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Fig. 1: Panoramic video object segmentation (PanoVOS). PanoVOS targets
tracking and distinguishing the particular instances under content discontinuities (e.g .
penguin in the image of T = 15) and serve distortion (e.g . penguin in the image of
T = 65). We show the sample of (a) frames, (b) segmentation annotations, and (c)
area proportion of foreground for the Penguin video in our dataset.

Abstract. Panoramic videos contain richer spatial information and
have attracted tremendous amounts of attention due to their excep-
tional experience in some fields such as autonomous driving and vir-
tual reality. However, existing datasets for video segmentation only fo-
cus on conventional planar images. To address the challenge, in this pa-
per, we present a panoramic video dataset, i.e., PanoVOS. The dataset
provides 150 videos with high video resolutions and diverse motions.
To quantify the domain gap between 2D planar videos and panoramic
videos, we evaluate 15 off-the-shelf video object segmentation (VOS)
models on PanoVOS. Through error analysis, we found that all of
them fail to tackle pixel-level content discontinues of panoramic videos.
Thus, we present a Panoramic Space Consistency Transformer (PSC-
Former), which can effectively utilize the semantic boundary informa-
tion of the previous frame for pixel-level matching with the current
frame. Extensive experiments demonstrate that compared with the pre-
vious SOTA models, our PSCFormer network exhibits a great advan-
tage in terms of segmentation results under the panoramic setting. Our
dataset poses new challenges in panoramic VOS and we hope that
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our PanoVOS can advance the development of panoramic segmenta-
tion/tracking. The dataset, codes, and pre-train models will be published
at https://github.com/shilinyan99/PanoVOS.

1 Introduction

Semi-supervised video object segmentation (VOS) [52], which targets tracking
and distinguishing the particular instances across the entire video sequence based
on the first frame masks, plays an essential role in video understanding and
editing. Conventionally, the images or videos studied in VOS are 2D planar
data with a limited Field of View (FoV), which may lead to some ambiguities,
especially when objects are out of view. Meanwhile, with the rapid development
of VR/AR collection devices [12,22], panoramic videos with a 360◦ × 180◦ FoV
are able to collect the entire viewing sphere and richer spatial information [1,21,
27, 60]. To the best of our knowledge, we are the first to attempt to tackle the
promising but challenging task of panoramic video object segmentation.
To foster the development of panoramic VOS, we propose a new dataset in this
work, aiming at panoramic video object segmentation. The dataset contains a
wide range of real-world scenarios in which scenes have a large magnitude of
motion. The main characteristics of our dataset are three aspects. 1) Panoramic
videos bring certain advantages (richer geometric information and wider FoV)
in real-world applications as well as challenges (serve distortion and content dis-
continuities). 2) Compared to all existing VOS datasets, our dataset has longer
video clips with an average length of 20 seconds. 3) Nearly half of the video
resolutions in our dataset are 4K, which may help facilitate broader video track-
ing/segmentation research under the high-resolution scenario.
In the proposed dataset, we annotated 150 videos with 19,145 annotated in-
stance masks, including sports (e.g . parkour, skateboard), animals (e.g . elephant,
monkey), and common objects (basketball, hot balloon). Since, annotating a
pixel-level intensive task is very time-consuming and expensive, we proposed a
semi-supervised human-computer joint annotation strategy. Concretely, we first
annotated objects at selected keyframes (1 fps) Then we adopted the state-of-
the-art video object segmentation model AOT [58] for mask propagation to the
rest frames of videos and we manually refine parts of them.
Then, we conducted extensive experiments on PanoVOS to evaluate 15 off-the-
shelf video object segmentation models. The results suggest that existing ap-
proaches can not handle several domain-unique challenges. The first is content
discontinuities, which means the foreground object may be separated in the left
and the right boundaries of the planar image, such as the case in the image of
T = 15 in Fig. 1. The second is the severe distortions and deformations, such as
the case in the image of T = 65 in Fig. 1.
To tackle these challenges of panoramic video segmentation, we proposed a PSC-
Former model which consists of key component Panoramic Space Consistent
(PSC) blocks. The PSC block is designed for constructing spatial-temporal class-
agnostic correspondence and propagating the segmentation masks. Each PSC
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block utilizes a cross-attention for matching with references’ embeddings and
a PSC-attention for modeling the boundary semantic relationship between the
previous frame and the query frame. Hence, the network can effectively alleviate
the problem that the left and the right boundaries are actually continuous in
panoramic videos. Our method outperforms the SOTA models that are re-trained
on PanoVOS train set in segmentation quality under the panoramic setting.
Our contributions are three-fold.

