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Evaluating Text-to-Visual Generation
with Image-to-Text Generation

Supplementary Material

Outline

This document supplements the main paper with benchmark and method details.
Below is the outline:

– Section A details the skill definitions of GenAI-Bench and compares the
skill coverage across popular benchmarks.

– Section B describes how GenAI-Bench is collected and shows VQAScore’s
strong agreement with human judgments.

– Section C describes how we compute VQAScore with equations and pseu-
docode.

– Section D includes the implementation details of CLIP-FlanT5 and ablation
studies of training data, model size, and question-answer templates.

– Section E provides details on the baseline methods, including more failure
cases of divide-and-conquer approaches.

– Section F provides details on the benchmarks and evaluation metrics, and
ablates sampling methods for video and 3D.

A Visio-Linguistic Compositional Reasoning Skills

This section describes how we define and label the compositional reason-
ing skills for text-to-visual generation, and compare the skill coverage across
benchmarks.

Skill definitions. Prior literature on text-to-visual generation [8,25,27,68,90]
focuses on generating “basic” objects, attributes, relations, and scenes. However,
user prompts often require “advanced” compositional reasoning, including com-
parison, differentiation, counting, and logic [38,49]. For example, user prompts
may require counting not just objects, but also attribute-object pairs and even
object-relation-object triplets, like “one person wearing a white shirt and
the other five wearing blue shirts”. To this end, after thoroughly review-
ing relevant literature [27,57,77,90], we work with professional designers to design
a taxonomy of compositional reasoning skills common in real-world prompts,
categorizing them into “basic” and “advanced”, where the latter builds upon the
former. We provide detailed definitions for “basic” skills in Table 6 and “advanced”
skills in Table 7.

Comparing skills across benchmarks. We find the skill categorization in
benchmarks like PartiPrompt [90] to be ambiguous or even confusing. For exam-
ple, PartiPrompt introduces two categories “complex” and “fine-grained detail”.
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Table 6: Skill definitions and examples for basic compositions.

Skill Type Definition Examples

Basic Compositions

Object

Basic entities within an image,
such as person, animal, food,
items, vehicles, or text symbols
(e.g., “A”, “1+1”).

a dog, a cat and a chicken on a table; a
young man with a green bat and a blue
ball; a ’No Parking’ sign on a busy street.

Attribute

Visual properties of entities, such
as color, material, emotion, size,
shape, age, gender, state, and so
on.

a silver spoon lies to the left of a golden
fork on a wooden table; a green pumpkin
is smiling happily, a red pumpkin is
sitting sadly.

Scene

Backgrounds or settings of an
image, such as weather and
location.

A child making a sandcastle on a beach in
a cloudy day; a grand fountain
surrounded by historic buildings in a town
square.

Spatial Relation

Physical arrangements of multiple
entities relative to each other, e.g.,
on the right, on top, facing,
towards, inside, outside, near, far,
and so on.

a bustling city street, a neon ’Open 24
Hours’ sign glowing above a small diner; a
teacher standing in front of a world map
in a classroom; tea steams in a cup, next
to a closed diary with a pen resting on its
cover.

Action Relation

Action interactions between
entities, e.g., pushing, kissing,
hugging, hitting, helping, and so
on.

a dog chasing a cat; a group of children
playing on the beach; a boat glides across
the ocean, dolphins leaping beside it and
seagulls soaring overhead.

Part Relation

Part-whole relationships between
entities – one entity is a
component of another, such as
body part, clothing, and
accessories.

a pilot with aviator sunglasses; a baker
with a cherry pin on a polka dot
apron.; a young lady wearing a T-shirt
puts her hand on a puppy’s head.

The former refers to “...fine-grained, interacting details or relationships between
multiple participants”, while the latter refers to “...attributes or actions of entities
or objects in a scene”. Upon closer examination, the categorization of spatial,
action, and part relations into these categories appears arbitrary. To address this,
we compare the skill coverage across all alignment and generation benchmarks.
For benchmarks (PartiPrompt/T2I-CompBench) with defined skill categories, we
map their skills to our definitions. For benchmarks (Winoground/EqBen/Pick-
a-pic/DrawBench/EditBench/COCO-T2I/HPDv2-Test/EvalCrafter) without a
comprehensive skill set, we manually annotate the samples. Finally, we calculate
the skill proportions in each benchmark, identifying skills that constitute more
than 2% as genuinely present. Table 8 shows that our GenAI-Bench comprehen-
sively covers all essential skills in real-world prompts like those of [77].
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Table 7: Skill definitions and examples for advanced compositions.

Skill Type Definition Examples

Advanced Compositions

Counting

Determining the quantity, size, or
volume of entities, e.g., objects,
attribute-object pairs, and
object-relation-object triplets.

two cats playing with a single ball; five
enthusiastic athletes and one tired coach;
one pirate ship sailing through space,
crewed by five robots; three pink peonies
and four white daisies in a garden.

Differentiation

Differentiating objects within a
category by their attributes or
relations, such as distinguishing
between “old” and “young” people
by age, or “the cat on top of the
table” versus “the cat under the
table” by their spatial relations.

one cat is sleeping on the table and the
other is playing under the table; there are
two men in the living room, the taller one
to the left of the shorter one; a notebook
lies open in the grass, with sketches on the
left page and blank space on the right;
there are two shoes on the grass, the one
without laces looks newer than the one
with laces.

Comparison

Comparing characteristics like
number, attributes, area, or
volume between entities.

there are more people standing than
sitting; between the two cups on the desk,
the taller one holds more coffee than the
shorter one, which is half-empty; a small
child on a skateboard has messier hair
than the person next to him; three little
boys are sitting on the grass, and the boy in
the middle looks the strongest.

Negation

Specifying the absence or
contradiction of elements, as
indicated by “no”, “not”, or
“without”, e.g., entities not present
or actions not taken.

a bookshelf with no books, only picture
frames.; a person with short hair is crying
while a person with long hair is not; a
smiling girl with short hair and no glasses;
a cute dog without a collar.

