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Abstract. Despite significant progress in generative AI, comprehensive
evaluation remains challenging because of the lack of effective metrics
and standardized benchmarks. For instance, the widely-used CLIPScore
measures the alignment between a (generated) image and text prompt,
but it fails to produce reliable scores for complex prompts involving
compositions of objects, attributes, and relations. One reason is that
text encoders of CLIP can notoriously act as a “bag of words”, conflating
prompts such as "the horse is eating the grass" with "the grass
is eating the horse" [39, 65, 78]. To address this, we introduce the
VQAScore, which uses a visual-question-answering (VQA) model to
produce an alignment score by computing the probability of a "Yes"
answer to a simple "Does this figure show {text}?" question. Though
simpler than prior art, VQAScore computed with off-the-shelf models
produces state-of-the-art results across many (8) image-text alignment
benchmarks. We also compute VQAScore with an in-house model that
follows best practices in the literature. For example, we use a bidirectional
image-question encoder that allows image embeddings to depend on
the question being asked (and vice versa). Our in-house model, CLIP-
FlanT5, outperforms even the strongest baselines that make use of the
proprietary GPT-4V. Interestingly, although we train with only images,
VQAScore can also align text with video and 3D models. VQAScore
allows researchers to benchmark text-to-visual generation using complex
texts that capture the compositional structure of real-world prompts.
Towards this end, we introduce GenAI-Bench, a more challenging
benchmark with 1,600 compositional text prompts that require parsing
scenes, objects, attributes, relationships, and high-order reasoning such
as comparison and logic. GenAI-Bench also collects over 15,000 human
ratings for leading image and video models such as Stable Diffusion,
DALL-E 3, Midjourney, and Gen2. We open-source our data, model, and
code at link.

Keywords: Vision-Language Models · Visio-Linguistic Compositionality
· Evaluation of Generative Models

https://orcid.org/0000-0003-4938-2313
https://linzhiqiu.github.io/papers/vqascore
https://github.com/linzhiqiu/t2v_metrics


2 Z.Lin et al.

(a) Computing VQAScore (b) Types of image-question encoder

Fig. 1: VQAScore. Figure (a) computes the VQAScore between an image and text
by first converting the text into the question “Does this figure show ‘{text}’? Please
answer yes or no.” The image and question (after tokenization) are then fed into an
image-question encoder, followed by an answer decoder that outputs the probability of
“Yes”. Appendix C details the implementation and pseudocode. Our simple VQAScore
based on off-the-shelf VQA models [9, 40] even rivals prior art that uses proprietary
models [29,70,76] such as GPT4-Vision. Figure (b) highlights the architectural choice
of the image-question encoder. While popular open-source VQA models such as LLaVA-
1.5 [40] are derived from auto-regressive architectures like LLama-2 [66] where question
tokens do not affect preceding image tokens, we find it beneficial to adopt bidirectional
encoders, e.g., FlanT5 [8]. This allows the image to be “looked at” differently depending
on the question, and vice versa. VQAScore based on our CLIP-FlanT5 model achieves
a new state-of-the-art across text-to-image/video/3D alignment benchmarks. Figure 2
shows examples of VQAScore’s superior agreement with human judgments of images
generated from complex text prompts.

Fig. 2: VQAScore (based on CLIP-FlanT5) versus CLIPScore on samples from
our GenAI-Bench (detailed in Section 5). GenAI-Bench consists of 1,600 text prompts
spanning diverse compositional reasoning skills that challenge even leading models
such as DALL-E 3 [1] and Stable Diffusion (SD) [56]. VQAScore shows a significantly
stronger agreement with human judgments compared to CLIPScore [17], making it a
more reliable tool for automatic text-to-visual evaluation. We open-source our code and
models for VQAScore at link.

1 Introduction

Metrics play a key role in the evolution of science. For instance, perceptual
metrics such as FID [18], IS [59], and LPIPS [80] have enabled tremendous

https://github.com/linzhiqiu/t2v_metrics
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progress by allowing researchers to systematically assess the quality of generated
imagery. However, the generative AI community still lacks a robust metric that
reveals how well an image aligns with an input text prompt. Indeed, generative
models such as DALL-E 3 [1] and Gen2 [15] produce remarkably photo-realistic
images and videos that can still fail to align with input text prompts [21,23, 28].

Challenges in evaluation. Contemporary generative models [1, 10,58,79]
primarily rely on subjective human evaluation [42, 58, 60, 75, 77] which can
be expensive and difficult to reproduce. For systematic benchmarking, recent
work [2, 3, 36, 57, 60, 71] adopts metrics such as CLIPScore [17, 54], which mea-
sures the (cosine) similarity of the embedded image and text prompt. However,
accurately measuring vision-language alignment remains a significant challenge
for even leading vision-language models (VLMs), because it requires advanced
compositional reasoning skills (that may be as difficult as the underlying gen-
erative task!). Studies [25, 39, 46, 68, 78] show that VLMs like CLIP struggle
with compositional text prompts involving multiple objects, attribute bindings,
spatial/action relations, counting, and logical reasoning. Given the current state
of the art, the power of standard evaluation metrics lags far behind the power of
the generative models that they are evaluating.