– We introduce a panoramic video object segmentation dataset (PanoVOS)
with 150 videos and 19K annotated instance masks, which fills the gap of
long-term instance-level annotated panoramic video segmentation datasets.

– Extensive experiments are conducted on 15 off-the-shelf VOS benchmarks
and our baseline model on PanoVOS, which reveals that current methods
could not tackle content discontinuities in panoramic videos well.

– We propose a Panoramic Space Consistency Transformer (PSCFormer) on
PanoVOS that successfully resolves the challenges of discontinuity of pixel-
level content segmentation.

2 Related Work

2.1 Panoramic Datasets

In this paper, panoramic videos refers to complete (360°, full view) panoramic
videos, which is different from the definition in [38], which only include wide but
partial views of some range-view images collected from multiple cameras.
Image-based panoramic datasets. Existing popular image-level panoramic
segmentation datasets are Stanford2D3D [2] and DensePASS [35]. The former
one is mainly focused on indoor spaces including a total of 1,413 panoramic
images with instance-level annotations in 13 categories. The latter targets driving
scenes in cities. DensePASS [35] provides only 100 labeled panoramic images for
testing and 2,000 unlabeled images for cross-domain transfer optimization.
Video-based panoramic datasets. Video-based benchmarks mainly include
SHD360 [62], SOD360 [64] and Wild360 [7]. All of them are used for panoramic
video saliency object detection. Specifically, 1) SHD360 only targets human-
centric video scenes with little movement. It provides 6,268 object-level pixel-
wise masks and 16,238 instance-level pixel-wise masks. 2) SOD360 focuses on
the sports-centric scenario with 41 video clips (12 outdoor and 29 indoor). 3)
Wild360 concentrates on natural scenes with 85 videos. Note that SOD360 and
Wild360 have no object-level or instance-level annotations.
We make a comparison with the existing video panoramic datasets in Table 1.
Specifically, our PanoVOS dataset contains 150 videos mainly from three differ-
ent domains: person, animal, and common object, which makes the dataset more
general for object-agnostic evaluations. Besides, videos in our dataset have a rel-
atively large range of motion, making our PanoVOS dataset suitable for video
tracking and segmentation evaluation tasks under panoramic scenes. Moreover,
the average duration of each video in our dataset is 20s, which is about 4 times
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Datasets Motion #Videos #Frames #Total Average
Masks Duration

SHD360 [62] Small 41 6,268 16,238 5s
SOD360 [64] Large 104 N/A 0 N/A
Wild360 [7] Large 85 N/A 0 N/A
PanoVOS Large 150 13,995 19,145 20s

Table 1: Comparison of panoramic video datasets. Our PanoVOS is the first
long-term panoramic video segmentation dataset with instance-level masks. Compared
with existing panoramic video datasets [7, 62, 64] that are used for saliency detection,
our panoramic video dataset for video segmentation, i.e., PanoVOS, includes more
diverse and larger motion, making it suitable for dense video tracking evaluation.

longer than SHD360 [62] (5s per video). By the way, the longer video is high-
lighted in a recent survey [49]. The longer the video, the more likely it is to
introduce more panoramic video characteristics such as distortion and disconti-
nuity, which is more challenging and more practical.

2.2 Video Object Segmentation Datasets

The establishment of DAVIS [41, 42]and YouTube-VOS [52] datasets pave the
way for the boosting development of VOS methods. They are collected by tra-
ditional pinhole cameras and the duration of each video clip is very short, only
5s on average. In contrast, the average video length in the proposed PanoVOS
dataset is 20s, which is 4 times longer than the existing video datasets. Our
dataset includes more challenging scenes (e.g . distortion and discontinuity) that
is non-negligible in real-world applications.

2.3 Video Object Segmentation Methods

Existing video object segmentation methods can be roughly classified into three
subsets: online-learning-based, propagation-based, and matching-based.
Online learning-based. Online learning-based approaches [3,36,50], which ei-
ther train or fine-tune their networks with the first-frame ground truth at test
time and are therefore a great waste of resources. OnAVOS [47] achieves promis-
ing results by introducing an online adaptation mechanism, but it still requires
online fine-tuning. To a certain extent, it restricts networks’ efficiency.
Propagation-based. Propagation-based models [4, 8, 39] get the target masks
in a frame-to-frame prorogation way. Although propagation-based methods im-
prove efficiency, they lack long-term context and therefore are difficult to handle
object disappearance and reappearance, severe obscuration, and distortion.
Matching-based. Matching-based methods [6, 10, 11, 14, 16, 25, 26, 31, 37, 40,
53,54,63] aim to learn an embedding space of target objects between query and
memory. Recently state-of-the-art methods encode many frames into embeddings
and store them as a feature memory bank. The most representative is STM [40],



PanoVOS: Bridging Non-panoramic and Panoramic Views 5

BMXBasketballSkateboard Parkou
r

Dance

Baboon Liones Birds Skateboar
d

Hot 
BalloonRhino

Fig. 2: PanoVOS dataset. We select 10 samples from the dataset involving major
scenes. For each video, there are high-quality instance-level pixel-wise masks.