Universality

Specifying when every member of
a group shares a specific attribute
or is involved in a common
relation, indicated by words like
“every”, “all”, “each”, “both”.

in a room, all the chairs are occupied
except one; a bustling kitchen where every
chef is preparing a dish; in a square, several
children are playing, each wearing a red
T-shirt; a table laden with apples and
bananas, where all the fruits are green; the
little girl in the garden has roses in both
hands.

B GenAI-Bench

This section describes how we collect GenAI-Bench and showcases VQAScore’s
superior agreement with human ratings.

Details of GenAI-Bench. GenAI-Bench consists of 1,600 diverse prompts
that cover advanced skills not addressed in previous benchmarks [27, 68, 90].
To source prompts relevant to real-world applications, we employ two graphic
designers who use Midjourney [57] in their profession. First, we introduce them
to our skill definitions and examples. Then, we ask them to craft prompts for
each skill, collaborating with ChatGPT to brainstorm prompt variants across
diverse visual domains. Importantly, these designers ensure that the prompts are
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Table 8: Comparing skill coverage across benchmarks. Compared to existing
alignment and generation benchmarks, GenAI-Bench comprehensively covers essential
skills (especially advanced ones) in real-world prompts [57] like those in Winoground [77].
Note that SeeTrue is an alignment benchmark proposed in [89] that collects 6,930 human
labels for DrawBench [68], EditBench [80], and COCO-T2I [45].

Benchmarks Basic Compositions Advanced Compositions

Attribute Scene Action Spatial Part Counting Negation Universal Comparison Differentiation

Alignment benchmarks
Winoground [77] 3 3 3 3 3 3 3 3 3 3
EqBen [81] 3 3 3 3 3 3 3 7 7 7
TIFA160 [25] 3 3 3 3 3 3 7 7 7 7
SeeTrue [45,68, 80,89] 3 3 3 3 3 3 7 7 7 7
Pick-a-pic [33] 3 3 3 3 3 3 7 7 7 7

Generation benchmarks
PartiPrompt (P2) [90] 3 3 3 3 3 3 3 7 7 7
DrawBench [68,89] 3 3 3 3 3 3 7 7 7 7
EditBench [80,89] 3 3 3 3 3 3 7 7 7 7
COCO-T2I [45,89] 3 3 3 3 3 3 7 7 7 7
T2I-CompBench [27] 3 3 3 3 3 3 7 7 7 7
HPDv2-Test [86] 3 3 3 3 3 7 7 7 7 7
EvalCrafter [52] 3 3 3 3 3 3 7 7 7 7

Our benchmark for both alignment and generation
GenAI-Bench (Ours) 3 3 3 3 3 3 3 3 3 3

objective. This contrasts with T2I-CompBench [27], whose prompts are almost
entirely auto-generated. For example, in T2I-CompBench’s “texture” category, an
overwhelming 40% of the 1000 programmatically-generated prompts use “metallic”
as the attribute, which limits their diversity. Other T2I-CompBench’s prompts
generated by ChatGPT often contain subjective (non-visual) phrases. For in-
stance, in the prompt “the delicate, fluttering wings of the butterfly
signaled the arrival of spring, a natural symbol of rebirth and renewal”,
the “rebirth and renewal” can convey different meanings to different people. Simi-
larly, in “the soft, velvety texture of the rose petals felt luxurious
against the fingertips, a romantic symbol of love and affection”, the
“love and affection” is also open to diverse interpretations. Thus, we carefully
guide the designers to avoid such prompts. Lastly, each prompt in GenAI-Bench
is tagged with its associated visio-linguistic skills. We streamline this process
by using GPT4 for automatic tagging, providing it the skill definitions and
in-context exemplars. Later, we manually verify and correct all tags for accuracy.
This results in over 5,000 human-verified tags.

Collecting human ratings. We evaluate six text-to-image models: Stable
Diffusion [66] (SD v2.1, SD-XL, SD-XL Turbo), DeepFloyd-IF [13], Midjourney
v6 [57], DALL-E 3 [2]; along with four text-to-video models: ModelScope [79],
Floor33 [15], Pika v1 [62], Gen2 [18]. In this preliminary study, we use a subset
of 527 prompts from GenAI-Bench. This already exceeds the scale of human
annotations in previous work [25, 89]. We will extend our benchmark to all 1,600
prompts in a subsequent study. Due to the lack of APIs for Floor33 [15], Pika
v1 [62], and Gen2 [18], we manually download videos from their websites. We plan
to release our codebase for automatically generating visuals with the rest of the
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models. Finally, we collect 1-5 Likert scale human ratings using the recommended
annotation protocol of [59]:

How well does the image (or video) match the description?

1. Does not match at all.

2. Has significant discrepancies.

3. Has several minor discrepancies.

4. Has a few minor discrepancies.

5. Matches exactly.

Our collected human ratings indicate a high level of inter-rater agreement, with
Krippendorff’s Alpha reaching 0.72 for image ratings and 0.70 for video ratings,
suggesting substantial agreement [25]. Further, we show that VQAScore achieves
the state-of-the-art correlation to human ratings in Table 9.

Table 9: Evaluating VQAScore on GenAI-Bench. We report Pairwise accuracy,
Pearson, and Kendall, with higher scores indicating better performance for all metrics.
VQAScore sets a new SOTA on both the image and video alignment benchmarks of
GenAI-Bench (with 527 prompts each), significantly surpassing popular metrics like
CLIPScore [21] and PickScore [33].