Decomposing texts via LLMs (prior art). Recent neuro-symbolic meth-
ods [6, 7, 16,21,63,76] use off-the-shelf large language models (LLMs) like Chat-
GPT [49, 51] to tackle compositional reasoning through a divide-and-conquer
approach, i.e., decomposing complex prompts into modular components. For
example, visual programming [16,63] uses LLMs to translate task instructions
into symbolic programs, which themselves can invoke expert VLMs to return
intermediate outputs like object counts [7]. This inspires many recent meth-
ods [7,23,70,76] to compute image-text alignment by decomposing the text prompt
into simpler components, e.g., question-answer pairs. For example, TIFA [21]
decomposes a prompt “parent pointing at child” into questions like “who
is pointing at the child?” and “who is being pointed at?”, and returns the ac-
curacy score of the answers generated by a visual-question-answering (VQA)
model. However, these approaches struggle with more compositional text prompts,
e.g., those from challenging benchmarks such as Winoground [65]. For exam-
ple, given a prompt “someone talks on the phone happily while another
person sits angrily”, the latest divide-and-conquer method Davidsonian [6]
generates nonsensical questions like “is the someone happy?” and “is there another
person?”.

VQAScore (ours). Using recent VQA models based on multimodal LLMs [9,
41], we propose the following end-to-end approach that computes the generative
likelihood [39] of an answer to a simple question (see Figure 1). Given an image
and text, we define their alignment to be the following probability:

P (“Yes”|image, “Does this figure show ‘{text}’? Please answer yes or no.”) (1)

We term this approach VQAScore. Despite its simplicity, VQAScore imple-
mented via open-source VQA models [9, 40] outperforms nearly all prior art in-
cluding CLIPScore [17], models trained with extensive human feedback [28,73,74],
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and divide-and-conquer methods [6, 7, 21, 76]. VQAScore even competes with
approaches that rely on proprietary models [29, 70] like GPT4-Vision trained
on much larger datasets. We evaluate across a comprehensive suite of alignment
benchmarks including Winoground [65], EqBen [68], TIFA160 [21], Flickr8K [17],
DrawBench [58], EditBench [67], COCO-T2I [38], and Pick-a-Pic [28]. We analyze
the performance of various open-source models with respect to the benchmarks,
and propose innovations in both modeling and benchmarking below.

What makes VQAScore effective? To isolate factors crucial for image-text
alignment, we train in-house VQA models controlling for architectures, training
data, and training recipes. Recall that VQA models need be trained on (image,
question, answer) examples [40]. We first point out that image-text alignment
requires models to expose answer likelihoods rather than simply generate answer
tokens (as much past work does [6,21]). Another crucial architectural choice is the
type of image-question encoder. Many popular VQA models (e.g., LLaVA [40,41])
are derived from next-token autoregressive LLMs (e.g., Llama-2 [66]) where ques-
tion embeddings depend on previously-encoded image tokens, but not vice versa.
These are often known as uni-directional “decoder-only” architectures. However,
we find it beneficial to allow visual embeddings to be influenced by the question
being asked (and vice versa). Indeed, there exists tremendous evidence from neu-
roscience that humans parse imagery differently depending on the prompted task
(via top-down feedback [20]). We operationalize this via a bidirectional “encoder-
decoder” language model, FlanT5 [8]. Specifically, we combine a pre-trained CLIP
vision-encoder with a pre-trained FlanT5, which encodes image and question
embeddings bidirectionally but generates answers auto-regressively (see Figure 1).
By finetuning on public VQA datasets [40], our final CLIP-FlanT5 sets a new
state-of-the-art across all benchmarks. Interestingly, even though we need only
simple question-answers at inference time (1), VQAScore likely benefits from
FlanT5’s strong reasoning ability, trained on more than 400 language datasets
with challenging question-answer pairs [8].

GenAI-Bench. We find that popular benchmarks for generative mod-
els [23,28,58,70] like PartiPrompt [77] do not capture the compositional structure
of real-world text prompts (e.g., Winoground [65]). To remedy this, we identify
a set of crucial skills for text-to-visual generation, ranging from basic (object,
scene, attribute, and relation understanding) to advanced (comparison, differen-
tiation, logical reasoning, and counting). Figure 3 presents illustrative examples.
Although these skills frequently appear in user prompts, we find that existing
benchmarks [21, 23, 77] do not comprehensively cover them. To address the gaps,
we introduce GenAI-Bench to evaluate both (1) text-to-visual generation models
and (2) automated metrics. First, GenAI-Bench evaluates text-to-visual genera-
tion by collecting 1,600 prompts that cover essential visio-linguistic compositional
reasoning skills. This allows us to identify the limitations of popular genera-
tive models such as Stable Diffusion, Midjourney, DALL-E 3, Pika, and Gen2.
For quality purposes, the prompts are sourced from graphic designers who use
text-to-visual tools in their profession. Next, GenAI-Bench evaluates automated
metrics by collecting over 15,000 human ratings for ten leading text-to-visual
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Fig. 3: VQAScore (based on CLIP-FlanT5) versus CLIPScore on random
samples from the challenging Winoground [65] benchmark, containing real-world text
prompts covering diverse compositional reasoning skills (which are carefully defined and
labelled, as detailed in Appendix A). VQAScore performs well across basic compositions
(attribute/scene/relation) as well as advanced compositions that require higher-order
reasoning, e.g., counting attribute-object pairs and reasoning logically over negation
and universality statements. Quantitative performance per skill can be found in Table 3.

models. GenAI-Bench exceeds the diversity and difficulty of prior benchmarks
such as PartiPrompt [23,28,77]. We refer readers to [33] for further analysis on
GenAI-Bench.

