attention and cross-attention are used to interact with
the BEV map. Instance self-attention and Points self-attention further interact with
inter- and intra-instance information.

3.2 Multi-scale Perception Neck

Conventional FPN structures only output fused multi-scale features, which pre-
vents the network from delicately capturing information at all levels of scale. To
make more detailed BEV features available to the network, we propose multi-
scale perception neck (MPN), whose inputs are fusion BEV features Ffusion ∈
RH×W×C . After downsampling, the BEV features of each layer are connected to
the upsampled layer to restore its original size. The final feature map of each layer
are merged into a multi-scale BEV feature Fmc ∈ RH×W×C . Figure 2 shows that
the dotted line indicates that the step is only implemented during training, while
the solid line indicates that the step is implemented during both training and
inference. During training, the multi-scale BEV features and the BEV feature
maps at each level are fed into the ADMap Decoder, which allows the network
to predict the instance information of the scene in different scales. During the
inference process, MPN only outputs multi-scale BEV features Fmc ∈ RH×W×C
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Fig. 3: Schematic diagram of Instance self-attention and Points self-attention. The
point and channel dimensions in the Instance-Points query are merged and put into
embedded layers consisting of multiple MLPs to compress the dimensions. These query
are then used in multi-head self-attention for instance-level interactions. Groups the
output query of instance self-attention so that each instance is fed into multi-head
self-attention separately for point-level interaction.

and not the feature maps at each level, which ensures that the model inference
speed remains constant.

3.3 ADMap Decoder

A set of instance-level queries qins ∈ R1×Ni×C and a set of point-level queries
qpos ∈ RNp×1×C are defined in the decoder, and we subsequently share the point-
level queries across all instances, and Instance-Points queries q ∈ RNp×Ni×C are
defined as:

q = qins + qpos (1)

The decoder contains several cascading decoding layers that iteratively up-
date the Instance-Points queries q. In each decoding layer, these queries are
fed into self-attention, which allows the Instance-Points queries to exchange
information with each other. Deformable attention is used to facilitate inter-
action between the Instance-Points queries and the multiscale BEV features
Fmc ∈ RH×W×C .

Instance Interactive Attention In order to better acquire the features of
each instance in the decoding stage, we propose instance interactive attention
(IIA). IIA comprises Instance self-attention and Point self-attention. Unlike the
parallel extraction of instance-level and point-level embeddings [15], our IIA
cascades to extract point sequence embeddings, feature interactions between
instance embeddings assist the network in learning the topological relationships
between instance points.

Figure 3 shows that the hierarchical embedding Fhie ∈ R(Ni∗Np)×C pro-
duced by cross-attention is inputted into Instance self-attention. After merging



ADMap: Anti-disturbance Framework for Vectorized HD Map Construction 7

the point dimension with the channel dimension, the dimension transforma-
tion of the hierarchical embedding is Fhie ∈ RNi×(C∗Np). Subsequently, the
hierarchical embedding is put into Multilayer Perceptrons (MLPs) to obtain
the instance features, which is put into multi-head self-attention to capture the
topological relations among instances. The instance embedding Fins ∈ RNi×C

is obtained. To include instance-level information in the point-level embedding,
we add the instance embedding Fins ∈ R(Ni∗1)×C to the hierarchical embed-
ding Fhie ∈ R(Ni∗Np)×C . The summed features are fed into Point self-attention,
which interacts with the points within each instance to further finely correlate
the topological relationships between point sequences.

Vector Direction Difference Loss HD maps contain vectorized static map
elements, including lane lines, road boundaries, and pedestrian crossings. We
propose vector direction difference loss (VDDL) for these open shapes (lane
lines, road boundaries) and closed shapes (pedestrian crossings). By modeling
the point sequence vector direction inside the instance, the difference between
the predicted vector direction and the real vector direction is used for finer
supervision of the point sequence position. Furthermore, it is believed that points
with significant differences in real vector direction indicate significant changes in
the topology of certain parts of the scene, which are less predictable. Therefore,
more attention is required to ensure that the network can accurately predict
these points of drastic change.

