
Supplementary Materials for “Modeling and
Driving Human Body Soundfields through

Acoustic Primitives”

Chao Huang1, Dejan Marković2, Chenliang Xu1, and Alexander Richard2

1 University of Rochester, Rochester, NY, USA
2 Codec Avatars Lab, Meta, Pittsburgh, PA, USA

{chaohuang,chenliang.xu}@rochester.edu,{dejanmarkovic,richardalex}@meta.com

1 Rendering Audio with Learned Soundfield

As illustrated in Sec 3.2, the sound pressure, i.e. the audio signal, produced by
a learned soundfield of order N is given by

w(r, θ, φ) =

N∑
n=0

n∑
m=−n

(cnm · hn(krref )) ·
hn(kr)

hn(krref )
· Ynm(θ, φ)

=

N∑
n=0

n∑
m=−n

c̃nm · hn(kr)

hn(krref )
· Ynm(θ, φ),

(1)

here, k = 2πf/vsound is the corresponding wavenumber; Ynm(θ, φ) represents
the spherical harmonic of order n and degree m, which is

Ynm(θ, φ) ≡

√
2n+ 1

4π

(n−m)!

(n+m)!
Pnm(cos θ)eimφ, (2)

Pnm(z) is an associated Legendre polynomial, and hn(kr) is nth-order spherical
Hankel functions. All the functions are implemented with PyTorch and, therefore
are fully differentiable. In this paper, we choose spherical harmonics up to second
order and showcase them in Fig. 1.

Fig. 1: Spherical harmonics up to second order.

Similarly to Ynm(θ, φ), the learned soundfield, i.e. acoustic primitive, can also
be decomposed into a series of spherical harmonics functions, each representing a
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Fig. 2: Decomposition of learned soundfield representation and its connection to second
order spherical harmonics.

different spatial component of the soundfield. We demonstrate the decomposition
process in Fig. 2. Our learned soundfield representation is enforced to express the
same spatial information as spherical harmonics because each predicted acoustic
primitive has (N + 1)2 channels, which is equivalent to the number of spherical
harmonics.
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Fig. 3: Illsutration on pose feature encoding, we consider the absolute coordinates and
the relative coordinates/distances (to the headset) of body joints.

2 Pose Feature Encoding

To capture these rich spatial cues, we employ a pose encoder that processes the
input pose sequence. This sequence, denoted as p1:Tp , contains the 3D coordi-
nates of body joints for each frame pt ∈ RJ×3. However, since these coordinates
are captured from a third-person perspective, they might not fully capture the
spatial relationship relevant to the audio, where the sound originates from the
body but is received at the headset. To address this, we enhance the pose input by
selecting the head joint ph

t as an anchor and calculating relative coordinates and
Euclidean distances. This extended pose input [pt,pt−ph

t , dist(pt−ph
t )] ∈ RJ×7,

consisting of original coordinates, relative coordinates to the head, and distance
from the head, provides the pose encoder with a more comprehensive under-
standing of the body’s spatial relationship with the sound. Details are shown in
Fig. 3.
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3 More Ablations

Visualization of primitive offsets. In Fig. 4, we observe a time delay be-
tween the predicted and GT audios for the model without offsets, likely
caused by inaccurate primitive coordinates. In contrast, our model with learned
offsets mitigates this issue, resulting in a closer match to the ground truth au-
dio. Also, we visualize the sound fields generated by our framework for different
primitives after applying the learned offsets. We observe that the learned offsets
generally match location where we would expect the source of sound to be given
the particular sound event such as snap, clap, or footstep.

w/ offset w/o offset

w/ offset w/o offset

w/ offset w/o offset

w/ offset w/o offset

Fig. 4: Ablation on learned acoustic primitive offsets.
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Visualization of different harmonic order. Fig. 5 illustrates the impact of
sound field order on the accuracy of predicted audio. As shown, the model’s
prediction using a 2nd-order sound field exhibits a closer match to the GT
audio in terms of amplitude. This is because higher-order harmonics offer
finer spatial rendering capabilities, allowing the model to capture more precise
directional details of the sound. In contrast, the predicted 0th-order sound field
is omnidirectional, meaning it radiates sound equally in all directions. This lim-
itation hinders its ability to encode specific spatial information, resulting in less
accurate audio amplitude prediction.

order 2

order 0

order 2

order 0

Fig. 5: Ablation on different harmonic orders.
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Table 1: Ablation study on loss function. Each loss term is removed from the total
loss function one at a time. The best and second-best results are highlighted in green
and blue, respectively.

non-speech speech

Loss SDR ↑ amplitude ↓ phase ↓ SDR ↑ amplitude ↓ phase ↓

Ltotal 3.597 0.883 0.323 8.448 0.943 0.417
w/o Lamp 2.099 1.179 0.303 8.370 1.038 0.381
w/o Lri 3.579 0.894 0.325 8.492 0.933 0.418
w/o Lsℓ1 3.338 0.821 0.330 7.722 0.915 0.491
w/o Lcts 3.523 0.903 0.324 8.239 0.938 0.422

Ablation on the choices of loss function. In Tab. 1, we conduct an ablation
study to investigate the effectiveness of each loss term in the total loss function
(Eq. (11) in the main paper). We remove each loss term from the total loss
Ltotal one at a time. The results show that including Lcts improves the overall
performance on both speech and non-speech data, and combining all the loss
terms yields the best or second-best performance across different metrics for
both speech and non-speech data and generally the best performance on average
over the metrics.

4 Demo Video

We have prepared a supplementary video to visually demonstrate the capabilities
of our method in spatial audio rendering. The video showcases a full-body avatar
producing correctly spatialized binaural audio corresponding to various actions
and interactions using our trained model. In particular, the input of the audio
system is a single channel mono audio that contains the mixture of all sounds
being made. Our model can render them with the correct spatial locations using
wearer’s body pose. This means that the wearer can clap left, clap right, applaud,
snap around, and the sounds will be appropriately positioned. Additionally, the
system works with objects that the wearer may be using, such as an egg shaker.
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