Extending to text-to-video/3D evaluation. Finally, we conduct prelimi-
nary experiments on video-text and 3D-text alignment benchmarks [44,72] by sim-
ply averaging the VQAScore across sampled frames or rendered views. VQAScore
significantly surpasses popular methods such as CLIPScore [17], PickScore [28],
and SOTA divide-and-conquer approaches that make use of GPT4-Vision [70].

Contribution summary.

1. We propose VQAScore, a simple metric that outperforms prior art without
making use of expensive human feedback or proprietary models such as
ChatGPT and GPT4-Vision.

2. VQAScore based on our proposed CLIP-FlanT5 model achieves the state-
of-the-art in vision-language alignment, offering a strong alternative to CLIP-
Score. We open-source a pip-installable API at link to run VQAScore for
image/video/3D evaluation using one-line of Python code.

3. We present GenAI-Bench, a comprehensive benchmark with 1,600 composi-
tional prompts to evaluate text-to-visual generation, surpassing the size and
difficulty of existing benchmarks. Additionally, we provide over 15,000 human
ratings (expanded to 80,000 in [33]) to support research on vision-language
alignment metrics. Our dataset is available at link.

https://github.com/linzhiqiu/t2i_metrics
https://huggingface.co/datasets/libaiqi/GenAI-Bench
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2 Related Works

Automated text-to-visual evaluation. Perceptual metrics like Inception
Score (IS) [59], Fréchet Inception Distance (FID) [18] and Learned Perceptual
Image Patch Similarity (LPIPS) [80] use pre-trained networks to assess the quality
of generated imagery. However, these metrics rely on reference images and do
not generalize to vision-language alignment. Recent text-to-visual systems [1–3,
13,14,19,26,27,30–32,35,47,57,58,60,71] mostly report CLIPScore [17], which
measures (cosine) similarity of the embedded image and text prompt. However,
CLIP cannot reliably process compositional text prompts [25,39,65,78]. Recent
work further proposes three types of alignment metrics: (1) Human-feedback
approach. ImageReward [74], PickScore [28], and HPSv2 [73] finetune VLMs like
CLIP and BLIP on large-scale human ratings collected on generated images. (2)
GPT4-Vision-based approach. VIEScore [29] and GPT4-Eval [81] carefully
design a set of prompts for the proprietary GPT4-Vision [49] to output an image-
text alignment score. (3) Divide-and-conquer approach. This popular line of
methods [7,23,45,61,70] use LLMs such as ChatGPT to decompose texts into
simpler components for analysis. A notable technique within this framework is
Question Generation and Answering (QG/A), exemplified by TIFA [21], VQ2 [76],
and Davidsonian [6]. For example, TIFA decomposes a text prompt into several
simpler QA pairs and then outputs an alignment score as the accuracy of the
answers generated by a VQA model.

Visio-linguistic compositional reasoning. Recent neuro-symbolic meth-
ods like visual programming [16,22,63] also use LLMs like ChatGPT to decompose
complex visual tasks (described in natural language) into modular components.
For instance, VPEval [7] applies visual programming to compute image-text
alignment, using ChatGPT to invoke expert VLMs like image captioning [37]
and open-vocabulary detection [43] models to examine fine-grained visual details.
While visual programming achieves decent performance on classic benchmarks
like GQA [24] and NLVR [62], we find that they rely heavily on hand-crafted
in-context prompts (e.g., exemplar programs) and struggle on more challenging
compositional tasks like Winoground [65]. Lastly, our VQAScore can be viewed
as an extension of VisualGPTScore [39], which uses captioning models [37] to
calculate the generative likelihood of P (text|image).

3 Image-Text Alignment Using VQAScore

This section describes how we compute VQAScore for image-text alignment,
and introduces our CLIP-FlanT5 model that achieves the state-of-the-art.

Image-text alignment. Given an image i and a text t, we aim to compute
an alignment score S(i, t) ∈ R, where higher scores reflect greater image-text
similarity. Ideally, a model-predicted alignment score should closely match human
judgment. For example, given the text “the moon is over the cow”, an image
incorrectly showing the cow above the moon would likely receive a lower human
rating. Figure 3 provides such examples from the challenging Winoground [65]
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benchmark. However, this seemingly simple task challenges contrastive VLMs like
CLIP [25, 39,78], which fail to understand compositional text prompts involving
relations, attributes, and logical reasoning. Instead, we propose using recent
generative VLMs trained for visual-question-answering (VQA), which can reason
compositionally by generating answers based on images and questions.

Computing VQAScore. We calculate the alignment score directly from a
VQA model using a simple template that converts the text t to a question q(t):

t = The moon is over the cow
q(t) = Does this figure show "The moon is over the cow"?