Figure 4 illustrates the modeling of the predicted vector line {Lpre
i,j }Ni,Np−1

i=0,j=0

and the real vector line {Lgt
i,j}

Ni,Np−1

i=0,j=0
in the predicted point sequence {P pre

i,j }Ni,Np

i=0,j=0

and the real point sequence {P gt
i,j}

Ni,Np

i=0,j=0
.

To ensure that the loss increases with the angular difference, we compute the
vector line angle difference cosine cosθprei,j :

cosθprei,j =

{
sum(Lpre

i,j ∗ Lgt
i,j)

norm(Lpre
i,j )∗norm(Lgt

i,j)
, j ̸= Np,

0, j = Np,
(2)

The sum() accumulates the 2D coordinate positions of the vector lines, while
the norm() normalizes them. We assign weights of different magnitudes to the
vector angular differences of the points in the real example. The weights W vec

i,j

are defined as follows:

cosθgti,j =

{
sum(Lgt

i,j−1 ∗ Lgt
i,j)

norm(Lgt
i,j−1) ∗ norm(Lgt

i,j)
, j ̸= Np

0, j = 0 or Np,
(3)

W vec
i,j =

{
exp(

1.0−cosθgt
i,j

2 ), i ̸= 0 and i ̸= Np

1.0, i = 0 or i = Np,
(4)

where Np represents the number of points in the instance, and exp() repre-
sents an exponential function with base e. The weight of the first and last points
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Fig. 4: Flowchart of VDDL. The point sequence P is modeled as a vector line L and the
vector direction difference between the predicted and ground truth is calculated. The
weights of each instance point are obtained from the geometric topological relations of
ground truth.

is set to 1 since they cannot compute the vector angular difference. When the
vector angular difference in the ground truth becomes larger, we assign a larger
weight to the point, which makes the network more attentive to significantly
varying map topology. The vector direction difference loss Lvec

i,j is:

Lvec
i,j =

Ni∑
i=0

Np−1∑
j=0

(1− cosθprei,j ) ∗W vec
i,j +

Ni∑
i=0

Np∑
j=1

(1− cosθprei,j ) ∗W vec
i,j

(5)

We use 1−cosθ to adjust the interval of loss by [0, 2]. By summing the cosines of
the angle differences of neighboring vector lines at each point, the loss captures
more comprehensive information about the geometric topology of each point.
The loss at the first and last points is the cosine of the angular difference between
the unique neighboring vectors.

4 Experiments

4.1 Dataset and metric

The effectiveness of ADMap was verified on nuScenes [1] and Argoverse2 [23]
datasets. The nuScenes dataset includes 40,000 labeled data with keyframes
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Table 1: Results of ADMap in nuScenes benchmark compared to each state-of-the-
art method. We performs validation in both camera-only and multi-modal frameworks
with 24 and 110 training epochs, respectively. ADMap uses MapTR as the baseline,
while ADMapv2 uses MapTRv2 as the baseline. FPS is measured on NVIDIA RTX
3090 GPU with batch size of 1. ’C’ denotes the use of camera, and ’L’ denotes the use
of lidar. Bolding indicates best performance. † represents the addition of EA-LSS [10],
CBGS [30], multi-task training and detection pre-training.