Method
Pairwise
Acc [14]

Old Metrics

Pearson Kendall

Baselines
CLIPScore [21] 52.2 19.9 14.5
BLIPv2Score [43] 55.1 25.0 20.7

Finetuned on human feedback
ImageReward [87] 58.7 39.2 28.3
PickScore [33] 57.7 36.3 26.2
HPSv2 [86] 49.8 14.5 10.0

VQAScore w/ open-source models
InstructBLIP 62.4 43.9 36.0
LLaVA-1.5 62.1 48.3 35.6

VQAScore w/ our model
CLIP-FlanT5 (Ours) 63.3 46.9 38.0

Method
Pairwise
Acc [14]

Old Metrics

Pearson Kendall

Baselines
CLIPScore [21] 54.5 26.4 19.1
BLIPv2Score [43] 55.6 27.4 21.5

Finetuned on human feedback
ImageReward [87] 61.0 44.7 32.7
PickScore [33] 56.8 33.5 24.0
HPSv2 [86] 51.6 18.5 13.2

VQAScore w/ open-source models
InstructBLIP 62.6 46.9 36.2
LLaVA-1.5 64.3 54.0 39.7

VQAScore w/ our model
CLIP-FlanT5 (Ours) 64.4 53.3 39.9

(a) GenAI-Bench-527 (Image) (b) GenAI-Bench-527 (Video)

GenAI-Bench performance. We analyze the performance of the ten gener-
ative models across all skills in Table 10. Both human ratings and VQAScores
prefer DALL-E 3 [2] over the other models in nearly all skills except for negation.
In addition, prompts requiring “advanced” compositions are rated significantly
lower by both humans and VQAScores. Lastly, current video models do not
perform as well as image models, suggesting room for improvement.
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Table 10: Performance breakdown on GenAI-Bench. We present the averaged
human ratings and VQAScores (based on CLIP-FlanT5) for “basic” and “advanced”
prompts. Human ratings use a 1-5 Likert scale, and VQAScore ranges from 0 to 1, with
higher scores indicating better performance for both. Generally, both human ratings
and VQAScores favor DALL-E 3 over other models, with DALL-E 3 preferred across
almost all skills except for negation. In addition, we find that video models receive
significantly lower scores than image models. Overall, VQAScore closely matches human
ratings.

Method Attribute Scene
Relation

Overall
Spatial Action Part

Image models
SD v2.1 3.1 3.2 2.9 3.2 3.1 3.1
SD-XL 3.7 3.7 3.4 3.7 3.6 3.6
SD-XL Turbo 3.6 3.7 3.3 3.5 3.5 3.5
DeepFloyd-IF 3.6 3.7 3.4 3.7 3.6 3.6
Midjourney v6 3.9 3.9 3.7 4.0 4.0 3.9
DALL-E 3 4.3 4.5 4.3 4.3 4.3 4.3

Video models
ModelScope 3.0 3.1 2.8 3.1 3.2 2.9
Floor33 3.1 3.2 2.9 3.3 3.2 3.1
Pika v1 3.3 3.5 3.1 3.3 3.3 3.2
Gen2 3.4 3.6 3.3 3.6 3.5 3.5

Method Attribute Scene
Relation

Overall
Spatial Action Part

Image models
SD v2.1 0.80 0.79 0.76 0.77 0.80 0.78
SD-XL 0.84 0.84 0.82 0.83 0.89 0.83
SD-XL Turbo 0.83 0.83 0.80 0.81 0.84 0.82
DeepFloyd-IF 0.83 0.85 0.80 0.82 0.89 0.83
Midjourney v6 0.88 0.87 0.87 0.87 0.91 0.87
DALL-E 3 0.91 0.90 0.92 0.89 0.91 0.90

Video models
ModelScope 0.67 0.68 0.65 0.64 0.71 0.65
Floor33 0.69 0.70 0.65 0.66 0.69 0.67
Pika v1 0.77 0.79 0.74 0.71 0.76 0.74
Gen2 0.77 0.79 0.73 0.76 0.84 0.76

(a) Human ratings on “basic” prompts (b) VQAScores on “basic” prompts

Method Count Differ Compare
Logical

Overall
Negate Universal

Image models
SD v2.1 2.4 2.5 2.3 2.9 3.0 2.7
SD-XL 2.5 2.6 2.5 2.7 3.5 2.8
SD-XL Turbo 2.5 2.8 2.4 3.0 3.4 2.8
DeepFloyd-IF 2.8 2.9 2.6 2.9 3.6 3.0
Midjourney v6 3.2 3.3 3.2 2.9 3.9 3.2
DALL-E 3 3.3 3.4 3.4 2.8 4.0 3.3

Video models
ModelScope 2.1 2.3 2.0 2.7 3.0 2.5
Floor33 2.6 2.8 2.4 3.0 3.4 2.8
Pika v1 2.5 2.7 2.4 3.0 3.6 2.9
Gen2 2.5 2.8 2.4 3.1 3.5 2.9

Method Count Differ Compare
Logical

Overall
Negate Universal

Image models
SD v2.1 0.68 0.70 0.68 0.54 0.64 0.62
SD-XL 0.71 0.73 0.69 0.50 0.66 0.63
SD-XL Turbo 0.72 0.74 0.70 0.52 0.65 0.65
DeepFloyd-IF 0.74 0.74 0.71 0.53 0.68 0.66
Midjourney v6 0.78 0.78 0.79 0.50 0.76 0.69
DALL-E 3 0.82 0.78 0.82 0.48 0.80 0.70

Video models
ModelScope 0.56 0.61 0.56 0.51 0.55 0.55
Floor33 0.66 0.69 0.61 0.53 0.56 0.58
Pika v1 0.65 0.67 0.63 0.56 0.68 0.62
Gen2 0.71 0.69 0.65 0.53 0.61 0.61

(c) Human ratings on “advanced” prompts (d) VQAScores on “advanced” prompts
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C Implementing VQAScore

In this section, we describe how we compute VQAScore.
Computing VQAScore as an auto-regressive product. Recall that

VQAScore calculates the alignment score of an image i and text t directly from
a VQA model. We first use a simple QA template to convert the text t to a
question and an answer (denoted as q(t) and a(t)), for example:

t = The moon is over the cow
q(t) = Does this figure show "The moon is over the cow"?

