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Abstract. Recent progress in large-scale pre-training has led to the de-
velopment of advanced vision-language models (VLMs) with remarkable
proficiency in comprehending and generating multimodal content. De-
spite the impressive ability to perform complex reasoning for VLMs, cur-
rent models often struggle to effectively and precisely capture the compo-
sitional information on both the image and text sides. To address this, we
propose FineMatch, a new aspect-based fine-grained text and image
matching benchmark, focusing on text and image mismatch detection
and correction. This benchmark introduces a novel task for boosting and
evaluating the VLMs’ compositionality for aspect-based fine-grained text
and image matching. In this task, models are required to identify mis-
matched aspect phrases within a caption, determine the aspect’s class,
and propose corrections for an image-text pair that may contain between
0 and 3 mismatches. To evaluate the models’ performance on this new
task, we propose a new evaluation metric named ITM-IoU for which
our experiments show a high correlation to human evaluation. In addi-
tion, we also provide a comprehensive experimental analysis of existing
mainstream VLMs, including fully supervised learning and in-context
learning settings. We have found that models trained on FineMatch
demonstrate enhanced proficiency in detecting fine-grained text and im-
age mismatches. Moreover, models (e.g., GPT-4V, Gemini Pro Vision)
with strong abilities to perform multimodal in-context learning are not as
skilled at fine-grained compositional image and text matching analysis.
With FineMatch, we are able to build a system for text-to-image gen-
eration hallucination detection and correction. Resources are available
at https://hanghuacs.github.io/finematch/.

Keywords: Pre-trained Vision-Language Models · Aspect-based Image
and Text Analysis · Compositionality

1 Introduction

Pretrained vision-language models, such as GPT-4V [1], LLaVA [51], MiniGPT-
4 [7], and BLIP [22, 23], have demonstrated impressive ability to perform com-
plex reasoning. Benefiting from large pretrained VLMs, a series of VLM-based

https://hanghuacs.github.io/finematch/
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Fig. 1: Given a text and image pair, FineMatch enables VLMs to detect the mis-
matched aspects and the aspect classes in the caption and then give the corre-
sponding corrections.

methods [14,17,24,54,60] have emerged and achieved remarkable results on var-
ious vision-language (VL) tasks. However, contemporary state-of-the-art VLMs
still struggle with fine-grained compositional information understanding [19,61].
Prior works have pointed out that pretrained VLMs face challenges in compre-
hending fine-grained visual and textual compositional information [9, 61]. This
issue poses a significant limitation to the reliability and performance of VLMs.

In recent years, there has been a growing focus on evaluating and improving
the compositionality in large VL models [9,35,36]. Most of these approaches focus
on constructing hard negative text-image pairs to evaluate the models’ compo-
sitionality [13, 31, 50, 56, 61, 65]. These evaluations typically require models to
identify the hard negative samples at the sentence level but ignore evaluating
the model’s capability to localize the mismatched phrases and provide the corre-
sponding corrections. Nevertheless, evaluating the compositionality of pretrained
VL models from the perspective of sentence level may seem almost too trivial a
task [9]. Additionally, research into the ability to identify and rectify discrepan-
cies between images and text has been overlooked. Based on this background,
we propose FineMatch, a new challenging benchmark for boosting VLMs’
ability to identify and address the fine-grained discrepancies between visual and
textual data.

With FineMatch, we analyze and address the semantic discrepancies be-
tween visual and textual data from four aspects: Entity, Relation, Attribute,
Number. And we provide examples for these four aspects in supplementary
material. We build FineMatch data from both the image side and text side,
aggregating data from multiple sources. The FineMatch benchmark comprises
49,906 high-quality, human-annotated image-text pairs, distributed as 43,906 in
the training set, 1,000 in the validation set, and 5,000 in the test set. This data
originates from various sources, including: GPT-Synthesized Text Data, Re-
trieved Image and Text Data, and Diffusion Model-Generated Image



FineMatch 3

Data. Each image-text pair encompasses a varying number of mismatched as-
pects, ranging from 0 to 3. The collection methods for each data source are
described in Section 3.

