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S1 Overview

This supplementary document provides more discussions, implementation de-
tails, and further results that accompany the paper:

– Section S2 explains the uniqueness of our method by comparing with the
current NeRF ownership claiming methods under NeRF recolorizations.

– Section S3 explains the effectiveness of applying the Laplace Cumulative
Distribution Function (CDF) with learnable parameters.

– Section S4 introduces the details of our reference colors and visualizes their
corresponding recolorization results for NeRF. These recolorization methods
are applied to different NeRF architectures to validate ownership for the
recolorized NeRF.

– Section S5 presents the implementation details of our method, including the
network architectures and the training process.

– Section S6 provides additional results, including additional qualitative results
of the main paper.

S2 Uniquesness

As shown in Fig. S1, we demonstrate the uniqueness of using our Geometry-
Sticker to claim ownership of a recolorized NeRF model. The current owner-
ship protection methods such as CopyRNeRF [5] and StegaNeRF [3] can only
claim the ownership when recolorization is not conducted. However, since the
recent developments of NeRF recolorization methods [1, 2, 7], if a model owner
Bob creates a NeRF model and watermark the model with CopyRNeRF [5] or
StegaNeRF [3], the hidden ownership information could be vulnerable when a
malicious user applies unauthorized recolorization on the NeRF model. Our Ge-
ometrySticker can be robust under different recolorizations. A model owner Alice
can watermark her NeRF model by GeometrySticker, which can keep the hid-
den information consistent under different recolorizations and reliably extract
the binary message from the recolorized NeRF renderings.
⋆ Corresponding author.
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Fig. S1: Illustration of the uniqueness of our method. The first row illustrates the NeRF
model owner Bob claims the ownership by using CopyRNeRF [5] or StegaNeRF [3].
However, when a malicious user applies unauthorized recolorization on Bob’s model,
the hidden ownership information can be corrupted and mismatch the original secret
messages. The second row illustrates the NeRF model owner Alice claims the ownership
by GeometrySticker. The NeRF model watermarked by GeometryStricker can be robust
to different recolorizations. Even if a malicious user applies unauthorized recolorization
on Alice’s model, the hidden ownership information can still be reliably extracted and
match the original secret messages.

S3 Learnable Laplace CDF

We provide more ablation studies for our learnable Laplace CDF used for the
selection of cover medium. As shown in Fig. S2, we calculate the mean µ and
deviation β of the geometry values and use the Laplace distribution to model
the geometry values distribution of a selected scene. As shown in Fig. S2 (a),
attaching messages to all NeRF geometry values can cause obvious distortion
since the low geometry values take up the majority of the entire NeRF geometry.
We apply the Laplace CDF with the fixed parameters µ and β and the CDF value
ψ = 0.99 as the threshold to filter large geometry values for messages attachment.
As shown in Fig. S2 (b), applying Laplace CDF with calculated parameters can
reduce perturbation but still show noticeable distortion. As shown in Fig. S2
(c), our learnable Laplace CDF can adaptatively find an optimized deviation
parameter β to adjust the CDF threshold (ψ = 0.99) for the selection of cover
medium and finally make the perturbation caused by the attached messages
imperceivable.



Enabling Ownership Claim of Recolorized Neural Radiance Fields 3

(a)

(b)

(c)

Fig. S2: Message attachment into NeRF geometry values by applying Laplace CDF
with different deviation parameters. The geometry values distribution is modeled by a
Laplace distribution with the mean µ and deviation β. (a) indicates directly attaching
messages on all geometry values can cause obvious distortion. (b) indicates applying
Laplace CDF with fixed µ and β can reduce perturbation but still show noticeable
distortion. (c) indicates applying Laplace CDF with a learnable deviation parameter
β can find an optimized threshold for filtering 3D points and make the distortion
imperceivable.

S4 More details on recolorization

We select 10 reference colors from the Standard sRGB / Rec.709 color gamut
including green, yellow, orange, red, pink, megenta, purple, blue, dodger blue,
cyan. We recolorize the NeRF models by using colors’ name for the CLIP-based
method or assigning RGB values for the palette-based method. We also convert
the NeRF renderings into HSV format to recolorize the images by changing the
hue channel. As shown in Fig. S3a, the palette-based method can precisely re-
colorize NeRF by editing the palette’s colors to the reference colors. As shown
in Fig. S3b, though the CLIP-based method can roughly conduct the recoloriza-
tion via the text prompts, the results are uncontrollable since the recolorization
under the same prompts may have some differences as shown in Fig. S3d. Thus,
it is hard to get the same results for an unwatermarked NeRF model and a wa-
termarked NeRF model. As shown in Fig. S3c, color-jittering is an image-level
recolorization by converting images into HSV format and shifting the intensity
of the hue channels in a scale of [−0.5, 0.5]. For a fair comparison across different
baselines, we only use color-jittering in our reconstruction quality computation
for PSNR/SSIM and LPIPS in the main manuscript Table 1, since CLIP-based
recolorization is uncontrollable and palette-based recolorization is not applicable
to CopyRNeRF [5] and StegaNeRF [3]. All the testing set images in the main
manuscript Section 5.1 are recolorized for computing reconstruction quality or
message extraction bit accuracies.
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(d) CLIP-based recolorization with the same text prompt "purple" can have different results.