Please answer yes or no.
a(t) = Yes

We later demonstrate that such a straightforward question-answer pair is sufficient
for good performance. In language modeling [1], a piece of text is pre-processed
(or tokenized) into a token sequence, e.g., a(t) = {a1, · · · , am}. Although “Yes”
usually counts as a single token, we include the EOS (end-of-sentence) token
at the end of the text sequence for a simpler implementation. We find that the
EOS token only marginally affects the VQAScore results. Next, the generative
likelihood of the answer (conditioned on both the question and image) can be
naturally factorized as an auto-regressive product [1]:

VQAScore(i, t) := P (a(t)|i,q(t)) =
mY

k=1

P (ak|a<k, i,q(t)) (3)

The answer decoders of VQA models [11,48] return back m softmax distributions
corresponding to the m terms in the above expression. Computing VQAScore is
more efficient than generating answer token-by-token. Since the entire sequence
of tokens {ak} is already available as input for VQAScore, the above m terms
can be efficiently computed in parallel. In contrast, answer generation as done
by [7, 25] requires sequential token-by-token prediction, as token ak must be
generated before it can serve as input to generate the softmax distribution for
the subsequent token ak+1.

Pseudocode of VQAScore. To better explain how VQAScore works, we
attach the pseudocode in algorithm 1. We will release a pip-installable API to
compute VQAScore using one-line of Python code.

D Training CLIP-FlanT5

In this section, we detail the training procedure of CLIP-FlanT5, and ablate
design choices including training data, model size, and prompting strategies.

Training CLIP-FlanT5. For a fair comparison, we adhere to the train-
ing recipe of the state-of-the-art LLaVA-1.5 [47]. We adopt the same (frozen)
CLIP visual encoder (ViT-L-336) [64] and the 2-layer MLP projector for image
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Algorithm 1: PyTorch-style pseudocode for VQAScore.
# tokenize(): text tokenizer that converts texts to a list of token indices

# vqa_model(): VQA model returns logits for predicted answer

def vqa_score(image, text):

# Format the text into the below QA pair

question = f"Does this figure show ‘{text}’? Please answer yes or no."

answer = "Yes"

# Tokenize the QA pair into tokens

question_tokens = tokenize(question)

answer_tokens = tokenize(answer)

# Extract logits for predicted answer of shape [len(answer_tokens), vocab_size]

# answer_tokens is a required input for auto-regressive decoding

logits = vqa_model(image, question_tokens, answer_tokens)

# labels must skip the first BOS (Begin-Of-Sentence) token

labels = answer_tokens[1:]

# logits must skip the last EOS (End-Of-Sentence) token

logits = logits[:-1]

# Compute the log likelihood of the answer

log_likelihood = -torch.nn.CrossEntropyLoss()(logits, labels)

# (Optional) Cancel the log to obtain P("Yes" | image, question)

score = log_likelihood.exp()

return score

tokenization. We also follow LLaVA-1.5’s two-stage finetuning procedure and
datasets. In stage-1 training, we finetune the MLP projector on 558K captioning
data (LAION-CC-SBU with BLIP captions [43]). To accommodate FlanT5’s
encoder-decoder architecture, we adopt the split-text training method proposed
in BLIPv2 [43]. This involves splitting a caption into two parts at a random
position, with the first part sent to the encoder and the second part to the de-
coder. In stage-2 training, we finetune both the MLP projector and the language
model (FlanT5) on 665K mixture of public VQA datasets (e.g., VQAv2 [19] and
GQA [28]). To efficiently train the encoder-decoder architecture, we convert all
multi-turn VQA samples into single-turn, resulting in 3.4M image-question-answer
pairs. We also retrain LLaVA-1.5 on the same single-turn VQA samples and
observe the same VQAScore results. We borrow hyperparameters of LLaVA-1.5
(see Table 11), such as the learning rate schedule, optimizer, number of epochs,
and weight decay. We use 8 A100 (80Gbs) GPUs to train all our models. Our
largest CLIP-FlanT5-XXL (11B) takes 5 hours for the stage-1 and 80 hours for
the stage-2. For stage-2 training, we adhere to the system (prefix) prompt of
LLaVA-1.5 during training 3:

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,

detailed, and polite answers to the user’s questions.

USER: <image> \n <question> ASSISTANT: <answer>

3 By default, we also use the system prompt during inference. Interestingly, removing
the system prompt (“A chat between a curious user ... answers to the user’s questions”)
during inference does not affect CLIP-FlanT5 but will hurt LLaVA-1.5’s performance.
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Table 11: Training hyperparameters for CLIP-FlanT5.

Hyperparameter Stage-1 Stage-2

dataset size 558K 665K
batch size 256 96
lr 1e-2 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Ablating language models and training data. We evaluate four language
models: the encoder-decoder FlanT5 (11B and 3B) and the decoder-only Llama-2
(13B and 7B). We also ablate finetuning strategies: using both captioning and
VQA data (stage-2) against only captioning data (stage-1). We report overall
performance across 7 image-text alignment benchmarks in Table 12. We highlight
three key observations:

1. Finetuning on VQA data is crucial (whereas captioning data only helps a
little).

2. Scaling up language models consistently boosts performance.
3. Encoder-decoder FlanT5 significantly outperforms decoder-only Llama-2.

Figure 5 shows more VQAScore results of different models. We hope our ablations
can help future work develop stronger models for VQAScore. We will make all
model checkpoints and data available for reproducibility.