To evaluate the ability to fine-grained text and image mismatch analysis of
pretrained VLMs, we conduct experiments in both supervised learning and in-
context learning settings. To verify the rationality of our proposed benchmark,
we also provide the human performance results on the FineMatch test set.

Our main contributions are three-fold:

– We propose a novel task for aspect-based fine-grained image and text mis-
match detection and correction. To support this endeavor, we have con-
structed a large-scale dataset FineMatch with human annotations tai-
lored to the proposed task. We put forth a new evaluation metric, ITM-IoU,
which evaluates model predictions against ground truth on both the char-
acter and semantic levels. The experimental results show a high correlation
between the ITM-IoU and human evaluation.

– We evaluate various state-of-the-art pre-trained VL models on our proposed
benchmark. The empirical results show that training on FineMatch can
effectively improve the models’ capability of identifying and rectifying text
and image mismatches.

– With FineMatch, we are able to build a novel and simple self-correction
text-to-image generation system, which can detect the detailed mismatch
information between a generated image and text prompt and then automat-
ically generate image editing instructions to edit the image to be semanti-
cally consistent with the text prompt. The generation examples indicate the
system can effectively reduce hallucinations in text-to-image generation.

2 Related Work

2.1 Compositionality Evaluation

Compositional image and text understanding is a critical capability for VLMs.
Research indicates that VLMs struggle with distinguishing the hard negative
examples, i.e., image text pairs that mismatch in at least one aspect (e.g., at-
tribute, relation), since they have little incentive to learn to encode composition-
ality during contrastive pretraining [61]. Moreover, finetuning with generated
hard negative examples can improve the performance of language models [13].
In recent years, numerous benchmarks have been proposed to assess the capa-
bility of VLMs for fine-grained compositional vision and language reasoning.
VL-CheckList [65] is an explainable framework that generates fine-grained and
disentangled evaluation reports about VLMs. ARO [61] evaluate models for fine-
grained relation, attribution, and order understanding. Winoground [50] is a task
for visio-logic compositional reasoning. SUGARCREPE [13] aims to remove the
artifact bias in model-synthesized visual compositional understanding evalua-
tion benchmarks. Furthermore, there are several other benchmarks for composi-
tionality evaluation, including SeeTRUE [56], CREPE [31], Cola [41], and T2I-
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CompBench [18], etc. However, there are no VL compositionality benchmarks
for aspect-based fine-grained text and image match detection and correction.

2.2 Pretrained Vision-Language Models

Large pretrained VL models such as OFA [53], BEiT-3 [55], CoCA [59], and
mPlug [57] have successfully facilitated many cross-modal downstream tasks.
CLIP [38] and its following works [23,33,44] learn to align image and text features
through contrastive learning objectives on large-scale image-text pairs. BLIP [22,
23], LLaVA [28], and MiniGPT4 [7] show promising results by connecting vision
encoders and LLMs through a compact intermediary model. These pretrained VL
models with a stable fine-tuning strategy [15,16] can be easily adapted to a new
downstream task. In addition, GPT-4V [34], Flamingo [3], and Emu2 [48] show
strong abilities in zero-shot learning and multimodal in-context learning. Despite
the remarkable achievements of large pretrained VL models, they struggle with
capturing and understanding the fine-grained compositional information present
in both text and images. The goal of this study is to provide a benchmark for
evaluating and boosting the compositionality of pretrained VL models.

3 Aspect-based Fine-grained Image and Text Mismatch
Analysis

3.1 Task Definition

FineMatch contains two subtasks: (1) Mismatch Detection (MD); (2) Mis-
match Detection & Correction (MD&C). Let D = {Ii, Ci, Pi}|D|

i=1 repre-
sents the dataset. (Ii, Ci) is the image and text pair, and Pi = {cj , pj , oj}Mj=1

is the mismatched aspects representation, where cj is the aspect class, pj is the
aspect phrase that is extracted from the caption Ci, oj is the corresponding
correction, M is the number of mismatched aspect. Given an image-text pair
(Ii, Ci), for the Mismatch Detection task, the models need to predict a set of tu-
ples that contains the mismatched phrases in the captions and the corresponding
class.