Model Modality Backbone Epoch APdiv APped APbou mAP FPS
HDMapNet [11] C EB0 30 27.7 10.3 45.2 27.7 0.9
HDMapNet [11] C & L EB0 & PP 30 16.3 29.6 46.7 31.0 0.5

VectorMapNet [16] C R50 110 42.5 51.4 44.1 46.0 2.2
VectorMapNet [16] C & L R50 & PP 110 48.2 60.1 53.0 53.7 -

PivotNet [4] C R50 24 56.2 56.5 60.1 57.6 6.7
StreamMapNet [27] C R50 30 56.9 55.9 61.4 58.1 14.2

BeMapNet [21] C R50 30 62.3 57.7 59.4 59.8 4.2
MapTR [14] C R50 24 51.5 46.3 53.1 50.3 15.1
MapTR [14] C & L R50 & SEC 24 55.9 62.3 69.3 62.5 6.0

ADMap C R50 24 56.2 49.4 57.9 54.5 14.8
ADMap C & L R50 & SEC 24 66.6 63.3 74.0 68.0 5.8
ADMap C & L R50 & SEC 110 66.5 71.2 76.9 71.5 -

MapTRv2 [15] C R50 24 59.8 62.4 62.4 61.5 14.1
ADMapv2 C R50 24 61.9 63.5 63.3 62.9 14.8

MapTRv2 [15] C & L R50 & SEC 24 65.6 66.5 74.8 69.0 5.8
ADMapv2 C & L R50 & SEC 24 68.2 69.0 75.2 70.8 5.8
ADMapv2 C & L R50 & SEC 110 67.7 73.8 76.6 72.7 -
ADMapv2† C & L R50 & SEC 24 83.0 80.2 84.8 82.8 5.7

Table 2: Results of ADMap in Argoverse2 benchmark compared to each state-of-the-
art method. ADMap uses MapTR as the baseline, while ADMapv2 uses MapTRv2 as
the baseline. FPS is measured on NVIDIA RTX3090 GPU with batch size of 1. ’C’
denotes the use of camera, and ’L’ denotes the use of lidar. * indicates the replicated
results in the same framework.

Model Modality Backbone Epoch APdiv APped APbou mAP FPS
HDMapNet [11] C EB0 - 13.1 5.7 37.6 18.8 -

VectorMapNet [16] C R50 - 38.3 36.1 39.2 37.9 -
MapTR* [14] C R50 6 65.5 56.6 61.8 61.3 13.0

ADMap C R50 6 68.9 60.3 64.9 64.7 12.6
ADMap C & L R50 & SEC 6 75.5 69.5 80.5 75.2 8.9

MapTRv2 [15] C R50 6 62.9 72.1 67.1 67.4 12.1
ADMapv2 C R50 6 72.4 64.5 68.9 68.7 12.6
ADMapv2 C & L R50 & SEC 6 76.2 72.8 81.5 76.9 8.9

sampled at 2 HZ. It consists of 6 surround view cameras and 1 lidar with a FOV of
360 degrees. Argoverse2 comprises 1000 annotated multi-modal data sequences.
The dataset includes high-resolution images from 7 surround view cameras and
2 stereo cameras, as well as LIDAR point cloud and attitude-aligned maps.
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Table 3: Ablation experiments for each module. IIA for instance interactive attention,
MPN for multi-scale perception neck, and VDDL for vector direction difference loss.

IIA MPN VDDL APdiv APped APbou mAP
62.3 56.2 69.1 62.5
63.3 59.5 73.3 65.4
64.8 56.8 72.2 64.6
66.0 62.9 73.6 67.3
65.6 59.7 74.2 66.5
66.6 63.3 74.0 68.0

Improvment +4.3 +7.1 +4.9 +5.5

To ensure a fair evaluation of ADMap, we classify the map elements into
three categories: lane lines, road boundaries and pedestrian crossings. We use
Average Precision (AP) to evaluate the quality of the map construction, and
using the sum of the chamfer distances of the predicted and real point sequences
to determine whether they match or not. Chamfer distance thresholds are set
to [0.5, 1.0, 1.5], and we calculate the AP under these three thresholds and take
the average as the metric.