Table 12: Ablation on language model and training data. We show overall
performance on seven benchmarks: group score on Winoground/EqBen, AUROC on
DrawBench/EditBench/COCO-T2I, pairwise accuracy on TIFA160, and binary accuracy
on Pick-a-pic, with higher scores indicating better performance for all metrics. We
highlight that scaling up the size of LLMs and finetuning on VQA data consistently
improve the performance. In addition, the encoder-decoder FlanT5 is stronger than the
decoder-only Llama-2, likely because FlanT5 benefits from bidirectional image-question
encoding [76] and extensive training on challenging QA datasets [10].

LLM-Type Model-Size Training-Data Winoground EqBen DrawBench EditBench COCO-T2I TIFA160 Pick-a-Pic

Llama-2
7B

Caption Only 3.8 7.9 42.5 45.0 46.2 46.6 53.0
Caption+VQA 21.8 20.7 81.7 65.6 80.5 64.9 81.0

13B
Caption Only 0.8 1.4 56.5 47.0 51.5 49.7 44.0
Caption+VQA 29.8 35.0 82.2 70.6 79.4 66.4 76.0

FlanT5
3B

Caption Only 7.3 9.3 71.9 58.3 59.9 52.8 67.0
Caption+VQA 34.8 39.3 82.8 74.5 80.7 68.8 84.0

11B
Caption Only 11.0 15.0 68.1 55.1 66.5 56.4 72.0
Caption+VQA 46.0 47.9 85.3 77.0 85.0 71.2 84.0
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Fig. 5: More qualitative results. We compare VQAScores using CLIP-FlanT5 (11B
and 3B) against those using LLaVA-1.5 (13B), highlighting correct predictions in green
and incorrect ones in red. We present four successful predictions from CLIP-FlanT5 at
the top and two failures at the bottom.

VQAScore is effective with simple question-answers. Table 13 shows
that VQAScore consistently performs well across various question templates.
Notably, on the challenging Winoground and EqBen benchmarks, simple yet clear
questions tend to yield the best results for all VQA models. Interestingly, Table 14
shows that computing the negative answer likelihood (e.g., –P(“No”)) often yields
comparable results. Furthermore, concise answers like P(“Yes”) perform better
than longer responses such as P(“Yes it does”). We believe that VQAScore’s
simplicity makes it a strong alternative to the widely adopted divide-and-conquer
approaches [7,9,25,27,83], which depend on carefully crafted in-context prompts.

E Details of Baseline Methods

In this section, we detail the implementation of the baseline methods and
explore the reasons behind their failures.

Metrics based on vision-language models (CLIPScore/BLIPv2Score).
To calculate CLIPScore, we use the same CLIP-L-336 model [21] of CLIP-
FlanT5 and LLaVA-1.5. For BLIPv2Score, we use the ITM (image-text-matching)
head [43] from the largest BLIPv2-ViT-G variant. For an in-depth analysis of
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Table 13: Ablating question templates for VQAScore. We ablate 16 question
templates across the three VQA models on the challenging Winoground and EqBen
benchmarks. We report the group score, where higher scores indicate better performance.
We highlight that most questions yield comparable performance, with clearer questions
(e.g., those ending with “.. Please answer yes or no.”) outperforming more ambiguous
ones like “{}?”. We also note that CLIP-FlanT5 and InstructBLIP tend to be more
stable across different question templates, while LLaVA-1.5 varies more.

Question Template
CLIP-FlanT5 LLaVA-1.5 InstructBLIP

Winoground EqBen Winoground EqBen Winoground EqBen

Our default question
Does this figure show "{}"? Please answer yes or no. 46.0 47.9 29.8 35.0 28.5 38.6

Paraphrased yes-or-no questions
Is this figure showing "{}"? Please answer yes or no. 46.5 48.6 26.8 35.0 28.2 35.0
Does this photo show "{}"? Please answer yes or no. 44.0 49.3 30.5 31.4 28.7 33.6
Does this picture show "{}"? Please answer yes or no. 44.5 48.6 30.2 38.6 29.5 32.9
Does this image show "{}"? Please answer yes or no. 43.2 47.9 29.2 30.7 28.2 32.9
Does it show "{}"? Please answer yes or no. 43.8 49.3 24.5 28.6 28.2 35.7
Does "{}"? Please answer yes or no. 43.8 49.3 31.8 37.1 28.7 32.1
Is "{}" an accurate description of this figure? Please answer yes or no. 43.5 47.9 27.5 30.0 27.3 38.6
Can "{}" be seen in this figure? Please answer yes or no. 40.8 49.3 25.8 27.9 26.8 32.9
"{}"? Please answer yes or no. 44.8 52.1 32.5 30.0 30.2 35.7

Other questions
"{}"? 41.0 47.9 24.0 19.3 25.8 27.1
Does this figure show "{}"? 44.8 49.3 25.8 27.1 27.5 37.1
Does this figure show "{}"? Answer the question using a single word or phrase. 44.8 47.1 35.0 39.3 26.8 37.1
What is the answer to the following question? "Does this figure show "{}"?" 42.0 45.0 20.8 32.1 27.8 35.7
Based on the image, respond to this question with a short answer: "Does this figure show "{}"?" 42.5 45.7 33.2 42.9 27.8 35.0
The question "Does this figure show "{}"?" can be answered using the image. A short answer is 42.8 46.4 18.2 31.4 27.3 36.4

how these discriminatively pre-trained VLMs behave as bags-of-words models,
we refer readers to previous studies [30,46,77,91].

Metrics finetuned on human feedback (PickScore/ImageReward/HPSv2).
We use the official code and model checkpoints to calculate these metrics. Specif-
ically, PickScore [33] and HPSv2 [86] finetune the CLIP-H model, and ImageRe-
ward [87] finetunes the BLIPv2, using costly human feedback from either random
web users or expert annotators. Our experiments on the Winoground and EqBen
benchmarks (Table 1) show that these metrics perform no better than random
chance, likely because the discriminative pre-trained VLMs bottleneck their per-
formance due to bags-of-words behaviors. In addition, their finetuning datasets
may lack compositional texts. Finally, we observe that human annotations can be
noisy or subjective, especially when these annotators are not well trained (e.g.,
random web users used by Pick-a-pic [33]). Appendix F discusses these issues.