Please answer yes or no.

Next, we compute the generative likelihood of “Yes” from the auto-regressive
answer decoder of an off-the-shelf VQA model (see Figure 1-a):

VQAScore(i, t) := P (“Yes”|i,q(t)) (2)

Improving VQAScore via CLIP-FlanT5. While Eq. (2) can be readily
computed using open-source models like LLaVA-1.5 [40], we improve VQAScore
by training an in-house VQA model that follows best practices in the literature.
Specifically, we find that popular VQA models [40, 41] are typically derived from
“decoder-only” LLM architectures like Llama-2 [66] that use a uni-directional
(auto-regressive) attention mechanism, where each token is influenced only by its
previous tokens, but not vice versa. However, literature in language modeling [8,64]
suggests that bidirectional encoder-decoders (where all tokens can influence each
other) outperform the uni-directional counterparts on reasoning-focused linguistic
tasks [5]. We argue that the architectural choice of image-question encoder
becomes even more critical for visio-linguistic reasoning. For example, the state-of-
the-art LLaVA-1.5 [40] places image tokens (MLP-projected CLIP visual tokens)
ahead of question tokens. This prevents question tokens from influencing the
preceding image tokens, which contradicts how humans process visual information
based on prompted tasks [20]. Although training a new bidirectional LLM
from scratch is not feasible due to substantial computational costs, we can
still improve VQAScore by replacing Llama-2 in LLaVA-1.5 with the state-of-the-
art bidirectional encoder-decoder FlanT5 [8] (see Figure 1-b for a comparison).
For a fair comparison, we adhere to the training recipe of LLaVA-1.5, including
the use of the same CLIP visual encoder, a modest 665K mixture of public
VQA datasets, and a two-stage finetuning procedure. Appendix D includes more
training details.

4 Experimental Results

This section outlines the experimental setup and results, highlighting VQAS-
core’s superior performance compared to baseline methods such as CLIPScore [17],
TIFA [21], and PickScore [28].
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Baseline methods. We compare VQAScore against five popular method
types: (1) VLM-based metrics (CLIPScore [17] and BLIPv2Score [37]); (2) VLMs
finetuned on human feedback (PickScore [28], ImageReward [74], and HPSv2 [73]);
(3) visual programming methods (VisProg [16], ViperGPT [63], and VPEval [7]);
(4) divide-and-conquer methods using VQA (TIFA [21], VQ2 [76], and Davidso-
nian [6]); (5) approaches using proprietary models like GPT4-Vision (GPT4V-
Eval [81] and VIEScore [29]). Appendix E describes all methods in detail.

Evaluating VQAScore on compositional image-text matching. We be-
gin with the two most challenging benchmarks, Winoground [65] and EqBen [68],
where each test sample has two (image, text) pairs. These benchmarks evaluate
image-text matching through binary retrieval tasks that identify the best caption
(from the pair of candidates) for a given image, and vice versa. Importantly,
the benchmark API requires algorithms to return a match score for each can-
didate (image, text) pair instead of a relative ranking. This means they can
be readily repurposed to evaluate image-text alignment. Compared to existing
alignment benchmarks [21], we find that these matching benchmarks (espe-
cially Winoground) include more challenging text prompts with compositional
structure (inspiring our own benchmarking efforts in Section 5). For example,
the prompt “someone talks on the phone angrily while another person
sits happily” requires the model to differentiate between two people (entities)
based on emotions (attributes) and actions (relations). Another prompt “three
white and two brown eggs” requires the model to count attribute-object pairs.
Figure 3 compares VQAScore and CLIPScore on random Winoground examples.
?? provides an in-depth analysis of the skills covered by these benchmarks.

VQA achieves SOTA on matching benchmarks. Table 1 shows that
VQAScore sets a new state-of-the-art on both benchmarks. Compared to baselines
(e.g., CLIPScore [17] and PickScore [28]) that perform at chance-level, our
VQAScore achieves 2x to 5x higher scores. Our results using open-source VQA
models (e.g., InstructBLIP [9] and LLaVA-1.5 [40]) can match the previous SOTA
method VQ2 [76] that uses the closed-source PaLI-17B [4] model, which was
trained on 40x more private data (over 20 billion images and texts). Crucially,
VQAScore based on our in-house CLIP-FlanT5 model surpasses all prior art,
including two recent methods [29,81] that use the proprietary (and expensive)
GPT4-Vision [49] to score image-text alignment . Moreover, our experiments
show that visual programming methods, including VisProg [16], ViperGPT [63],
and VPEval [7], fail at compositional image-text matching, despite utilizing
ChatGPT with expert VLMs [37, 43]. To fairly compare with divide-and-conquer
methods that also use VQA models, we evaluate VQAScore against them based
on the same VQA architectures, as demonstrated below.

