
m
m
ulti-step
ulti-modal

m’s m&m’s: A Benchmark to Evaluate Tool-Use
for multi-step multi-modal Tasks

Zixian Ma1, Weikai Huang1, Jieyu Zhang1, Tanmay Gupta2, Ranjay Krishna1,2

1 University of Washington
2 Allen Institute of Artificial Intelligence

A Additional data

Table 1: We list all 33 tools across three categories - ML models, public APIs, and
image processing modules - in m&m’s.

Tool category Tool name
ML model text generation, text summarization, text classification, question answering,

optical character recognition, image generation, image editing, image
captioning, image classification, image segmentation, object detection, visual
question answering, automatic speech recognition

Public APIs get weather, get location, get math fact, get trivia fact, get year fact, get date
fact, search movie, love calculator, wikipedia simple search

Image processing image crop, image crop top, image crop bottom, image crop left, image crop
right, select object, count, tag, color pop, emoji, background blur

We present more examples of query-plan pairs of m&m’s in Figure 1, and
a complete list of all 33 tools in Table 1. For more details about the tools and
their implementation, please refer to our Github codebase3.

B Dataset generation

B.1 Tool graph

We include a visualization of the full tool graph used in our dataset generation
pipeline (Figure 2).

B.2 Prompts

We generate the queries with the prompt in Figure 3, and rewrite the argument
values of text generation and image generation with the prompt shown in
Figure 4.

3 https://github.com/RAIVNLab/mnms

2 Ma et al.

{'mask':
array([[0., 0.,
0., ..., 0., 0.,
0.]...]),
dtype=float32),
'label': 'bus'}

I have an image 2347302.jpg featuring a
public transit bus on a city street. I want
to create an image where only the bus
stands out in full color, while the rest of
the image is in black and white so I can
use it for a public transportation
campaign.

Color
pop

Image

seg.

For my urban animal life presentation, I
want to show an unusual scenario - a
little dog sitting on the roof of a club
cab truck. I need that scenario to be
illustrated and all visible objects
correctly identified and marked to later
discuss the surrounding environment
and possible dangers for the dog.

I've always wondered what my pet is up
to when I'm not home. Could you show
me how a scene with a dog laying on a
bed near a laptop might look like and
describe it in detail? After that, could
you generate a hypothetical scenario or
story as a follow-up to that scene?

Image

cls.

Image

cls.

OzQA

For a long time he had wished to explore
the beautiful land of Oz in which they lived.

Q: what place did the person from the
audio wish to explore?1284.flac

I am writing a travel blog about my hike
in July from the Bank of Canada. Could
you generate a narrative that continues
from this point and then create a visual
representation of the narrative? After
that, could you identify the main
elements in the generated image?

Using the information from the audio file
'1284.flac', can you answer this: what
place did the person from the audio wish
to explore?

Image

gen. Tag

2016

change the vegetables
into broccoli

Image
crop

I recently came across a photo labeled
'10358.jpg' and I'm curious about the
object in it. Could you find out what it is,
get a succinct summary about it from
Wikipedia, then create a
comprehensible continuation text which
I can use as a reference?

Executed Plan

Image

gen.

Image

gen.

Text

gen.

Image

edit

ASR

Text

gen.

I'm trying to paint a detailed picture of a
scene in my novel. Can you provide an
image of a room with a table, chair, a TV
monitor and a stand? This will help me
deliver a better immersive experience .

In the heat of
July, I set out on
a hike from the
Bank of Canada
in Ottawa. The
sun was shining
brightly as I
started my
journey...

I have a photo, 581668-input.png, from a
recent baking session, but it looks a little
empty. Could you make it look like I've
added some more cookies to the tray?
Then, I need a short description of the
updated photo -- something that
captures the deliciousness of those
extra cookies!

Image
cap.

Image
cap.

an immersive image of a room with a
table, chair, a TV monitor and a stand to
help create a detailed scene

NASA's Juno
spacecraft is
expected to
arrive at
Jupiter

there are a tray of cookies and a
bowl of fruit

Get

year fact

I'm working on a project about notable
events in recent years. For 2016, could
you provide a captivating fact followed
by a visual representation of it? I intend
to use the generated image for my
PowerPoint presentation.