(1)MD(Ii, Ci) = {(cj , pj)}Mj=1

For the Mismatch Detection & Correction task, the models need to predict a set
of triplets that contains the mismatched phrases, the class of the phrase, and
the suggested corrections.

(2)MD&C(Ii, Ci) = {(cj , pj , oj)}Mj=1

FineMatch also contains the data for which the caption matches the image.
In this case, the models’ output should be None.
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Fig. 2: Aspect graph parsing and node replacement for GPT-Synthesized text data.

3.2 GPT-Synthesized Text Data with Aspect Graph Parsing and
Node Replacement

Data Generation For the GPT-Synthesised text data, we generate mismatched
captions via aspect graph parsing and node replacement. To extract fine-grained
compositional sub-phrases from the captions, we parse the captions into aspect
graphs using In-Context Learning (ICL) with GPT-4. As depicted in Figure 2,
an aspect graph consists of nodes representing aspect entities and edges illustrat-
ing the relationships between these entities, with each node being atomic. Then,
we prompt GPT-4 to randomly replace the nodes with the counterfactual de-
scriptions while maintaining the same Part of Speech (POS) tag with the initial
nodes. Subsequently, the aspect graphs are translated back into new captions.
This approach enables us to create mismatched captions without changing the
structure of the initial captions. We filter the generated captions with the CLIP
score, to remove any mismatched captions that are significantly incongruent with
the images.

Data Debiasing Previous work [13] pointed out that the rule-based mis-
matched caption generation procedures may introduce two major types of unde-
sirable artifacts: (1) nonsensible artifacts (irrational contents), and (2) non-fluent
artifacts (grammar issues). Additionally, the significance of the semantic gap be-
tween mismatched captions and their associated images is another artifact bias
for the generated data, making these captions easy to discern by models. To fix
these biases and ensure the quality of the GPT-Synthesised text data, we first
use the combined Vera score [29], grammar score [32], and CLIP score [38] to
filter the data. This approach allows us to exclude examples that exhibit gram-
matical errors, contradict common sense, or present significant discrepancies
between the image and caption. Subsequently, the filtered data is annotated by
human experts. In the annotation, the workers are required to check and revise
the GPT-synthesised captions and the corresponding mismatched aspects. The
quality analysis indicates this aspect-graph parsing and node-replacing method
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combined with human annotation can effectively reduce the artifact biases in
the GPT-synthesised data.

3.3 Retrieved Image-Text Data

The semantic discrepancy between text queries and images is a common issue
in text-to-image retrieval systems. We can utilize this property of text-to-image
retrieval systems to obtain the mismatched text and image pairs. We select
text queries with rich compositional structures from various datasets, including
NoCaps [2] and WizViz [12]. To get the text queries with rich compositional in-
formation, we first parse each text query into a constituency tree using syntactic
parsing tools SpaCy and then filter the queries according to the depth of the
tree. Queries with a deeper constituency tree indicate the more complex syntax
of the sentence, and these sentences contain more compositional information. We
sample 10k diverse and complex queries for image retrieval. The retrieved im-
ages source include: LAION-400M [43], COYO-700M [5], and Smithsonian Open
Access [45]. We first use the ViT-G/14 CLIP model with the weight from Open
CLIP [20] to retrieve 10 candidates from the image datasets and then filter the
images with the combination of aesthetic score, similarity score, and image size.
We finally obtain 10K high-quality text and image pairs for human annotation.

3.4 Stable Diffusion Generated Image Data

The text query comes from T2I-CompBench [18], a benchmark for compositional
text-to-image generation. All the text queries in the benchmark are meticulously
designed in 3 categories (attribute binding, object relationships, and complex
compositions). We use the text queries from the T2I-CompBench training set
to prompt Stable Diffusion 2.1 [42] to generate images. We finally obtain 2.5K
high-quality text and image pairs for human annotation.

3.5 Human Annotation

To standardize the labeling scheme across different data sources and ensure
data quality while eliminating potentially harmful content and addressing ethical
concerns, we employ a consistent annotation team composed of the same group
of workers. The annotation interfaces of different sources of data are shown in
Appendix Section 7.