End-to-end VQAScore outperforms divide-and-conquer methods.
For a fair comparison, we apply three popular open-source divide-and-conquer
methods (TIFA [21], VQ2 [76], Davidsonian [6]) with the same VQA models used
for VQAScore. These methods either carefully prompt ChatGPT or finetune open-
source LLMs like Llama-2 to decompose texts into simpler question-answer pairs.
However, we discover that they struggle with compositional texts. For example,
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Table 1: VQAScore achieves SOTA performance on challenging image-
text matching benchmarks that require advanced compositional reasoning.
We thoroughly ablate our proposed VQAScore with popular recent approaches on
Winoground [65] and EqBen [68]. We strictly adhere to the original evaluation protocols
and report text/image/group scores, with higher scores indicating better performance.
We describe these metrics in Appendix F. Note that our VQAScore (highlighted in
green) even matches or outperforms proprietary models (highlighted in gray) that
appear to be trained on much more data (such as PALI-17B [4] and GPT4-Vision [49]).

Method Models
Winoground EqBen

Text Image Group Text Image Group

Baselines

Random Chance – 25.0 25.0 16.7 25.0 25.0 16.7

Human Evaluation – 89.5 88.5 85.5 – – –

Based on vision-language models
CLIPScore [54] CLIP-L-14 27.8 11.5 7.8 35.0 35.0 25.0
BLIPv2Score [37] BLIPv2 43.3 21.3 17.5 48.6 43.6 35.0

Finetuned on human feedback
PickScore [28] CLIP-H-14 (finetuned) 23.8 12.5 6.8 35.7 39.3 23.6
ImageReward [74] BLIPv2 (finetuned) 42.8 15.3 12.8 37.9 36.4 26.4
HPSv2 [73] CLIP-H-14 (finetuned) 11.5 7.8 4.0 27.9 26.4 17.1

Based on visual programming

VisProg [16] ChatGPT, ViLT, OWL-ViT 3.5 3.5 3.5 7.9 7.9 7.9

ViperGPT [63] ChatGPT, CLIP, BLIP, GLIP 7.8 7.8 7.8 4.3 4.3 4.3

VPEval [7] ChatGPT, BLIP, GroundDINO 12.8 11.0 6.3 34.3 25.7 21.4

Divide-and-conquer via VQA
VQ2 [76] FlanT5, LLaVA-1.5 14.0 27.3 10.0 22.9 40.7 20.0
Davidsonian [6] ChatGPT, LLaVA-1.5 21.0 16.8 15.5 26.4 20.0 20.0

Based on proprietary models
TIFA [21,76] Llama-2, PaLI-17B 19.0 12.5 11.3 – – –

VQ2 [76] FlanT5, PaLI-17B 47.0 42.0 30.5 – – –

GPT4V-Eval [81] GPT4-Vision 44.5 49.0 36.3 42.9 40.0 35.0

VIEScore [29] GPT4-Vision 40.8 39.3 34.5 40.0 34.3 32.9

VQAScore (ours) using open-source VQA model
VQAScore InstructBLIP 44.5 42.8 28.5 49.3 58.6 38.6
VQAScore LLaVA-1.5 45.5 41.3 29.8 42.9 60.0 35.0

VQAScore (ours) using our VQA model
VQAScore CLIP-FlanT5 (Ours) 60.0 57.5 46.0 59.3 63.6 47.9

given “someone talks on the phone angrily while another person sits
happily”, Davidsonian [6] asks nonsensical questions like “is the someone talking
angrily?” and “is the someone talking on the phone?”. Similarly, VQ2 [76] asks silly
questions like “who talks with angrily on the phone?” and expects an answer of
“someone”. Additionally, we find it crucial to expose the answer likelihood [39,69],
which is less biased than generating multiple-choice answers as done by [6,21].
For instance, LLaVA-1.5 [40] biases towards answering “Yes” to 80% of the
questions should be answered with “No” on Winoground (with the questions
generated by Davidsonian [6]). ?? presents more analysis of these methods.
Table 2 confirms that our simpler VQAScore significantly outperforms the more
complex divide-and-conquer methods regardless of the underlying VQA models.

VQAScore can more effectively handle compositional text prompts.
For a detailed analysis, we tag each Winoground sample by its associated compo-
sitional reasoning skills. ?? describes the labeling policy and procedure. Table 3
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Table 2: Comparing VQAScore against divide-and-conquer methods using
the same VQA models. For a fair comparison, we apply both VQAScore and three
open-source divide-and-conquer methods (TIFA [21], VQ2 [76], and Davidsonian [6])
to the same underlying VQA architectures (InstructBLIP, LLaVA-1.5, and our CLIP-
FlanT5). These popular methods make use of large language models to decompose
compositional text prompts into simpler question-answer pairs for analysis, e.g., Llama-2
for TIFA, FlanT5 for VQ2, and ChatGPT for Davidsonian. However, they still struggle
on compositional text prompts and often generate nonsensical question-answer pairs
(more analysis can be found in Appendix E). Our end-to-end VQAScore (highlighted in
green) outperforms them all using a much simpler question-answer template.