Splits Train Val Test

#Videos 80 35 (10 unseen) 35 (10 unseen)
#Images 7,070 (50.5%) 3,464 (24.8%) 3,461 (24.7%)
#Masks 9,585 (50.1%) 4,957 (25.9%) 4,603 (24.0%)

Table 2: Statistics of PanoVOS dataset

which has been extended to many works [5, 19, 34, 44, 48, 51]. AOT [58] intro-
duces an identification mechanism by encoding multiple targets into the same
embedding space, which can simultaneously segment multiple objects. However,
they fail to address the challenges of the tremendous proportion of distortion
and discontinuity under panoramic setting.

3 PanoVOS Dataset

We introduced the proposed PanoVOS dataset in three parts, (1) collection
process, (2) statistical summary, and (3) annotation pipeline.

3.1 Data collection

We built our PanoVOS dataset with the principle of diversity in mind. Moreover,
the objects in the video should have a large amplitude of motion or camera
movement. Based on the above viewpoint, we collected videos from the YouTube
website for further annotation, respectively. The range of the video length is
from 3 to 40 seconds. The average sequence length of each video in the dataset
is approximately 20 seconds. We followed the settings of YouTube-VOS [52] to
sample the frames at 6 fps.

3.2 Dataset Statistics

PanoVOS contains 150 videos, including 13,995 frames and 19,145 instance an-
notations from 35 categories. The average length of each video is 20 seconds.
We believe that visual categories are representative of common life scenarios,
and Fig.2 shows some samples of PanoVOS. To create our PanoVOS, in the
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Fig. 3: Instance-level distribution of PanoVOS dataset. Our dataset contains
three major divisions: person, animals, and common objects with 35 sub-divisions.

spirit of the video object segmentation task, we carefully selected videos with
relatively large motion amplitudes and chose a set of video categories including
person (e.g. parkour, dance, BMX, skateboard), animals (e.g. elephant, mon-
key, giraffe, rhino, birds) and common objects (e.g. basketball, hot balloon) as
shown in Fig 3. PanoVOS dataset consists of 150 videos split into training (80),
validation (35), and test (35) sets. Table 2 shows detailed division results. Both
the validation and test sets have 35 videos (about 23% of the frames and the
masks). For validation and test sets, we keep some unseen visual categories for
generalization ability evaluation.

3.3 Annotation Pipeline

Annotation is very time-consuming and expensive for a pixel-level panoramic seg-
mentation dataset. To obtain accurate large-scale video panoramic segmentation
annotations and make the process more efficient, we propose a semi-automatic
human-computer joint annotation strategy, as shown in Fig 4. First, keyframes
are selected and manually annotated for each video, which are images with a
speed of 1 fps. This is followed by a frame-by-frame propagation from the an-
notated keyframes to those unlabeled intermediate frames with a sophisticated
semi-supervised VOS model. Then, to tackle the distortions and discontinuities
in panoramic videos, we need to re-calibrate the resulting annotations via human
refinement. More details will unfold below.

Annotation Propagation For the annotation of each video, we first need an
expert to browse the current video and note down all objects that have a large
amplitude of movement. Then, for each video, the recorded objects in keyframes
with a speed of 1 fps are selected for manual annotation. To avoid consistency
errors or the problem of objects being labeled as other instances when they
disappear and reappear, another expert needs to double-check the annotations
of all objects to improve the accuracy of the dataset annotation.
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Pixel-level Annotations 1f/s

Correct Mis-labeled Annotations

…
person

Computer

Annotator

Annotations Propagation 1f/s to 6f/s

Annotations 1f/s Annotation Refinement

Computer

Annotator

Key Frames Select and Annotate All Frames Propagate and Refine

Fig. 4: PanoVOS annotation pipeline. Our annotation pipeline includes two
phases. (1) The first phase is called Key Frames Select and Annotate. The annota-
tor browses the video and picks out the object to be annotated. Then, instances are
manually annotated at 1 fps and corrected by another annotator. (2) The second phase
is called All Frames Propagate and Refine. In this phase, we apply a semi-supervised
video object segmentation model to help propagate the annotated masks and the gen-
erated instances are refined by annotators.