3.6 Comparison of FineMatch with Previous Works

We summarize the novelty of our work compared with previous works. Our
work introduces a novel task centered on aspect-based, fine-grained detection
and correction of text and image mismatches. Previous research mainly focuses
on evaluating the pre-trained models’ ability to identify the hard negative ex-
amples [13, 31, 61] via retrieval accuracy and ignores evaluating models’ ability
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Table 1: Comparison of Different Datasets

Benchmark # Images-Text Pair Fine-grained Mismatch Detection & Correction Human Annotation Multiple Source/Domain

ARO [61] 28,748 ✗ ✗ ✗

SUGARCREPE [13] 7512 ✗ ✔ ✗

Winoground [50] 800 ✗ ✔ ✗

CREPE [31] 370,000 ✗ ✗ ✔

VL-Checklist [65] 410,000 ✗ ✗ ✔

SeeTrue [56] 31,855 ✗ ✔ ✔

FineMatch 49,906 ✔ ✔ ✔

to detect which part of the text is mismatched with the image and correct the
mismatched aspects. Moreover, earlier studies, such as ARO [61], predefined the
instance classes and collected images with 48 relations and 117 attribute pairs,
thereby constraining the diversity of instances. In contrast, our proposed bench-
mark achieves the open set in text and image mismatch detection. Furthermore,
previous works that perform fine-grained text and image mismatch detections
depend on the VQA-based method, which needs to generate a list of questions
first and then employ the VQA model to answer the questions. These meth-
ods, however, are not flexible and may suffer from bias accumulation issues. Our
method trains models to generate the mismatched aspect phrase and the correct
aspect phrase in an end-to-end manner. In Table 1, we also compare the differ-
ence of FineMatch with other related works from the perspective of the size
of the dataset, whether fine-grained IMT detection and correction is supported,
and if human annotation is employed to improve the data quality and remove
harmful content.

3.7 Evaluation

To evaluate models’ performance on FineMatch, we propose a novel metric
called ITM-IoU. IoU (Intersection over Union) is a standard metric in computer
vision for measuring the accuracy of object detection or segmentation, based
on the overlap between predicted and ground truth boundaries or pixels. In
this study, since each caption may contain multiple mismatched aspects, we
compute the IoU between the models’ predicted set of aspect triplets and the
set of ground truth triplets. For triplets matching, we draw inspiration from
the generic structured prediction evaluation methods in the NLP field [30]. To
evaluate the accuracy of the predicted mismatched aspect classes, we adopt
the exact match (EM) [39] metrics. For mismatched aspect phrase detection,
we evaluate from both the character level and semantic level. For the lexical
similarity evaluation, we use chrF [37], an F1-score for character n-gram matches
(we use the default setting of n = 6). For the semantic level evaluation, we
use the BERT score [63]. Given a predicted mismatched aspect representation
Pi = {cj , pj , oj}Mj=1 (i ∈ {1, 2, ..., |D|}) and the corresponding ground truth
Gi = {c′j , p′j , o′j}M

′

j=1 (M ′ is the number of ground truth mismatched aspects),
the combined detection score ScoreDj is calculated as:

ScoreD j =
BERTScore(pj , p

′
j ) + chrF (pj , p

′
j)

2
, (3)
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As the aspect phrase correction is an open-ended generation task, we calculate
the BERT score to evaluate the semantic similarity of the generated corrections
oj and the ground truth o′j . The correction score ScoreC j is calculated as:

ScoreC j = BERTScore(oj , o
′
j ), (4)

The total score of a predicted aspect is the weighted sum of the three elements’
scores in the mismatched aspect representation:

ScoreAspect j =WCa · EM(cj , c
′
j)+ WDe · ScoreD j +WCo · ScoreC j (5)

where the WCa , WDe , and WCo is the weight of the EM, ScoreD j , and ScoreC j ,
respectively. In this study, we set the weights WCa = 0.2, WDe = 0.4, and WCo =
0.4. To compute the IoU of the aspect representation, we set a threshold T to
match the predictions with ground truth, if max({ScoreAspectk}