VQA Model Method
Winoground EqBen

Text Image Group Text Image Group

– Random Chance 25.0 25.0 16.7 25.0 25.0 16.7

InstructBLIP-FlanT5-11B [9]

TIFA [21] 20.3 16.3 14.5 25.0 25.7 18.6
VQ2 [76] 19.0 26.3 11.3 20.0 39.3 15.7
Davidsonian [6] 18.3 15.3 14.0 22.1 17.9 15.7

VQAScore (ours) 44.5 42.8 28.5 49.3 58.6 38.6

LLaVA-1.5-13B [41]

TIFA [21] 22.8 18.5 15.5 30.0 30.0 21.4
VQ2 [76] 14.0 27.3 10.0 22.9 40.7 20.0
Davidsonian [6] 21.0 16.8 15.5 26.4 20.0 20.0

VQAScore (ours) 45.5 41.3 29.8 42.9 60.0 35.0

CLIP-FlanT5-11B (Ours)

TIFA [21] 26.5 19.3 16.0 28.6 23.6 18.6
VQ2 [76] 19.8 30.3 14.0 25.7 47.1 22.1
Davidsonian [6] 16.3 11.5 9.8 17.1 11.4 11.4

VQAScore (ours) 60.0 57.5 46.0 59.3 63.6 47.9

shows that VQAScore based on our CLIP-FlanT5 model significantly surpasses
CLIPScore by 5x in basic skills (e.g., attribute, scene, relation) and 10x in ad-
vanced skills (e.g., counting, comparison, differentiation, negation, universality).
Though trained on the same VQA data, our CLIP-FlanT5 (based on the 11B
FlanT5 model) consistently outperforms LLaVA-1.5 (based on the 13B Llama-2
model). We believe our model benefits from the bidirectional image-question
encoding and strong language capabilities of FlanT5, which has been finetuned
on over 400 complex QA datasets [8]. Appendix D demonstrates that VQAScore
can be improved by scaling up the language model and finetuning on VQA data.

Evaluating VQAScore’s agreement with human judgments. We now
test VQAScore on five text-to-image evaluation benchmarks (TIFA160 [21], Pick-
a-Pic [28], and DrawBench [58], EditBench [67], COCO-T2I [38]) to measure
its correlation (or agreement) with human judgments of alignment. In these
benchmarks, given a text prompt, humans rate each generated image on a 1-to-5
Likert scale or assign a binary match-or-not label. Additionally, we report on
an image-to-text evaluation benchmark Flickr8K [17], where each caption is
manually rated based on the image. We follow SeeTrue [76] to report AUROC on
DrawBench, EditBench, and COCO-T2I. For TIFA160 and Flickr8K, we evaluate
pairwise accuracy as advocated by Deutsch et al. [12] (EMNLP’23 outstanding
paper), since the original Kendall metric cannot handle ties common in human
ratings. We report other metrics (e.g., Pearson and Kendall) in Appendix F.
Due to the excessive noisy labels and NSFW content in the original Pick-a-pic
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Table 3: Fine-grained analysis on Winoground. We report group scores per skill
category. Note that each sample can naturally incorporate multiple skills. For instance, “a
white dog is on a brown couch” involves understanding both “attribute” and “spatial
relation”. Additionally, a more complex prompt like “six people wear blue shirts
and no people wear white shirts” requires higher-order reasoning (e.g., “counting”
and “negation”) along with other basic skills. We detail the skill definitions in Appendix
A. Notably, the “advanced” skills (e.g., logic and comparison) prove more difficult
(indicated by lower overall scores) compared to the “basic” skills. Our CLIP-FlanT5-
based VQAScore excels across all skills – 5x better than CLIPScore on “basic skills”
and 10x better on “advanced skills”.

Method Attribute Scene
Relation

Overall
Spatial Action Part

CLIPScore (ViT-L-14) 13.0 40.0 8.5 11.1 11.5 9.9

VQAScore (InstructBLIP) 52.2 70.0 41.4 50.0 50.0 48.1

VQAScore (LLaVA-1.5) 53.6 80.0 47.6 27.8 57.7 47.3

VQAScore (CLIP-FlanT5) 59.4 80.0 57.3 44.4 69.2 57.2

Method Count Differ Compare
Logical

Overall
Negate Universal

CLIPScore (ViT-L-14) 7.8 2.3 2.0 0.0 0.0 4.4

VQAScore (InstructBLIP) 37.3 11.6 22.4 40.0 0.0 20.4

VQAScore (LLaVA-1.5) 29.4 20.9 16.3 40.0 0.0 24.1

VQAScore (CLIP-FlanT5) 54.9 44.2 49.0 60.0 73.3 51.1

(a) Basic skills (excluding samples requiring advanced skills) (b) Advanced skills (including samples requiring basic skills)

dataset [28], we manually filter its testset, resulting in a clean subset of 100
samples (each has one prompt and two images) for evaluating binary accuracy.

VQAScore shows superior correlation with human judgments. Ta-
ble 4 shows that VQAScore sets a new SOTA across all text-to-image alignment
benchmarks, outperforming methods that finetune using costly human feed-
back [28, 73, 74] or rely on proprietary models [29, 76]. Appendix F also shows
that VQAScore achieves a new SOTA on the image-to-text alignment benchmark
Flickr8K, outperforming methods like CIDEr and RefCLIPScore that require
additional reference captions [17]. Lastly, we highlight that the text prompts
in these benchmarks lack the advanced compositional structure of real-world
prompts (e.g., Winoground [65]). This motivates us to develop a benchmark with
more challenging and realistic text prompts, which we present in Section 5.