Visual programming methods (VisProg/ViperGPT/VPEval). We
follow the official implementation of these methods. For VisProg [20] and
ViperGPT [75], we apply the same VQAScore prompt (“Does this figure show
"{text}"? Please answer yes or no.”). However, these methods struggle with compo-
sitional texts, e.g., Winoground [77]. For instance, given the text “someone talks
on the phone happily while another person sits angrily”, VisProg sim-
ply requests a yes-or-no answer from a VQA model, without decomposing.
ViperGPT generates the below program that overlooks the action relation:
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Table 14: Ablating answer formats for VQAScore. Our analysis of the
Winoground and EqBen benchmarks shows that extracting the negative answer like-
lihood yields comparable results, e.g., P(“Yes”) performs similarly to the negation of
P(“No”). Furthermore, concise answers are more effective than longer responses like
“Yes it does”.

Question Template Answer
CLIP-FlanT5 LLaVA-1.5 InstructBLIP

Winoground EqBen Winoground EqBen Winoground EqBen

Does this figure show "{}"? Please answer yes or no.
P(Yes) 46.0 47.9 29.8 35.0 28.5 38.6
–P(No) 46.3 47.9 27.5 37.1 28.0 32.9

Does this figure show "{}"? Please answer correct or wrong.
P(Correct) 18.0 30.7 21.8 32.9 24.8 30.7
–P(Wrong) 36.0 31.4 18.3 20.0 28.5 35.0

Does this figure show "{}"? Please answer true or false.
P(True) 29.8 39.3 31.0 34.3 25.8 32.9
–P(False) 42.5 37.9 27.0 30.0 28.5 33.6

Does this figure show "{}"?
P(Yes it does) 17.0 25.7 15.5 22.9 17.8 25.7
–P(No it does not) 30.3 23.6 16.8 30.7 23.0 22.9

# Text is "someone talks on the phone happily while another person sits angrily"

# Below is the incorrect program generated by ViperGPT that ignores action relation

def execute_command(image) -> int:

image_patch = ImagePatch(image)

person_patches = image_patch.find("person")

if len(person_patches) < 2:

return 0

person_patches.sort(key=lambda x: x.horizontal_center)

person1_patch = person_patches[0]

person2_patch = person_patches[1]

person1_happy = person1_patch.verify_property("person", "happy")

person2_angry = person2_patch.verify_property("person", "angry")

if person1_happy and person2_angry:

return 1

else:

return 0

For VPEval [9], we follow its “open-ended evaluation program” designed for com-
positional texts. Nonetheless, we observe that it occasionally generates erroneous
or nonsensical programs, like asking a VQA model “what is the person doing
while talking on the phone?” and expecting an answer of “happily”.

Divide-and-conquer using VQA (TIFA/VQ2/Davidsonian). We first
note that divide-and-conquer methods are the most popular in recent text-
to-visual evaluation [2, 27, 74, 83]. Therefore, we comprehensively analyze all
open-source methods, ensuring fair comparison by using the same VQA models as
for VQAScore. Specifically, Table 2 already shows that our simple VQAScore sur-
passes the more complex TIFA [25], VQ2 [89], and Davidsonian [7] across all VQA
models (e.g., InstructBLIP-FlanT5-11B, LLaVA-1.5-13B, CLIP-FlanT5-11B).
TIFA uses a finetuned Llama-2 to generate multiple-choice QA pairs, returning
the answer accuracy of a VQA model as the alignment score. Davidsonian uses a
more sophisticated pipeline by prompting ChatGPT to generate yes-or-no QA
pairs while avoiding inconsistent questions. For example, given the text “the
moon is over the cow”, if a VQA model already answers “No” to “Is there a cow?”,
it then skips the follow-up question “Is the moon over the cow?”. VQ2 [89] uses
a finetuned FlanT5 to generate free-form QA pairs and computes the average
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score of P(answer | image, question). However, these methods often generate
nonsensical QA pairs, as shown in Table 16. Lastly, Table 15 confirms that using
(a) a single question template without decomposition and (b) the likelihood of “Yes”
is much more effective than decomposition using Davidsonian [7] or checking if
the model can directly generate “Yes”.

Table 15: Ablation on question decomposition and answer generation versus
likelihood. For a fair comparison, we apply all methods to the same CLIP-FlanT5
model. Our end-to-end VQAScore (using the default question template) outperforms
question decomposition using Davidsonian [7] or direct answer generation (i.e., checking
if the generated answer is “Yes”).

VQA Model Question Template(s) Scoring
Winoground EqBen

Text Image Group Text Image Group

CLIP-FlanT5-11B
Davidsonian [7]

Generation 16.3 11.5 9.8 17.1 11.4 11.4
VQAScore 41.0 38.3 28.3 45.7 47.9 35.0

Does this figure show "{}"? Please answer yes or no.
Generation 15.3 15.3 15.3 21.4 21.4 21.4
VQAScore 60.0 57.5 46.0 59.3 63.6 47.9

GPT4-Vision-based methods (GPT4-Eval/VIEScore). We follow the
official prompts from GPT4-Eval [94] and VIEScore [34] to ask GPT4-Vision [58]
to directly generate an alignment score (in text format) for an image-text pair
(e.g., 0 to 100). For detailed prompts, we direct readers to the respective papers
or codebases. Note that we cannot use GPT4-Vision for VQAScore because its
API currently does not expose likelihoods of generated answers. Nonetheless,
we posit that using VQAScore on stronger VQA models like GPT4-Vision can
outperform text-based alignment score generation as done by [34,94].