M ′

k=1) ≥ T then
the predicted triplet matches the ground truth. For each aspect representation
prediction, we compute the final score as:

ScoreAspect j =

{
ScoreAspectk if max({ScoreAspectk}

M ′

k=1) ≥ T,
0 else

(6)

Then the final calculation of the mismatched aspect ITM-IoU is calculated as:

ITM-IoU =

∑M
j=0 ScoreAspect j

M
× |Pi ∩Gi|

|Pi ∪Gi|
, (7)

where |Pi∩Gi| denotes the number of matched triplets of data i, and |Pi∪Gi|=
|Pi|+|Gi|−|Pi ∩Gi|. We also provide the pseudocode in supplementary material
for the ITM-IoU calculation.

A common way to show the goodness of an evaluation metric is to show
its correlation with human evaluations. We conduct a human evaluation for the
experimental results in Section 4.3, the results indicate the high correlation of
ITM-IoU with human evaluation, which reflects the rationality of our proposed
evaluation metrics.

3.8 Quantitative Analysis

Distribution of Data Source and Domain We provide the text and image
distribution analysis from different perspectives. Figure 3 shows the data source
distribution in the inner circle and domain distribution in the otter circle of
FineMatch training and test set.

Distribution of Mismatched Aspects Figure 4 shows the number of mis-
matched aspects distribution across different data sources in FineMatch.

Distribution of Aspects Classes Figure 5 shows the distribution of aspect
classes across different data sources in FineMatch.
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Fig. 3: The initial data source distribution (inner circle) and domain distribution (outer
circle) for the FineMatch training set (left) and test set (right).

Fig. 4: Data distribution of varying numbers of mismatched aspects across different
data sources in FineMatch.

Fig. 5: Data distribution of the mismatched aspect classes across the training, valida-
tion, and test sets in FineMatch.
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3.9 Qualitative Analysis

We present the analysis of human-annotated and GPT-Synthesized data, focus-
ing on the Vera Score Gap, Grammar Score Gap, and CLIP Score Gap. These
metrics compare the quality changes of human-annotated mismatched captions
against the original captions. Previous research [13] analyzes the artifact bias
through the Vera Score Gap and Grammar Score Gap, and employs the adver-
sarial refinement to fix this bias. In this research, we utilize human annotation
to fix this bias and add the CLIP Score Gap to quantify the semantic changes
of the human-annotated mismatched captions. The score gap is typically calcu-
lated as SP −SN , where the SP and SN are the Vera/Grammar/CLIP scores of
the initial captions and the human-annotated GPT-Synthesised data. The find-
ings, illustrated in Figure 6, reveal that score gap distribution lies on the pos-
itive spectrum, indicating that hard negative samples in the GPT-Synthesized
data exhibit a higher likelihood of being nonsensical. The results also reflect a
marginally reduced similarity to the initial matching captions. While these ef-
fects are within an acceptable range. Moreover, GPT rewrites do not significantly
impact grammar fluency or introduce errors compared to the original captions.
We also provide more quality analysis from different perspectives about other
data sources in Appendix Section 2.

Fig. 6: Score gap distribution in FineMatch. Since we use human annotation to
replace the adversarial refinement, the score gap distribution lies on the positive spec-
trum, but these effects are within an acceptable range.

4 Experiments

4.1 Visual Instruction Tuning

We train the models on FineMatch in an image-to-text generation setting.
Given an image Ii and the corresponding caption Ci, and the output aspect
representations Pi = {cj , pj , oj}Mj=1, the training objective is:

L = −
∑
D

M∑
t=1

log p(Pt | [Ci : Ii], P≤t−1).
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We conduct experiments on various state-of-the-art pretrained VL models
including OFA [53], [57], InternLM-Xcomposer2-VL [10] LLaMA-Adapter2 [11],
MiniGPT-4 [7], ShareGPT4V [8], and LLaVA series [28]. The experiment results
are shown in Table 2.

Table 2: Visual instruction tuning performance (ITM-IoU) of different VL models on
the FineMatch test set.