We then use the off-the-shelf video labeling method [58] to propagate the in-
stance masks frame by frame from the annotated keyframes to untagged inter-
mediate frames and generate masks at 6 fps.

Annotation Refinement To present a new Panoramic dataset of high quality.
After obtaining masks of the first propagation stage, annotators are asked to
check the quality of the masks and refine them. The main amendments are in
the following two areas. 1). Since our video resolution is generally relatively high,
the propagation method will often fail when encountering complex videos with
many small objects in a scene. 2) Due to the huge distortions and discontinuities
present in the panoramic video, the quality of the masks obtained is relatively
poor. Manual correction of the mask is checked by another annotator until the
result is satisfactory before proceeding to the next video annotation.

4 Method

4.1 Overview

Video object segmentation targets assigning an instance label to every pixel in
the given video sequence based on the first frame mask. Recent works [5,6,13,59]
have demonstrated that the attention mechanism can significantly help improve
the segmentation performance. However, for the challenge of content discontin-
uation in panoramic videos, only considering the original attention mechanism
will not be able to fully utilize the semantic information on the left and right
boundaries (pixel contiguity) in the spatial dimension and will lose valuable
contextual information when segmenting objects. Therefore, in this work, our
mission is to design an effective network architecture, which can help acquire
valuable boundary relationships.
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Fig. 5: (a) PSCFormer overview. Given the query frame xt and reference frames
{xi|i ∈ R}, the goal of VOS is to delineate objects from the background by generating
mask yt for query frame xt. References and the query frame are encoded by the memory
encoder and query encoder, respectively. Multiple stacking panoramic space consistency
(PSC) blocks are used to leverage the correspondence in the panoramic space between
references and the query frame. A decoder is used for generating the prediction of the
query frame. (b) Panoramic space consistency block architecture details.

Fig. 5(a) illustrates the overall architecture of the proposed network. Given the
query frame xt and references {xi|i ∈ R}, the goal of VOS is to delineate objects
from the background by generating mask yt for query frame xt. Following [57],
our basic setting uses the first and previous frame as references R = {1, t− 1}.
The memory encoder and query encoder are responsible for extracting frame-
level features. After this, the panoramic space consistency block takes them as
input and aggregates the spatial-temporal information between the reference
frames and the query frame at the pixel level. Finally, the decoder uses the
output of the sequence stacking PSC blocks to predict the mask of the object.

4.2 Panoramic Space Consistency Block

Fig. 5(b) shows the structure of a PSC block. Motivated by the common trans-
former blocks [46], PSC firstly contains a self-attention layer, which is used to
aggregate the target objects’ correlation information within the query frame.
Then, the middle module is composed of cross-attention and PSC-attention, in
which cross-attention is responsible for learning the target objects’ information
from references R and the PSC-attention targets on exploring the boundary re-
lationship between the query frame and previous frame. Finally, PSC employs a
two-layer feed-forward MLP with GELU [17] non-linearity activation function.
Panoramic Space Consistency Attention (PSC-Attn). PSC-Attn is em-
ployed to model the spatial-temporal relationship between the query frame and
reference frames considering the continuity of pixels of images in the panoramic
space. How to establish a connection between the left and right boundaries be-
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come especially important? The most intuitive solution would be to directly
splice in length, but this would lead to a huge amount of computation. Therefore,
we take the approach of moving a portion of the region in the length dimension
from the right boundary to the leftmost boundary for stitching. Consequently,
we only focus on the left and right boundaries between the query frame and
the reference frame. Thus, unlike the original attention, where each query token
is counted for attention along with all key tokens in the reference frame, our
PSC attention takes care of the key tokens in a fixed window size. In particular,
we define the reference frame feature embedding f(x) ∈ RH×W×C , which is ex-
tracted from the query encoder. H, W , and C represent the height, width, and
channel dimensions, respectively. According to the solutions mentioned above,
the new feature embedding f(x)

′ is calculated as follows:

f(x)′ [0 : W/p] = f(x) [W/p : W ]

f(x)′ [W/p : W ] = f(x) [0 : W/p]

f(x)′ [W/p : W −W/p] = f(x) [W/p : W −W/p] ,

(1)

where p ∈ Z+. We define query embedding Q ∈ RHW×C , key embedding K ∈
RHW×C , value embedding V ∈ RHW×C , where Q is from the query frame feature
embedding, K and V are from f(x)