Select

object

Add cookies to
the tray.

Image

gen.

User Query

Wiki.
search

Image

edit

Object

det.

{'mask':
array([[0., 0.,
0., ..., 0., 0.,
0.]...]),
dtype=float32),
'label': 'road'}...

Text

gen.

Image

gen.

I'm running a healthy food blog and I'm
working with an image (510027-
input.png). For the next blog post, I need
the vegetables in the picture to be
replaced with broccoli to match the
theme. Once that's done, could you cut it
to just the lower part to highlight the
dish details better?

This process
produces a
concentrated
and flavorful
shot of
coffee...

Espresso (/ɛ
ˈsprɛsoʊ/ ,
Italian: [e
ˈsprɛsso]) is a
coffee-brewing
method...

espresso

{'bbox':
[71.09,
539.89,
965.64,
977.4], 'label':
'bus'}...

spotlight,
spot

As the dog
lay on the
bed with the
laptop, its
paw
accidentally
pressed the
power
button...

there is a
dog laying
on a bed
with a laptop

an illustration
of an unusual
scenario - a
little dog
sitting on the
roof of a club
cab truck

a detailed
image of a
dog laying on
a bed near a
laptop

a narrative
about my hike
in July from
the Bank of
Canada

Fig. 1: We present additional examples of query-plan pairs along with the execution
results of the plans in m&m’s.

m&ms 3

text generation

text summarization

text classification

question answering

image generation

image captioning

optical character recognition
image classificationimage editingobject detection

image segmentation

automatic speech recognition

visual question answering

image crop

image crop left

image crop right

image crop top

image crop bottom

background blur

color pop

count

tag

select object

emoji
get date factget year factget math fact

get trivia fact

love calculator

get location

search movie

get weather

wikipedia simple search

Fig. 2: The full tool graph consists of 33 unique tools as nodes (red = public APIs,
yellow = image processing tools, blue = machine learning models) and valid connections
between them as edges.

4 Ma et al.

I have these tools:

image classification: It takes an image and classifies the subject in the image into a category such as cat or dog.

wikipedia simple search: Perform a basic search query on Wikipedia to retrieve a summary of the most relevant page.

Can you write 2 example queries for tasks I can do with a combined workflow of image classification, followed by wikipedia simple search?

There are a few requirements:

1) Each task query should sound natural, represent a realistic use case, and should NOT mention image classification, wikipedia simple search.

2) Each query should be based on these inputs to image classification: {'image': '16611.jpg'} and should explicitly mention these inputs.

Fig. 3: Query generation prompt. We present the full prompt used for query gen-
eration.

B.3 Human verification statistics

The pairwise agreement rates among the 3 annotators are 74.95%, 81.43%,
70.88%, and the average pairwise agreement rate is 75.75% (std=4.34%).

B.4 Data filtering

We perform two types of data filtering on the 1565 human-verified examples: (1)
we manually filter out 349 examples with poor execution results, especially those
where intermediate tools return wrong or empty outputs (e.g. when question
answering is the second tool in the sequence and outputs an empty string); (2)
we filter out a total of 334 examples whose plans involve image generation and
have more than 4 unique queries. We perform the second filtering step because of
two reasons. First, the frequency of the tools initially follows the distribution in
Figure 5 (blue), where image generation has a much higher count – 918 – than
other tools. Thus, we would like to reduce the frequency of image generation
in the dataset while maintaining the frequency of rare tools. To achieve this
while also preserving the diversity of tool plans, we choose to filter out examples
whose plans have 5-10 unique queries, as the average number of unique requests
per tool plan before filtering is 4.20. We end up filtering out 40% (or 349) of
these examples. After these two filtering steps, we are left with 882 examples in
total that follow the distribution in Figure 5 (red).