5 GenAI-Bench for Text-to-Visual Evaluation

In this section, we introduce GenAI-Bench, a more challenging benchmark
with compositional text prompts to evaluate both (1) text-to-visual generation
models and (2) vision-language alignment metrics. Below, we present a preliminary
study on GenAI-Bench, with further analysis in [33,34].

Collecting GenAI-Bench. Inspired by the compositional structure of real-
world (user-written) prompts [48,65], GenAI-Bench gathers text prompts covering
essential visio-linguistic compositional reasoning skills, especially advanced ones
(e.g., comparison, counting, logic) that are not fully explored in previous bench-
marks, e.g., PartiPrompt [77], DrawBench [58], and T2I-CompBench [23]. First,
we collaborate with graphic designers who routinely use text-to-image tools like
Midjourney [48] to compile a comprehensive set of skills by surveying recent
benchmarks [23, 58, 77] and real-world prompts [48]. Next, we collect prompts
from these designers and ensure the prompts are relevant for real-world usage
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Table 4: VQAScore on image-text alignment benchmarks that score agree-
ment with human judgments of alignment. We show AUROC for DrawBench,
EditBench, and COCO-T2I; pairwise accuracy [12] for TIFA160; and binary accuracy
for Pick-a-Pick, with higher scores indicating better performance for all metrics. VQAS-
core (with CLIP-FlanT5) outperforms all prior art across all benchmarks. We find
texts in these alignment benchmarks to lack the compositional structure compared to
user-written prompts in benchmarks like [65], motivating us to create GenAI-Bench.

Method Models DrawBench EditBench COCO-T2I TIFA160 Pick-a-Pic

Based on vision-language models
CLIPScore [17] CLIP-L-14 49.1 60.6 63.7 54.1 76.0
BLIPv2Score [37] BLIPv2 60.5 68.0 70.7 57.5 80.0

Finetuned on human feedback
PickScore [28] CLIP-H-14 (finetuned) 72.3 64.3 61.5 59.4 70.0
ImageReward [74] BLIPv2 (finetuned) 70.4 70.3 77.0 67.3 75.0
HPSv2 [73] CLIP-H-14 (finetuned) 63.1 64.1 60.3 55.2 69.0

Divide-and-conquer via VQA
VQ2 [76] FlanT5, LLaVA-1.5 52.8 52.8 47.7 48.7 73.0
Davidsonian [6] ChatGPT, LLaVA-1.5 78.8 69.0 76.2 54.3 70.0

Based on proprietary models
TIFA [21,76] Llama-2, PaLI-17B 73.4 67.8 72.0 – –

VQ2 [76] FlanT5, PaLI-17B 82.6 73.6 83.4 – –

GPT4V-Eval [81] GPT4-Vision – – – 64.0 74.0

VIEScore [29] GPT4-Vision – – – 63.9 78.0

VQAScore (ours) using open-source VQA models
VQAScore InstructBLIP 82.6 75.7 83.0 70.1 83.0
VQAScore LLaVA-1.5 82.2 70.6 79.4 66.4 76.0

VQAScore (ours) using our VQA model
VQAScore CLIP-FlanT5 (Ours) 85.3 77.0 85.0 71.2 84.0

and free from subjective or toxic content, e.g., malicious web users often craft
prompts with NSFW content [28]. Appendix B discusses the issues we found
in previous benchmarks [23, 28, 77]. Lastly, we carefully tag each prompt with
all its associated visio-linguistic skills, in contrast to previous benchmarks that
either release no tags [28,44,73] or limit them to one or two [23,58,77]. The final
GenAI-Bench contains 1,600 text prompts with over 5,000 human-verified skill
tags. Appendix A details the skill definitions.

GenAI-Bench challenges leading text-to-visual models. Figure 4-a
shows that state-of-the-art image and video generative models, such as DALL-E
3 [1], Stable Diffusion (SD-XL) [56], Pika [53], and Gen2 [15], struggle with
GenAI-Bench’s compositional text prompts that require higher-order reasoning
such as comparison, differentiation, counting, and logic. Figure 4-b compares
the averaged VQAScore (based on CLIP-FlanT5) of six image and four video
generative models. We compute VQAScore for video-text pairs by averaging
across all video frames as described in Section 6. We separately analyze each
model’s performance on “basic” and “advanced” prompts. Our analysis reveals
significant improvements in text-to-visual generation for “basic” prompts from
2022 to 2023; however, improvements are less pronounced for “advanced” prompts,
reflected in lower VQAScores across models. Nonetheless, we find that models
with stronger language capabilities generally perform better. For example, one
of the best open-source models DeepFloyd-IF [11] uses strong text embeddings
from the T5 language model [55] rather than CLIP’s, which do not encode
compositional structure [25]. Similarly, the best closed-source model DALL-E
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3 [1] does not directly train on noisy web text captions but instead improves
them using captioning models. Finally, we anticipate significant advancements in
open-source and video-generative models (e.g., SD-XL [56] and Gen2 [15]), which
currently lag behind their closed-source and image-generative counterparts.