′ by performing dimensional transformations.
Mathematically, we define the PSC attention as follows,

PSCAttn(Q,K, V ) = softmax

(
QKTR√

C

)
V, (2)

where R ∈ [0, 1]
HW×HW means a window that represents the attention range of

each query token. For query Q(x,y) at (x, y) position, we define the R(x,y) as:

Rx,y(i, j) =

{
1 if (x− i)2 ⩽ s2 and (y − j)2 ⩽ s2

0 otherwise
, (3)

where (i, j) is the position for each key token, s is the window size. For each
query token, it calculates the attention with another key token only if they are
spatially limited to a (2 × s + 1) size window, which significantly reduces the
time complexity from (h× w)2 to (2× s+ 1)2.
Following [46], we implement the representational form of our PSCAttn module
with multi-headed attention, defined mathematically as follows,

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
O

headi = PSCAttn
(
QWQ

i ,KWK
i , V WV

i

)
,

(4)

where WQ
i ∈ RC×dmodel , WK

i ∈ RC×dmodel , WV
i ∈ RC×dmodel and WO

i ∈ RC×C

are the linear projections. As [46], we set the number of heads to (h = C/dmodel)
8, where dmodel is the projection dimension of each head.
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Methods YouTube-VOS PanoVOS Validation PanoVOS Test
MF J&F J&F Js Fs Ju Fu J&F Js Fs Ju Fu

AOTT [58] 73.7 53.8↓19.9 44.4 58.3 46.9 65.7 43.7↓30.0 36.3 49.8 39.6 49.2
AOTS [58] 74.6 55.8 ↓18.8 49.1 62.2 46.4 65.5 44.7↓29.9 32.4 43.3 46.5 56.8
AOTB [58] 75.2 53.7↓21.5 46.2 58.1 46.3 64.1 39.5↓35.7 34.4 44.4 35.0 44.4
AFB-URR [32] ✓ 65.2 40.1↓25.1 31.1 41.5 35.8 51.8 30.4↓34.8 23.1 32.7 28.8 36.9
STCN [6] ✓ 76.1 49.9↓26.2 42.7 53.4 45.1 58.4 48.0↓28.1 39.3 50.2 46.7 55.7
XMem [5] ✓ 77.0 48.6↓28.4 40.7 50.1 44.8 58.6 40.2↓36.8 35.3 44.9 36.4 44.0
AOTL [58] ✓ 74.7 49.2↓25.5 43.3 57.3 38.9 57.1 38.2↓36.5 32.3 43.7 32.7 44.1
R50_AOTL [58] ✓ 76.5 50.1↓26.4 44.5 58.6 40.3 57.2 41.4↓35.1 33.7 45.0 38.3 48.4
SwinB_AOTL [58] ✓ 74.4 44.8↓29.6 39.1 52.2 34.9 53.0 36.2↓38.2 31.1 42.0 31.0 40.6
RDE∗ [24] ✓ 61.7 43.1↓18.6 36.0 48.4 35.2 52.7 41.3↓20.4 30.9 44.6 41.4 48.5
STCN∗ [6] ✓ 56.3 43.2↓13.1 41.6 53.7 33.2 44.5 38.0↓18.3 32.8 43.2 35.5 40.4
XMem∗ [5] ✓ 65.8 55.9↓9.9 52.2 64.0 47.2 60.0 49.6↓16.2 39.2 52.6 46.8 59.9

Table 3: Domain transfer result of (static image datasets)→(PanoVOS Val-
idation & Test). Subscript s and u denote scores in seen and unseen categories. MF
denotes multiple historical frames as reference. ↓ represents the performance of the
declining values compared to the YouTube-VOS dataset [52]. ∗ denotes a large-scale
external dataset BL30K [6] dataset is used during training.

Methods YouTube-VOS PanoVOS Validation PanoVOS Test
MF J&F J&F Js Fs Ju Fu J&F Js Fs Ju Fu