4.2 Implementation details

ADMap is trained using 8* NVIDIA Geforce RTX A100 GPUs. The batch
size is set to 8, the learning rate is set to 6e-4, and the AdamW optimizer
as well as the cosine annealing schedule are used. The point cloud range is set
to [−15.0,−30.0,−5.0, 15.0, 30.0, 3.0], and the voxel size is set to [0.15, 0.15, 0.2].
We use ResNet50 [8] as the camera backbone and SECOND [25] as the lidar
backbone. The number of input channels of MPN is 256 and the number of
output channels is [512, 512, 512]. In the loss function, the weights of L1 Loss
and VDDL are set to 5.0 and 1.0, respectively. ADMapv2 increases the Auxil-
iary Dense Prediction Loss and Auxiliary One-to-Many Set Prediction Loss from
MapTRv2 [15]. To speed up training, the replication multiplier in the Auxiliary
One-to-Many Set Prediction Loss is set to 3 (6 in MapTRv2), which decreases
the model performance.

4.3 Comparative experiments

nuScenes Table 1 reports the metrics of ADMap and the state-of-the-art meth-
ods on the nuScenes dataset. It is evident that ADMap outperforms the baseline
in both camera-only and multimodal frameworks. In the camera-only frame-
work, ADMap improves 4.2% compared to MapTR, ADMapv2 improves 1.4%
compared to MapTRv2. In the multimodal framework, ADMap improves by
5.5% compared to MapTR and ADMapv2 improves by 1.8% compared to Map-
TRv2, with a maximum accuracy of 72.7%, which achieves the best performance
in this benchmark.
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Fig. 5: Visualization results of the nuScenes dataset. Areas of discrepancy are indicated
by red boxes. ADMap effectively reduces jitter within instances.

In terms of speed, ADMap demonstrate excellent performance. ADMap sig-
nificantly improves model performance compared to the baseline, with only a
slight decrease in FPS of 0.3 and 0.2. It is worth noting that ADMapv2 not only
improves performance but also enhances inference speed compared to the base-
line. The inference latency of the camera-only framework is reduced from 70.9ms
to 67.6ms. In the multimodal framework, the speed advantage of ADMapv2 can-
not be realized due to the model itself has a large latency.

Argoverse2 Table 2 reports the metrics of ADMap and the state-of-the-art
methods on the Argoverse2 dataset. In the camera-only framework, ADMap and
ADMapv2 improved by 3.4% and 1.3% compared to the baseline, respectively.
In the multimodal framework, ADMap and ADMapv2 achieved the best perfor-
mance in the benchmark with 75.2% and 76.9%. Regarding inference speed, the
latency of ADMapv2 decreased by 3.3ms compared to MapTRv2.



12 Hu et al.

Ground Truth MapTR ADMapLeft Center Right

Loss Weight

0

pre

1

pre

0 1
1 cos( )

pre pre  

gt


exp((1.0 cos ) / 2)
gt



0 1 2
[ , , ]p p p0 1 2

[ , , ]
g g g

p p p 0 1 1 2
[ , ]p p p p 

0 1 1 2
[ , ]