Models Size Mismatch Detection ↑ Mismatch Detection&Correction ↑

OFA-Large [53] 472M 19.72 21.35
LLaMA-Adapter2 [11] 7B 35.84 40.76
mPLUG-Owl2 [57] 8.2B 46.70 48.28
MiniGPT-4-V2 [7] 7B 51.18 55.95
InternLM-Xcomposer2-VL [10] 7B 58.70 61.07
LLaVA-1.5-LoRA [28] 7B 62.18 63.80
LLaVA-1.5 [28] 7B 62.25 63.62
LLaVA-1.5-LoRA [28] 13B 65.51 66.73
LLaVA-1.5 [28] 13B 66.02 67.13
ShareGPT4V [8] 13B 66.06 67.21
LLaVA-1.6-Vicuna [27] 13B 66.10 67.31

Human Performance - 88.32 89.19

From the results presented in Table 2, it is evident that VLMs integrated
with larger language models (LLaVA-1.5 7B vs. LLaVA-1.5 13B) exhibit supe-
rior performance on FineMatch. Language models that have been pretrained on
more data or those that have been finetuned with carefully designed data (e.g.,
ShareGPT4V vs. LLaVA-1.5) tend to achieve enhanced performances. Further-
more, models with improved reasoning capabilities, image encoder, and world
knowledge ( LLaVA-1.6 vs. LLaVA-1.5) also demonstrate performance improve-
ments.

4.2 In-Context Learning

In-Context Learning (ICL) explores training-free few-shot learning, where mod-
els are encouraged to “learn to learn" from limited tasks and generalize to unseen
tasks. In this study, we conduct experiments on public accessible pretrained VL
models including MMICL [64], Otter [21], OpenFlamingo [4], Emu2 [48], Gemini
Pro Vision [49], and GPT4-V [34]. The experiment results are shown in Table 3.
Since GPT-4V and Gemini cannot process some specific contents in the image
of FineMatch test set, which will be judged as illegal input, we discard these
examples, and we obtain 4278/5000 for GPT-4V and 4824/5000 for Gemini Pro
to calculate the ITM-IoU.

It can be summarized from Table 3 that even the models such as GPT-4V and
Gemini Pro Vision, which have a strong ability of multimodal in-context learning,
are not as skilled at fine-grained compositional image and text matching analysis
as we might have expected. Compared with the results in Table 2, models trained
on FineMatch demonstrate enhanced proficiency in detecting fine-grained text
and image mismatches.
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Table 3: In-context learning results (in terms of ITM-IoU) of different VL models on
the FineMatch test set. (∗ indicates subset of the FineMatch test set).

Models Size Mismatch Detection ↑ Mismatch Detection&Correction ↑

Otter [21] 7B 0.03 0.09
MMICL [64] 7B 0.11 0.25
OpenFlamingo [4] 9B 0.34 0.96
Emu2 [48] 37B 6.10 11.23
Gemini Pro Vision∗ [49] - 9.07 11.14
GPT-4V∗ [34] - 21.92 21.58

4.3 Human Evaluation

To evaluate the rationality of our proposed ITM-IoU, we carried out a human
evaluation of model predictions on the sampled FineMatch test set. The sample
size is 500. The human annotators are required to rate the quality of the gen-
erated mismatched aspect representations, the score ranges from 1-5, and the
higher the better. The findings, presented in Table 4, demonstrate a high cor-
relation between human evaluation results and the automatic evaluation metric
ITM-IoU detailed in Table 2.

Table 4: Average human evaluation scores (ranging form 1-5) for fully supervised-
learning (the upper row) and in-context learning methods (the lower row).

Model Mismatch Detection ↑ Mismatch Detection&Correction ↑

mPLUG-Owl2 3.56 3.41
MiniGPT-4 3.77 3.65
LLaVA-1.5-7B 4.02 3.89
LLaVA-1.5-13B 4.41 4.15

OpenFlamingo 2.01 1.63
Emu2 2.55 2.32
Gemini Pro Vision 2.95 2.86
GPT4-V 3.35 3.27

4.4 Failure Cases of Language Models on FineMatch

In Table 2 and Table 3, we show the performance (in terms of ITM-IoU) of
current state-of-the-art language models on FineMatch. The results indicate
that the models still have difficulties in identifying the mismatched aspects of the
given data. We also show examples of the GPT4-V’s predictions, the finetuned
LLaVA-1.6 predictions, and the ground truth in Figure 7 to illustrate that fine-
grained image-text matching is a challenging task for VLMs.