CFBI† [59] 81.4 60.9↓20.5 53.0 65.2 56.3 69.0 49.0↓32.4 49.4 47.6 46.2 52.6
CFBI+† [59] 82.8 57.6↓25.2 52.1 67.0 48.1 63.4 53.7↓29.1 51.6 59.3 46.6 57.5
AOTT [58] 80.2 61.5↓18.7 55.6 67.7 54.6 68.2 52.6↓27.6 44.8 55.3 51.5 58.8
AOTS [58] 82.6 66.7↓15.9 58.0 70.5 62.0 76.4 57.3↓25.3 50.2 61.0 54.6 63.5
AOTB [58] 83.5 70.5↓13.0 59.2 71.7 68.5 82.7 60.8↓22.7 53.0 64.4 57.8 68.2
AFB-URR [32] ✓ 79.6 55.1↓24.5 44.7 55.6 53.4 66.7 52.4↓27.2 43.6 54.2 52.0 59.9
RDE [24] ✓ 81.9 54.7↓27.2 50.3 63.9 44.6 60.1 55.4↓26.5 45.5 59.2 51.0 65.9
STCN [6] ✓ 83.0 61.8↓21.2 50.3 63.5 61.3 72.1 53.4↓29.6 46.2 58.9 49.0 59.9
XMem [5] ✓ 85.7 66.1↓19.6 56.6 68.7 62.0 77.2 62.5↓23.2 53.1 65.4 61.1 70.4
AOTL [58] ✓ 83.8 71.9↓11.9 62.1 75.3 67.4 82.8 62.1↓21.7 57.1 69.0 56.2 66.1
R50_AOTL [58] ✓ 84.1 69.2↓14.9 56.7 69.4 67.5 83.1 61.4↓22.7 57.5 69.0 53.3 65.7
SwinB_AOTL [58] ✓ 84.5 67.5↓17.0 60.2 73.6 60.3 76.0 60.9↓23.6 53.9 63.7 58.7 67.4
RDE∗ [24] ✓ 83.3 60.9↓22.4 51.4 64.7 56.0 71.6 55.6↓27.7 48.1 60.8 52.6 61.0
STCN∗ [6] ✓ 84.3 61.7↓22.6 49.9 61.8 59.7 75.5 55.8↓28.5 48.2 59.8 52.7 62.5
XMem∗ [5] ✓ 86.1 63.4↓22.7 53.5 64.4 61.5 74.1 61.0↓25.1 53.5 65.1 57.5 68.0

Table 4: Domain transfer result of (static image datasets &
YouTubeVOS)→(PanoVOS Validation & Test). Subscript s and u denote
scores in seen and unseen categories. MF denotes multiple historical frames as
reference. ↓ represents the performance of the declining values compared to the
YouTube-VOS dataset [52]. ∗ denotes a large-scale external dataset BL30K [6] dataset
is used during training. † denotes no synthetic data is used during the training stage.

5 Experiment

In this section, we design a series of experiments to answer the following research
questions related to how to tackle video object segmentation in panoramic scenes:
RQ1: How well are current VOS methods trained on non-panoramic videos
adapted to the panoramic world?
RQ2: How well do variations of the foundation model Segment Anything
Model [23] adapt to the panoramic world?
RQ3: Can the proposed PanoVOS datasets bring about a consistent performance
gain to VOS methods?
RQ4: How well does Panoramic Space Consistency Attention contribute?
RQ5: What are the remained problems for panoramic-related research?
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Methods PanoVOS Validation PanoVOS Test
J&F Js Fs Ju Fu J&F Js Fs Ju Fu

PerSAM [61] 19.1 12.3 19.8 17.4 27.1 19.5 7.4 14.9 23.8 31.7
SAM-PT [43] 47.5 36.7 48.6 46.0 58.7 41.0 31.1 40.5 40.2 52.3
SAM-PT-reinit [43] 43.7 34.3 44.3 41.3 54.9 43.6 35.0 42.7 43.5 53.0

Table 5: Quantitative comparison on PanoVOS for variations of foundation
model Segment Anything Model [23]. Subscript s and u denote scores in seen
and unseen categories.