T2VScore-A(lignment). T2VScore-A [83] is a divide-and-conquer method
specifically designed for video-text alignment. When reporting T2VScore-A [83]
(based on GPT4-Vision), we calculate the pairwise accuracy [14] using scores
released by the authors. However, the authors do not provide the corresponding
T2VScore-A outputs for other VQA models (e.g., InstructBLIP).

F Details of Alignment Benchmarks

In this section, we provide details on evaluation metrics and benchmarks in
the main paper.

(Meta-)evaluation metrics for human agreement (Pairwise accu-
racy/Pearson/Kendall). To meta-evaluate metrics (e.g., VQAScore) on bench-
marks that provide 1-5 Likert scale ratings (e.g., TIFA160 [25]), we primarily
report the pairwise accuracy (with tie calibration) as advocated by Deutsch et
al. [14]. Pairwise accuracy effectively addresses ties common in human ratings,
unlike the classic Kendall metric which ignores ties. We direct readers to [14] for
detailed equations and provide a brief overview below. For a dataset containing
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Table 16: Failure cases of divide-and-conquer methods (TIFA, VQ2, and
Davidsonian). We show generated question-and-answer pairs of TIFA, VQ2, and
Davidsonian on three Winoground texts. These methods often generate irrelevant or
erroneous QA pairs (highlighted in red), especially with more compositional texts.

Method Generated questions Candidate answers (correct
answer choice in bold)

Text: “the moon is over the cow”

TIFA Is the moon over the cow? yes, no
Is the moon over or under the cow? over, under, next to, behind

VQ2 What part of the sun is above the cow? the moon
What is the name of the moon over the cow? the moon

Davidsonian
Is there a moon? yes, no
Is there a cow? yes, no
Is the moon over the cow? yes, no

Text: “someone talks on the phone happily while another person sits angrily”

TIFA Who is talking on the phone? someone, no one, everyone,
someone else

Who is sitting angrily? person, animal, robot, alien

VQ2 Who has a good time on the phone? someone
What part of the life does someone talk to? the phone

Davidsonian
Is the someone happy? yes, no
Is there another person? yes, no
Is there a phone? yes, no

Text: “all paper airplanes fly on a curved path except for one which takes a straight one”

TIFA Are the paper airplanes flying on a curved path? yes, no
Are the paper airplanes flying on a curved path or a
straight path?

curved path, straight path, wavy
path, zigzag path

VQ2 What type of airplanes fly on a straight path? all paper airplanes
All paper airplanes fly on what? a straight path

Davidsonian
Do paper airplanes fly on a curved path? yes, no
Is there one paper airplane? yes, no
Do paper airplanes fly? yes, no

M image-text pairs, there are two score vectors of size M each: one for human
ratings and one for metric scores. [14] evaluates pairwise rankings to determine if
human and metric scores agree, i.e., if one image-text pair scores higher, lower,
or ties with another image-text pair across both human and metric scores. Ad-
ditionally, [14] performs tie calibration to optimize for the best tie threshold in
metric scores. We emphasize that Pairwise accuracy (with tie calibration) is more
reliable and interpretable. Unlike the Pearson coefficient, [14] does not assume
linear correspondence between human ratings and metric scores. Furthermore,
when compared to the Kendall coefficient (which also measures correct pairwise
ranking decisions), [14] provides an accuracy value ranging from 0 to 1, making
it easier to interpret. For completeness, Table 17 and Table 18 report all three
metrics on TIFA160 [25] and Flickr8K [21].

TIFA160 [25]. TIFA160 collects 160 text prompts from four sources: MSCOCO
captions [45], DrawBench [68], PartiPrompts [90], and PaintSkill [8]. Each text
prompt is paired with five text-to-image models, generating a total of 800 image-
text pairs. Furthermore, Davidsonian [7] labels these image-text pairs using 1-5
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Likert scale for human evaluation. Table 17 shows that our VQAScore consistently
surpasses prior methods across all three meta-evaluation metrics.

Table 17: Evaluating agreement with human judgment on text-to-image
benchmark TIFA160 [7,25]. We report Pairwise accuracy, Pearson, and Kendall(-b),
with higher scores indicating stronger agreement between human and metric scores.
VQAScore based on our CLIP-FlanT5 consistently surpasses all other methods.

Method Pairwise
Acc [14]

Old metrics

Pearson Kendall

Baselines
CLIPScore [21] 55.8 29.6 19.9
BLIPv2Score [43] 57.5 35.6 23.3

HumanFeedback-based
ImageReward [87] 67.3 61.5 43.8
PickScore [33] 59.4 39.8 27.4
HPSv2 [86] 55.2 30.1 19.1

GPT4-Vision-based
GPT4V-Eval [94] 64.0 58.9 46.8
VIEScore [34] 63.9 61.2 47.4

InstructBLIP-based
TIFA [25] 60.0 56.5 44.0
VQ2 [89] 50.8 12.1 9.4
Davidsonian [7] 61.8 63.4 48.5
VQAScore (Ours) 70.1 58.5 49.7

LLaVA-1.5-based
TIFA [25] 60.4 49.3 38.1
VQ2 [89] 48.7 4.7 5.1
Davidsonian [7] 54.3 55.6 45.4
VQAScore (Ours) 66.4 58.9 41.9

CLIP-FlanT5-based (Ours)
TIFA [25] 60.4 46.3 36.0
VQ2 [89] 49.0 3.9 5.6
Davidsonian [7] 61.4 49.0 37.0
VQAScore (Ours) 71.2 66.2 51.9

Flickr8K [21]. We report on the image-to-text evaluation benchmark Flickr8K-
CF to show that VQAScore can evaluate image captions in a reference-free manner
like CLIPScore [21] (without using reference captions of each image). Specifically,
Flickr8K-CF contains 145K binary quality judgments collected via CrowdFlower
for 48K (image, caption) pairs. Each pair receives at least 3 binary judgments,
with human ratings calculated as the mean proportion of “yes” annotations for
each pair. Table 18 demonstrates that our VQAScore outperforms all prior art, in-
cluding reference-based metrics such as BLEU-4, CIDEr, and RefCLIPScore [21].