5 FineMatch for Text-to-Image Generation
Hallucination Detection and Correction

Hallucination issues are prevalent in text-to-image (T2I) generation models, par-
ticularly for the text prompts that describe detailed scenes and intricate rela-
tionships [26, 40]. Many approaches are proposed for reducing hallucination for
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Fig. 7: Failure cases ({aspect classes,mismatched aspects,corrections}) of GPT-
4V and LLaVA-1.6 on FineMatch.

T2I models [6, 25, 46, 47, 52, 58]. In this study, we illustrate how FineMatch
can help detect and address the mismatch between the text prompts and the
generated images for T2I generation models.

To achieve this goal, we develop a framework named AutoAlign that incor-
porates FineMatch with T2I models and VLMs for T2I automatic hallucination
detection and correction. This system comprises four key modules: the T2I gen-
eration module, the hallucination detection module, the image editing prompt
generation module, and the image editing module. Given a text prompt T and
its corresponding generated image I, the text-image pair is evaluated by a VLM
(LLaVA-1.6 Vicuna) fine-tuned with FineMatch to identify if there are any
discrepancies between I and T . Upon detecting a mismatch, the system invokes
the image editing prompt generation module (utilizing GPT-4 for this purpose)
to generate an image editing prompt. Subsequently, the image editing module
(employing MagicBrush [62] for image editing) is engaged to adjust the image.
This process of hallucination detection, generation of editing prompts, and im-
age editing is iteratively performed until the edited image satisfactorily aligns
with the text prompt.

The architecture of AutoAlign is shown in Figure 8, as we can see from
the diagram that the system is designed to effectively reduce the hallucination
for T2I generation. More cases are shown in Appendix 6.

6 Limitation and Future Work

This study has a few limitations that present opportunities for further research.
First, we provide only one possible correction for each mismatched aspect in
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Fig. 8: Pipeline of the AutoAlign system: The modules within the system work
collaboratively in a loop process until the edited image achieves satisfactory alignment
with the text prompt.

the captions. Nevertheless, each mismatched aspect can have several viable cor-
rections. For instance, if an image depicting a woman with blond hair, while
the caption is "a woman holding a golden flower", then the correction could be
"a golden flower" -> "no golden flower", or it can be "holding"->" with" and
"a golden flower"->"blond hair". Recognizing the potential for multiple correc-
tions, we treat the task of mismatched aspect correction as one of open-ended
generation. We employ the BERT Score to evaluate the semantic similarity for
models’ generated corrections and the ground truth. In addition, introducing
human evaluation to check if the generated corrections address the mismatch
between the image and caption helps evaluate the quality of the predicted cor-
rections of models. Second, finetuning VLMs directly with FineMatch has yet
to yield results on par with human performance. In the future, we can explore
designing better instruction following data for VLMs using FineMatch, such
as introducing aspect graphs in the text prompt.

7 Conclusion
In this paper, we present FineMatch, a novel benchmark designed to address
aspect-based, fine-grained mismatches between text and images. We design an
aspect graph parsing and node-replacing method combined with human anno-
tation to effectively reduce the artifact biases in the GPT-synthesised data. We
also present comprehensive experiments on current state-of-the-art VLMs and
found that FineMatch can help enhance the ability of the models to perform
detailed analyses of text and image mismatches. In addition, we evaluate the cur-
rent black-box models with strong multimodal in-context-learning capability and
find that these models are not skilled at addressing fine-grained mismatches be-
tween text and images. With FineMatch, we build a text-to-image generation
hallucination detection and correction system, and the system can effectively
reduce the hallucination for T2I generation. We believe our efforts will bene-
fit real-world applications involving text and image compositional analysis and
generation.
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