Methods PanoVOS Validation PanoVOS Test
MF J&F Js Fs Ju Fu J&F Js Fs Ju Fu

CFBI† [57] 35.8 34.6 44.8 24.2 39.7 19.1 18.2 26.1 12.2 19.8
CFBI+† [59] 41.3 38.0 47.9 32.5 46.9 30.9 30.8 42.7 21.4 28.5
AOTT [58] 65.6 59.4 68.3 59.7 75.0 53.4 49.3 61.6 47.5 55.1
AOTS [58] 67.7 61.2 70.0 62.4 77.1 55.9 53.2 65.1 48.6 57.0
AOTB [58] 67.6 62.3 72.0 61.5 74.8 55.4 53.5 64.2 47.7 56.0
Ours-Base 74.0 66.4 80.4 66.2 83.0 56.8 49.4 62.7 52.4 62.5
AFB-URR [32] ✓ 34.3 34.8 42.8 24.9 34.5 34.2 28.2 38.8 32.9 36.8
RDE [24] ✓ 50.5 49.7 58.4 39.2 54.9 42.5 36.9 46.6 38.5 48.2
STCN [6] ✓ 52.0 51.2 60.8 41.5 54.5 50.8 43.6 56.5 49.3 53.7
XMem [5] ✓ 55.7 54.8 63.3 45.2 59.7 53.5 49.5 62.6 47.1 54.8
AOTL [58] ✓ 66.6 61.4 71.1 59.4 74.3 53.8 50.0 60.3 47.8 57.1
R50_AOTL [58] ✓ 65.3 61.9 71.4 56.4 71.6 54.6 52.9 63.2 47.5 54.9
SwinB_AOTL [58] ✓ 62.1 58.9 66.5 54.3 68.8 53.1 49.0 57.8 49.0 56.6
Ours-Large ✓ 77.9 70.5 85.2 69.5 86.4 59.9 54.9 69.2 53.0 62.4
RDE∗ [24] ✓ 54.3 52.8 61.6 44.6 58.2 52.2 44.5 56.0 49.3 59.1
STCN∗ [6] ✓ 51.7 51.2 60.6 41.3 53.6 53.8 53.7 58.1 46.0 57.3
XMem∗ [5] ✓ 57.7 55.6 64.6 48.6 61.9 57.9 51.3 64.5 53.2 62.7

Table 6: Quantitative comparison on PanoVOS for models with pretrain-
ing on static image datasets. Subscript s and u denote scores in seen and unseen
categories. MF denotes multiple historical frames as reference. ∗ denotes a large-scale
external dataset BL30K [6] dataset is used during training.

5.1 Implementation Details

Model Architecture. We build two variants of our method with different refer-
ence bank sizes R for a fair comparison with previous methods. Ours-Base uses
only the first frame and the previous frame as reference (R = {1, t− 1}), which
are for the sake of high inference speed and low memory consumption. Ours-
Large uses multiple historical frames as reference (R = {1+2δ, 1+2δ, 1+3δ...}),
which follows [34, 58]. In our work, we set δ to 2 and 5 for training and testing
respectively. For p and s in PSC block, we set them as 2 and 7.
Evaluation Metrics. Following the standard protocol [41, 42], we adopt
the region accuracy J and boundary accuracy F . J means the Jaccard In-
dex/Intersection over Union (IoU), which is the ratio of intersection and the
joint area between predicted masks and ground truths. And F evaluates the ac-
curacy of the segmentation boundary, which is computed by transforming it into
a bipartite graph matching problem with predicted masks and ground truths.

5.2 Domain Transfer Results (RQ1)

We evaluate previous SOTA methods, which are trained on conventional datasets
that are captured by pinhole cameras, on PanoVOS datasets to evaluate the
domain transfer performance. To quantify the transfer performance of advanced
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Fig. 6: Qualitative comparison to the state-of-the-art methods, RDE [24],
STCN [6], and XMem [5], on PanoVOS dataset. Our model performs better under the
challenge of content discontinuities. Error regions are bounded.

Methods Validation Test
PSCAttn J&F J&F

Ours-Base 72.8 55.4
✓ 74.0 56.8

Ours-Large 74.8 59.5
✓ 77.9 59.9

Table 7: Ablation study of PSCAttn module on PanoVOS.

models trained on planar video datasets, we evaluated 15 off-the-shelf VOS mod-
els, including [5, 6, 24, 32, 57–59], and we follow official implementations and
training strategies details of them. Table 3 summarizes the domain transfer re-
sults of methods that are only trained on synthetic datasets, such as COCO [33]
and ECSSD [45], on PanoVOS dataset. Table 4 shows the domain transfer re-
sults of state-of-the-art methods, that are trained on synthetic datasets (e.g .
COCO [33]) and video datasets (e.g . YouTube-VOS [52]), on our PanoVOS val-
idation and test sets. By analyzing the performance of advanced VOS methods
that target conventional planar videos on panoramic videos, we provide the fol-
lowing insights. Firstly, the performance of current sophisticated VOS models
will largely degrade when employed to tackle panoramic videos. Secondly, we can
observe a trend that training on larger VOS datasets, i.e., YouTube-VOS [52]
and BL30K [6] can help mitigate the gap between planar and panoramic videos.