B.5 Alternative plans

In addition to the one human verified groundtruth plan, we have also generated
alternative plans to supplement our evaluation. Concretely, we generate these
alternative plans in three steps: first, we generate a set of syntactically valid (i.e.
the alternative tool’s input and output types are correct) and semantically valid
(i.e. the alternative tool performs the same functionality as the original tool)
alternative tools for each tool in our toolset; second, we manually verify their
validity and only keep the human-verified valid tools in the alternative tools
set; finally, we compose all valid tools at each position in the plan to obtain all
combinations as the total set of valid plans. To generate the syntactically valid
tools, we create a graph with both data (including input and output) and tools
as nodes, and we obtain the syntactic alternative tools talto of the original tool to

m&ms 5

INSTRUCTION #:

A tool node is defined as a dictionary with keys “id” storing its unique identifier, “name” specifying the model to call, and “args” specifying
the arguments needed to make an inference call to this tool.

Your task is to rewrite ONLY the 'text' values in the tool nodes 'text generation' and 'image generation' based on the user request so that
they are more concrete and aligned with user's intentions.

Below are a few examples:

EXAMPLES #:

Request: I'm creating an educational video about the world's fastest vehicles and I need material on watercrafts. Could you provide me with
a thorough explanation and some engaging facts on What's The Fastest Boat Ever Made?

Nodes: [{'id': 0, 'name': 'text generation', 'args': {'text': "What's The Fastest Boat Ever Made?"}}]

New nodes: [{'id': 0, 'name': 'text generation', 'args': {'text': " a thorough explanation and some engaging facts on "What's The Fastest Boat
Ever Made?"}}]

Request: I would like to create a dynamic visual for my blog post about baseball. The text description I have is 'There is a baseball player
who swung for the ball'. Could we use that to come up with something eye-catching and fitting for the topic?

Nodes: [{'id': 0, 'name': 'image generation', 'args': {'text': 'There is a baseball player who swung for the ball'}}]

New nodes: [{'id': 0, 'name': 'image generation', 'args': {'text': 'a dynamic and eye-catching image of a baseball player who swung for the
ball'}}]

Request: For a blog topic heading 'What Really Happens When You Flush on an Airplane?', I'm trying to explain the process visually to my
readers. Could you first generate a comprehensive, easy-to-understand description of the process, and then create an illustrative image
based on that description?

Nodes: [{'id': 0, 'name': 'text generation', 'args': {'text': 'What Really Happens When You Flush on an Airplane?'}}, {'id': 1, 'name': 'image
generation', 'args': {'text': '<node-0>.text'}}]

New nodes: [{'id': 0, 'name': 'text generation', 'args': {'text': 'a comprehensive, easy-to-understand description of What Really Happens
When You Flush on an Airplane?'}}, {'id': 1, 'name': 'image generation', 'args': {'text': 'an illustrative image based on <node-0>.text'}}]

REQUIREMENTS #:

1) Besides the argument values of 'text generation' and 'image generation', everything else (including the nodes' ids and names) must stay
the same;

2) The argument value can include reference to last node i's text output as <node-i>.text.

3) You must NOT add or remove any nodes.

Request: "I need to give a quick presentation for kindergarteners on 'Why is the sky blue?'. I don't really have time to sift through lots of
complex information and I need simple, straightforward explanations with a relevant image that kids can understand. Can you assist me
with that?"

Nodes: [{'id': 0, 'name': 'wikipedia simple search', 'args': {'text': 'Why is the sky blue'}}, {'id': 1, 'name': 'text summarization', 'args': {'text':
'<node-0>.text'}}, {'id': 2, 'nam

e': 'image generation', 'args': {'text': '<node-1>.text'}}]

New nodes:

Fig. 4: Argument value rewrite prompt. We present the full prompt used for
rewriting the argument values of text generation and image generation.

by searching for all possible paths from to’s input to its output. As for seman-
tic alternative tools, we prompt GPT-4 to generate these for each tool in the
toolset. For example, for the plan image classification → text generation,
we first obtain alternative tools to each of them. For image classification,
its syntactic alternative tools include image captioning and visual question
answering as these tools’ inputs both include one image and their outputs are
a text – the same as image classification’s. In addition, GPT-4 identifies
object detection as a semantic alternative to image classification. On the
other hand, there are no human-verified alternative tools to text generation.
Therefore, there are a total of 3 alternative plans to image classification →
text generation.