EvalCrafter [52, 83]. We use the text-to-video evaluation benchmark Eval-
Crafter with 1-5 Likert scales collected by T2VScore [83] for assessing video-text
alignment. This benchmark contains 700 prompts paired with five text-to-video
models such as Pika [62], Gen2 [18], and Floor33 [15]. By default, we average the
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Table 18: Evaluating agreement on image-to-text benchmark Flickr8K [21].
We report Pairwise accuracy, Pearson, and Kendall, with higher scores indicating better
performance for all metrics. In this benchmark, each image-caption pair is rated by at
least three annotators. VQAScore achieves superior performance compared to existing
methods like RefCLIPScore and CIDEr in a reference-free manner (without using the
reference captions of the images as provided by the dataset).

Method Model
Pairwise
Acc [14]

Old metrics

Pearson Kendall

Reference-based metrics
BLEU-4 - 78.1 19.8 16.9
METEOR - 78.4 36.8 22.3
ROUGE - 78.0 32.6 19.9
CIDEr - 79.3 46.1 24.6
SPICE - 78.2 35.7 24.4
RefCLIPScore [21] ViT-B/32 78.2 47.9 36.4

Reference-free metrics using CLIPScore

CLIPScore [21]
ViT-B/32 77.8 44.4 34.4
ViT-L/14-336px 78.2 46.5 34.7

Reference-free metrics using VQAScore

VQAScore (Ours)
InstructBLIP 81.5 58.2 36.0
LLaVA-1.5 82.4 61.9 36.4
CLIP-FlanT5 (Ours) 83.1 65.4 36.7

VQAScore of all 36 frames from the 3-second videos. Table 19 also shows that
sampling as few as four frames can achieve near-optimal performance.

Table 19: Ablating the number of sampled frames for the text-to-video
benchmark EvalCrafter [83]. We report the pairwise accuracy [14] of VQAScore
for one, four, and all (36) uniformly sampled frames. VQAScore achieves the best
performance with 36 frames and near-optimal performance with as few as four frames.

Model Sampled Frames

One Four All

InstructBLIP 65.4 65.8 65.7
LLaVA-1.5 63.2 63.7 63.6

CLIP-FlanT5 65.8 66.5 66.5

StanfordT23D [85]. We use the text-to-3D evaluation benchmark Stan-
fordT23D and collect our own 1-5 Likert scales for assessing 3D-text alignment.
We follow the same annotation procedure as GenAI-Bench (Section B) and
gather 3 human ratings per 3D-text pair, spanning six text-to-3D models (Latent-
Nerf [56]/Magic-3D [44]/MVDream [70]/DreamFusion [63]/Instant3D [42]/Shap-
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E [29]) across 60 prompts. For human annotators, we provide a 3x3 grid view of
each 3D asset, with 9 views sampled uniformly across camera angles. By default,
we average the VQAScore of all 120 provided views. However, Table 20 shows
that using the same 3x3 grid view (that requires only a single pass) can achieve
near-optimal performance.

Table 20: Ablating the number of sampled views and input formats for
text-to-3D benchmark StanfordT23D [85]. We report the pairwise accuracy [14]
with higher scores indicating better performance. Interestingly, using a single grid layout
(2x2 or 3x3) image often performs almost as well as averaging VQAScores across 4 or 9
views.

Model Sampled Views

Uniform (4) Grid (2x2) Uniform (9) Grid (3x3) All (120)

InstructBLIP 67.4 67.4 68.0 68.1 68.1
LLaVA-1.5 64.5 64.8 64.9 64.9 64.9
CLIP-FlanT5 68.1 67.8 68.5 68.4 68.6

Pic-a-pick [33]. We find that the text-to-image evaluation benchmark,
Pic-a-pick, contains an excessive amount of NSFW (sexual/violent) content
and incorrect labels, likely due to an inadequate automatic filtering procedure.
Specifically, after manually reviewing the test set of 500 samples, we find that
10% contain inappropriate content (e.g., “zentai” and “Emma Frost as an alluring
college professor wearing a low neckline top”) and approximately 50% had incorrect
labels. This may also account for the inferior performance of PickScore. As a
result, we manually filter the test set to obtain a clean subset of 100 prompts
paired with 200 images for evaluating binary accuracy. We also remove all tied
labels due to their subjective nature. We will release this subset of Pick-a-pic for
reproducibility.

SeeTrue [89] (DrawBench/EditBench/COCO-T2I). We utilize the
binary match-or-not labels collected by SeeTrue [89] for the three benchmarks.
These benchmarks consist of individual image-text pairs, where some pairs are
correctly paired and others are not. We follow their original evaluation protocols
to report the AUROC (Area Under the Receiver Operating Characteristic curve),
taking into account all possible classification thresholds.

Winoground [77] and EqBen [81]. In our study, we use the entire
Winoground dataset consisting of 400 pairs of image-text pairs. For EqBen,
because the official test set includes low-quality images (e.g., very dark or blurry
pictures), we analyze the higher-quality EqBen-Mini subset of 280 pairs of
image-text pairs, as recommended by their official codebase. These two bench-
marks evaluate image-text alignment via matching tasks: each sample becomes 2
image-to-text matching tasks with one image and two candidate captions, and 2
text-to-image matching tasks with one caption and two candidate images. The
text (and image) score is awarded 1 point only if both matching tasks are correct.
The final group score is awarded 1 point only if all 4 matching tasks are correct.
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Importantly, we discover that these benchmarks (especially Winoground) test
advanced compositional reasoning skills crucial for understanding real-world
prompts, such as counting, comparison, differentiation, and logical reasoning.
These advanced compositions operate on basic visual entities, which themselves
can be compositions of objects, attributes, and relations.
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