(a) Examples of GenAI-Bench that challenge top generative models (b) GenAI-Bench leaderboard

Fig. 4: GenAI-Bench. Figure (a) shows example prompts and associated skill tags
from GenAI-Bench. The advanced compositional prompts of GenAI-Bench pose greater
challenges to leading image and video generative models. Figure (b) presents the
GenAI-Bench performance of 10 open/closed-source generative models. For each model,
we separately show the averaged VQAScore for basic (in gray) and advanced (in blue)
prompts. We find that (1) “advanced” prompts challenge all models more, (2) models
that use stronger text embeddings or captions (e.g., DALL-E 3 [1] and DeepFloyd [11])
achieve the best results, (3) open-source and video generative models [15,56] still lag
behind their closed-source and image counterparts [1,48], indicating potential for further
improvement. ?? confirms that VQAScore agrees with collected human ratings.

VQAScore agrees with human judgments on GenAI-Bench. We hire
three annotators to rate the image-text (or video-text) pairs on a 1-5 Likert scale,
following the annotation protocol of [50]. In this work, we report on a subset of 527
prompts and collect 15,810 ratings across the ten generative models, significantly
exceeding the scale of human evaluation in previous work [21, 58]. We extend
our analysis to all 1,600 prompts in [33]. Appendix B confirms that VQAScore
achieves the state-of-the-art correlation with human judgments on GenAI-Bench.
We release all human ratings to support the development of alignment metrics.

6 Extending VQAScore to Video and 3D

We now use VQAScore to evaluate the alignment of text-to-video/3D models.
Video and 3D alignment benchmarks. For video-text alignment, we use

the EvalCrafter [44] benchmark with 1-5 human Likert scales collected by [70]. For
3D-text alignment, we adopt the StanfordT23D benchmark [72], which released
3D assets but not human ratings. As such, we collect over 1,000 human 1-5 Likert
scales on six text-to-3D models. We report Pairwise accuracy [12], Pearson, and
Kendall on both benchmarks.
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VQAScore achieves SOTA on video/3D-text alignment. To compute
VQAScore using VQA models trained solely on images, we uniformly sample
video frames across time and 2D views from 3D assets across camera angles.
Table 5-a shows that our VQAScore surpasses the divide-and-conquer approach
T2VScore-A [70] based on GPT4-Vision. Table 5-b shows that VQAScore exceeds
popular text-to-3D metrics [72] such as CLIPScore [17] and PickScore [28]. In
Appendix F, we show it is possible to achieve near-optimal performance using as
few as 4 video frames (or 9 views), in contrast to the 36 video frames (or 120
views) provided by the original benchmarks.

Table 5: Evaluating VQAScore on text-to-video/3D benchmarks. We uniformly
sample frames from videos and rendered views from 3D assets to calculate the average
VQAScore (and other metrics). We report Pairwise accuracy, Pearson, and Kendall,
with higher scores indicating better performance for all metrics. VQAScore surpasses
popular video/3D metrics like CLIPScore [17], PickScore [28], and methods based on
the proprietary GPT4-Vision [70] on both benchmarks.

Method
Pairwise
Acc [12]

Old Metrics

Pearson Kendall

Baselines reported in [70]

CLIPScore 59.9 34.3 23.6

X-CLIPScore 56.9 25.7 17.5

BLIP-BLEU 53.0 15.2 10.4

T2VScore-A reported in [70]

Otter-Video – 18.1 13.4

Video-LLaMA – 28.8 20.6

mPLUG-OWL2-Video – 39.4 28.5

mPLUG-OWL2-Image – 35.8 25.7

InstructBLIP – 34.2 24.6

T2VScore-A w/ GPT4-V [70]

GPT4-Vision 61.4 48.6 36.0

VQAScore w/ open-source models

InstructBLIP 65.8 46.5 35.8

LLaVA-1.5 63.7 44.9 31.4

VQAScore w/ our model

CLIP-FlanT5 (Ours) 66.5 49.1 37.1

Method
Pairwise
Acc [12]

Old Metrics

Pearson Kendall

Baselines

CLIPScore [17] 61.0 48.1 32.6

BLIPv2Score [37] 56.6 34.3 23.4

Finetuned on human feedback

ImageReward [74] 66.3 57.1 43.8

PickScore [28] 60.1 41.3 30.8

HPSv2 [73] 55.9 31.5 21.9

VQAScore w/ open-source models

InstructBLIP 68.0 59.5 47.5

LLaVA-1.5 64.9 55.8 40.8

VQAScore w/ our model

CLIP-FlanT5 (Ours) 68.6 64.3 48.7

(a) Text-to-video benchmark (T2VScore [70]) (b) Text-to-3D benchmark (StanfordT23D [72])

7 Conclusion

Limitations and future work. While VQAScore excels in vision-language
alignment, it does not evaluate other critical aspects of generative models [32,52],
such as toxicity, bias, aesthetics, video motion, and 3D physics. We posit that
VQAScore can evaluate these aspects if it were finetuned on relevant data.

Summary. We introduce VQAScore, a simple method surpassing current
alignment metrics in evaluating text-to-image/video/3D models. VQAScore based
on our CLIP-FlanT5 model offers a strong alternative to CLIPScore, especially
on compositional text prompts. We introduce a more challenging GenAI-Bench to
evaluate both text-to-visual generative models and automated alignment metrics.
We hope our novel metric and benchmark will advance the scientific evaluation
of generative models.
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