g g g g
p p p p 

pre
pgt

p
pre

L
gt

L

Images

Point Clouds

2
D

 B
ac

kb
o

ne

V
ie

w
 

Tr
an

sf
or

m
er

3
D

 B
ac

kb
o

ne

V
o

xe
liz

at
io

n

Fusion 

Layers Transformer 

Decoder

Camera BEV 

Features

Lidar BEV 

Features

Instances-Points query

Q K / V

Multi-Head

 Self-Attention

Add & Norm

Deformable

Cross-Attention

Add & Norm

Ins. Interactive Attention

In
st

an
ce

s 

S
el

f-
A

tt
en

ti
o
n

P
o
in

ts

S
el

f-
A

tt
en

ti
o
n

Repeat

Conv

Conv 

stride=2

Multi-Scale 

Perception Neck

Conv

Conv 

stride=2

TransConv

TransConv

c

Instances-Points query

Transformer Decoder

BEV Features

Instances Self-Attention Points Self-Attention

Instances-Points query

Embed Layers

reshape

Multi-Head

 Self-Attention

Multi-Head

 Self-Attention

K

Q

V

reshape

Ground Truth MapTR ADMap

Images

Point Clouds

2
D

 B
ac

kb
o

ne

V
ie

w
 

Tr
an

sf
or

m
er

3
D

 B
ac

kb
o

ne

V
o

xe
liz

at
io

n

Fusion 

Layers

ADFormer 

DecoderCamera BEV 

Features

Lidar BEV 

Features

Instance-Points query

Q

K / V

Multi-Head

 self-attention

Add & Norm

Deformable

cross-attention

Add & Norm
Ins. Interactive Attention

In
st

an
ce

s 

se
lf

-A
at

te
n
ti

o
n

P
o
in

ts

se
lf

-a
tt

en
ti

o
n

Repeat

Conv

Conv 

stride=2

Multi-Scale 

Perception Neck

Conv

Conv 

stride=2

TransConv

TransConv

c

ADFormer DecoderBEV Features

shared weight

shared weight

shared weight

ADFormer 

Decoder

ADFormer 

Decoder

Instances self-attention

Embed Layers

reshape Multi-Head 

self-attention

K

Q

V

Instance-Points 

query Points self-attention

reshape

shared weight

shared weight

shared weight

Multi-Head 

self-attention

Multi-Head 

self-attention

Multi-Head 

self-attention

GT MapTR ADMap

30

40

50

60

70

3 6 9 12 15 18

HDMapNet

VectorMapNet

MapTR

MapTRv2

PivotNet

BeMapNet ADMap

ADMapv2

n
u

S
ce

n
es

 m
A

P

FPS

13epoch 62.51mAP

24epoch 62.5mAP

18epoch 69.12mAP

24epoch 69.0mAP

Camera Ground Truth ADMapMapTR

80
ADMapv2 

shared weight

shared weight

Fig. 6: ADMap, MapTR, ADMapv2, and MapTRv2 convergence curves in the
nuScenes dataset. ADMap and ADMapv2 exceed their baseline best performance at
epoch 13 and epoch 18, respectively

Table 4: Impact of different self-attention on performance. DSA denotes Decoupled
self-attention, IIA denotes instance interactive attention. FPS is measured on NVIDIA
RTX3090 GPU with batch size of 1.

Model APdiv APped APbou mAP FPS
Vanilla 62.3 56.2 69.1 62.5 6.0

+DSA [15] 64.2 57.8 70.2 64.1 5.8
+IIA(Our) 63.3 59.5 73.3 65.4 5.9

Table 5: Impact of the neck structure on the model performance. SECONDNeck
denotes the neck structure in SECOND, MPN denotes multi-scale perception neck.

Model APdiv APped APbou mAP FPS
Vanilla 62.3 56.2 69.1 62.5 6.0

+SECONDNeck [25] 62.8 58.4 70.2 63.7 5.9
+MPN(Our) 65.0 59.6 69.4 64.5 5.9

Table 6: Impact of VDDL weights on performance

Weight APdiv APped APbou mAP
0.0 51.5 46.3 53.1 50.3
0.5 54.6 49.3 53.8 52.5
1.0 55.9 48.4 55.6 53.3
2.0 55.5 45.4 54.2 51.7
3.0 55.4 45.2 55.1 51.9

4.4 Ablation experiment

Table 3 shows the results of the ablation experiments for each module in the
nuscenes benchmark. To MapTR, we added MPN/IIA and VDDL. It can be
observed that the mAP increased by 2.9% with the addition of IIA and 2.1%
with the addition of VDDL. The mAP increased by 4.8% after adding both IIA
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Table 7: Ablation experiments on the number of downsampled layers in MPN.