Fig. S3: Recolorization results by using different methods: (a) is the Palette-based
recolorization. The first column is the reference image with the original color palette,
and others are recolorized by assigning reference colors to different base colors in the
color palette. (b) is the CLIP-based recolorization. The first column is the reference
image, and the others are recolorized by using the colors’ name as the text prompt. (c)
is the color-jittering recolorization. The first column is the original image and others are
recolorized by changing the hue of the original image by shifting the intensities with
the range of [−0.5, 0.5] in the hue channel. (d) indicates CLIP-based recolorization
with the same text prompt can have different results.
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(a) PSNR=34.41, bit accuracy=100% (b) PSNR=36.91, bit accuracy=100%

(c) PSNR=31.62, bit accuracy=100% (d) PSNR=30.70, bit accuracy=100%

Fig. S4: Additional results for different scenes. The message length is 48 bits. We vi-
sualize the residual maps between the unwatermarked renderings and the watermarked
renderings. From left to right: unwatermarked, GeometrySticker, residual maps (×10).

S5 Implementation details

S5.1 Network achitectures

In our proposed GeometrySticker, the message sticker Θm is an MLP layer. In
specific, it has 80 input channels, which are a concatenation of the message M
in 48 dimensions and positional encoding γx(x) in 32 dimensions. The message
sticker Θm has two hidden layers with 64 dimensions and 1-dimensional output
for the message embedding m. For the message extractor Dχ, we use the VGG16
network [6] as the backbone feature extractor. An average pooling is then per-
formed, followed by a final linear layer with a fixed output dimension Nb to
produce the continuous predicted message M̂. For the watermark classifier Cϕ,
we use a similar architecture with the message extractor Dχ with the VGG16
network [6] as the feature extractor followed by an average pooling layer and a
final 1-dimensional layer for classification.

S5.2 Training process

The training process consists of two stages. In the first stage, we establish a
NeRF scene by optimizing Θσ and Θc to get the geometry and color values of
the scene according to Lcont. In the second stage, we keep the geometry MLP
Θσ and color MLP Θc unchanged and train the message sticker Θm and Laplace
CDF with the learnable deviation parameter β for message attachment and key
points selection. Meanwhile, we train a message extractor Dχ to extract the
hidden message from the 2D watermarked renderings. In addition, we also train
the watermarking classifier Cϕ to classify whether the NeRF renderings contain
watermarkings or not. The Lcont is measured by the mean squared error between
the watermarked rendering images and the ground truth images. The Lmsg is a
binary cross entropy loss calculated between the embedded messages M and the
extracted messages M̂. The Lcls is a binary cross entropy loss calculated between
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Fig. S5: Residual maps for NeRF renderings before and after palette-based recoloriza-
tions. The first row shows the residual maps before palette-based recolorizations. The
second row shows the residual maps after palette-based recolorizations. Each residual
map shows the differences between the unwatermarked renderings and watermarked
renderings by GeometrySticker.

the watermarked rendering image Iw and the unwatermarked rendering images
Iu. Lsparse is the sparsity loss [4] to force the CDF value ψ to be close to either
zero or one. The network Θm and parameters χ, ϕ and β are optimized with
the objective functions Lcont, Lmsg, Lcls and Lsparse. In every training loop, we
attach the message M with a random camera pose and apply 2D distortions on
the watermarked rendering images.

S6 Additional results

We provide additional results to validate the effectiveness of our Geometry-
Sticker. As shown in Fig. S4, we evaluate the qualitative and quantitative re-
sults of the reconstruction quality and bit accuracies of our GeometrySticker on
the selected scene. The watermarked rendered images have high reconstruction
quality with minimal discrepancies compared with the original rendered images.
From the residual maps, we can observe that the hidden messages are sparsely
embedded into the geometrical structure of the object or scene.

We further validate the consistency of our GeometrySticker under differ-
ent recolorizations. As shown in Fig. S5, the message perturbation attached by
GeometrySticker remains consistent from non-recolorized NeRF models to recol-
orized NeRF models. These results show our method successfully embeds secret
messages into the geometry representation and disentangles them with the color
representation, thus claiming ownership under various NeRF recolorizations.

References

1. Gong, B., Wang, Y., Han, X., Dou, Q.: RecolorNeRF: Layer Decomposed Radi-
ance Field for Efficient Color Editing of 3D Scenes. In: Proceeding of the ACM
International Conference on Multimedia (MM) (2023) 1



Enabling Ownership Claim of Recolorized Neural Radiance Fields 7

2. Kuang, Z., Luan, F., Bi, S., Shu, Z., Wetzstein, G., Sunkavalli, K.: PaletteNeRF:
Palette-based Appearance Editing of Neural Radiance Fields. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognision (CVPR)
(2023) 1

3. Li, C., Feng, B.Y., Fan, Z., Pan, P., Wang, Z.: StegaNeRF: Embedding Invisible
Information within Neural Radiance Fields. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV) (2023) 1, 2, 3

4. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural
Volumes: Learning Dynamic Renderable Volumes from Images. ACM Transactions
on Graphics (ToG) (2019) 6

5. Luo, Z., Guo, Q., Cheung, K.C., See, S., Wan, R.: CopyRNeRF: Protecting the
CopyRight of Neural Radiance Fields. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) (2023) 1, 2, 3

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014) 5

7. Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: Text-and-Image Driven
Manipulation of Neural Radiance Fields. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognision (CVPR) (2022) 1


	Supplementary Material:  GeometrySticker: Enabling Ownership Claim of Recolorized Neural Radiance Fields