5.3 Results via Visual Foundation Model (RQ2)

To quantity the segmentation performance of different variations of the founda-
tion model Segment Anything Model [23] on PanoVOS, we evaluate the latest
top performing models PerSAM [61] and SAM-PT [43], as shown in Table 5.
The performance of these models on our challenging PanoVOS dataset is still
unsatisfactory, which leaves space for further exploration.
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Methods Attention Validation Test
Type J&F J&F

Ours-Base CrossAttn 72.5 54.8
PSCAttn 74.0 56.8

Ours-Large CrossAttn 76.8 59.1
PSCAttn 77.9 59.9

Table 8: Comparison between our PSC attention (PSCAttn) and cross at-
tention (CrossAttn) module on PanoVOS dataset.

Methods PanoVOS Validation
J&F Js Fs Ju Fu

w/o 73.7 68.8 82.6 63.1 80.3
p=3 76.3 70.4 85.0 65.8 84.1
p=5 74.2 65.3 79.7 67.5 84.2
p=10 75.9 68.1 81.9 68.6 85.2
p=15 75.0 66.7 81.0 67.0 85.4
p=2 (Ours) 77.9 70.5 85.2 69.5 86.4

Table 9: Hyperparameter Analysis of p, which enables the stitching mechanism,
in PSCAttn for Ours-Large model.

5.4 Main Results on PanoVOS (RQ3)

To evaluate the performance of previous methods on the proposed panoramic
VOS dataset, we re-trained them on the training set of PanoVOS for the sake
of fairness. We report the performance in Table 6,
which demonstrates that all the previous VOS models perform worse on
PanoVOS than on the traditional VOS benchmarks, e.g., YouTube-VOS. Our
model substantially outperforms all these methods and achieves state-of-the-art
on all evaluation metrics on PanoVOS, which verifies the effectiveness of our
model in tackling panoramic videos. Fig.6 visualizes some qualitative compar-
isons between our model and previous state-of-the-art methods on PanoVOS
dataset, which shows that previous benchmarks fail to cope with content discon-
tinuities while our model tackles them well.

5.5 Ablation Study (RQ4)

In this section, we conduct ablation studies to demonstrate the effectiveness of
the main component, i.e., Panoramic Space Consistency Attention (PSCAttn),
of our model, with all the experiments performed based on our two model vari-
ants, i.e., Ours-Base and Ours-Large. For training, static image datasets are
used for pre-training and PanoVOS is used for main training. Table 7 demon-
strates the effectiveness of our PSCAttn module. Besides, Fig. 7 illustrates the
qualitative comparison between our default model (Ours-Base) and the setting
without PSCAttn module. Our model performs better when coping with the
pixel discontinuity problem. Moreover, as is shown in Table 8, compared to the
conventional cross-attention (CrossAttn) module, PSCAttn also achieves better
performance. In Table 9, we analyze the hyperparameter p, which influences the
stitching mechanism in PSCAttn, of our model (Ours-Large) on the PanoVOS
validation set. Specifically, the highest overall performance (J&F) is achieved
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Fig. 7: Qualitative ablation study of PSCAttn module.

Fig. 8: Challenge. Our model fails to segment some objects with strong distortion.

when setting p as 2. Compared to the setting without using the stitching mech-
anism (w/o), our model can achieve much better performance. Specifically, our
final model (Ours-Large, p = 2) achieves more than 4% gain in J&F .

5.6 Limitation and Future Work (RQ5)

To prompt greater progress of panoramic VOS, we also analyze the limitations of
our method. Specifically, our method has no notion of severe distortion challenge
since we do not employ a special design (such as deformable convolution [9]) to
tackle deformations. That means our model may not segment the objects with
large distortions. One such failure case is shown in Fig. 8. Besides, our panoramic
dataset can be applied to broader video segmentation and tracking domains, such
as referring video object segmentation [28–30, 56], video object tracking [18],
video instance segmentation [15], few-shot segmentation [20], and more broader
embodied navigation tasks [55]. Also, it would be valuable to investigate the
zero-shot segmentation performance of visual foundation models [23] on our
challenging panoramic dataset. We hope our work can shed light on efficient
adaptation from non-panoramic to panoramic perception.

6 Conclusion

In this paper, we introduce a high-quality dataset, i.e., PanoVOS, for panoramic
video object segmentation. Our PanoVOS dataset provides pixel-level instance
annotations with diverse scenarios and significant motions. Based on this dataset,
we evaluate 15 off-the-shelf VOS models and carefully analyze their limitations.
Then, we further present our model, i.e., PSCFormer, which is equipped with
the proposed panoramic space consistency transformer block. Our preliminary
experiment demonstrates the effectiveness of our proposed model to enhance the
segmentation performance and consistency in panoramic scenes. In conclusion,
this provides a new challenge for video understanding, and we hope our PanoVOS
dataset can attract more researchers to pay attention to panoramic videos.
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