num layer APdiv APped APbou mAP FPS
1 66.5 68.6 74.2 69.8 6.0
2 67.9 68.5 74.5 70.3 5.8
3 68.1 68.3 74.9 70.5 5.3

Table 8: Comparison of ACD/ARD/AJP scores between ADMap and ADMapv2 and
their respective baselines.

model MapTR ADMap(Our) MapTRv2 ADMapv2(Our)
ACD ↓ 0.597 0.518 0.560 0.422
ARD ↓ 7.866 5.358 5.950 3.484
AJP ↓ 6.76 4.08 4.53 2.44

and MPN, and by 4.0% after adding both IIA and VDDL. Finally, our proposed
method greatly improves the ability of the baseline to improve its mAP by 5.5%.
Table 4 shows the comparison between IIA and Decoupled Self-Attention (DSA)
and their respective effects. It can be seen that IIA achieves better results. DSA
improves the mAP of the baseline by 1.6%, while IIA improves the mAP of
the baseline by 2.9%. In addition, IIA also outperforms DSA in terms of speed,
and its latency is reduced by 2.9ms compared to DSA. Table 5 shows how the
performance is affected by adding neck. The mAP increased by 1.2% with the
addition of the neck of SECOND [25], and the model mAP increased by 2.0%
with the addition of MPN, without increasing the inference time.

Table 6 reports the impact of VDDL’s weights in the nuScenes benchmark
on the performance of ADMap for the camera-only framework. The best perfor-
mance is achieved when the weights are set to 1.0. Table 7 reports the effect of the
number of downsampling layers of the MPN on the performance of ADMapv2 in
the nuScenes benchmarks. To balance speed and performance, we set the number
of downsampling layers to 2, as increasing the number of downsampling layers
can slow down model inference.

4.5 Visualization

Figure 5 show comparison of the visualizations between ground truth, MapTR,
and ADMap in the nuScenes benchmark. The figure shows that the lane lines,
pedestrian crossings, and road boundaries in MapTR are distorted and deformed
to some extent. This distortion can affect subsequent planning, control, and
other tasks. In contrast, ADMap effectively mitigates point jitter within vector
instances and predicts map elements more accurately.

4.6 Analysis

Anti-jitter effect evaluation We defined three evaluation matrix for Anti-
jitter effect. (1)Average chamfer distance (ACD): we select all predicted
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instances whose sum of the internal chamfer distance is less than 1.5. We then
calculate the average chamfer distance between these predicted instances (true
positive instances) and the real instances. (2) Average radian distance (ARD):
the radian distance is defined as the sum of the radians of the angles between all
segments in each positive sample and the true instance segments, followed by an
average over all positive samples. (3) Average number of jitter points (AJP):
jitter point is defined as a point where the angle between the front and back line
segments is greater than a certain threshold (30°) and where the front and back
line segments of its corresponding true point are less than a certain threshold
(5°). Table 8 displays the results of these three three evaluation matrix, the lower
score means the high ability for anti-jitter. The experiment result demonstrate
that our proposed ADMap effectively mitigates the problem of inaccurate point
sequence prediction.

Figure 6 shows a comparison of the convergence curves of ADMap, MapTR,
ADMapv2, and MapTRv2 in the nuScenes benchmark. By the 13th epoch, mAP
of ADMap exceeds the optimal performance of MapTR, while ADMapv2 reaches
69.12 mAP by the 18th epoch, exceeding the optimal performance of MapTRv2.

5 Conclusions

ADMap is an effective and efficient vectorized HD map construction framework
that mitigates the problem of map topology distortion caused by instance point
jitter. We address this issue through three modules: multi-scale perception neck,
instance interactive attention, and vector direction difference loss. Extensive ex-
periments have demonstrated that our proposed method can achieve the best
performance in nuScenes and Argoverse2 benchmarks and high efficiency. We
believe that ADMap can contribute to the community in advancing research on
vectorized HD map construction tasks for better development in areas such as
autonomous driving.
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