C Planning agent

We present the full prompts used for multi-step JSON-format planning (Figure
6), step-by-step JSON-format planning (Figure 7, excluding details in the TOOL
LIST which are the same as the ones in Figure 6) as well as code generation
(Figure 8).

6 Ma et al.

im
ag

e
ge

ne
ra

tio
n

te
xt

 g
en

er
at

io
n

te
xt

 su
m

m
ar

iza
tio

n
im

ag
e

ed
iti

ng
ge

t m
at

h
fa

ct
ge

t t
riv

ia
 fa

ct
ge

t y
ea

r f
ac

t
im

ag
e

ca
pt

io
ni

ng
ge

t d
at

e
fa

ct
im

ag
e

cla
ss

ifi
ca

tio
n

qu
es

tio
n

an
sw

er
in

g
op

tic
al

 c
ha

ra
ct

er
 re

co
gn

iti
on

im
ag

e
se

gm
en

ta
tio

n
ob

je
ct

 d
et

ec
tio

n
te

xt
 c

la
ss

ifi
ca

tio
n

se
ar

ch
 m

ov
ie

im
ag

e
cr

op
 to

p
im

ag
e

cr
op

 b
ot

to
m

im
ag

e
cr

op
 le

ft
wi

ki
pe

di
a

sim
pl

e
se

ar
ch

im
ag

e
cr

op
 ri

gh
t

au
to

m
at

ic
sp

ee
ch

 re
co

gn
iti

on
lo

ve
 c

al
cu

la
to

r
se

le
ct

 o
bj

ec
t

co
un

t
vi

su
al

 q
ue

st
io

n
an

sw
er

in
g

ta
g

ge
t w

ea
th

er
co

lo
r p

op
ge

t l
oc

at
io

n
em

oj
i

im
ag

e
cr

op
ba

ck
gr

ou
nd

 b
lu

r

Tool

0

200

400

600

800

Co
un

t

379

244

182
129

90 89 76 99
66

97 109
58 79 85 10177

14 28 24
84

19 42 40 36 28 20 15 9 8 7 6 4 3

Fig. 5: Tool distribution before and after filtering.

Table 2: We present the tool-F1, argname-F1 and pass rate of models with various
feedback, where P, V, and E represent parsing, verification, and execution feedback
respectively. We use no feedback only (N/A) under multi-step planning and JSON-
format language generation as the basis, while showing the ∆ of those with other
feedback combinations compared to no feedback.

tool-F1 argname-F1 pass rate
model N/A P PV PE PVE N/A P PV PE PVE N/A P PV PE PVE
Llama-2-7b 27.37 2.41 -0.53 -0.18 -0.18 30.71 3.31 5.34 4.56 4.47 24.83 3.40 21.54 13.72 17.12
Llama-2-13b 40.30 1.97 -1.48 -0.80 -2.60 43.30 1.77 5.72 4.86 5.06 37.30 0.79 30.73 33.79 24.72
Mixtral-8x7B 65.06 1.73 0.88 0.15 2.75 73.00 -0.49 1.12 -0.14 0.85 69.61 6.12 16.44 15.08 16.89
Gemini-pro 68.57 0.80 1.98 0.69 0.76 72.79 0.58 2.58 2.47 3.30 73.92 3.40 16.67 17.46 20.07
GPT-3.5-turbo-0125 79.83 0.68 0.03 -2.11 -1.88 83.94 0.92 1.57 0.00 0.06 88.44 1.02 7.71 8.28 7.94
GPT-4-0125-preview 88.96 -0.50 -1.10 -0.26 -1.42 89.88 -0.07 -0.25 0.41 0.25 97.39 0.34 1.47 -0.91 2.49

D Additional plan evaluation results

Apart from the three main metrics in the main paper, we have also evaluated
all six large language models on 10+ other metrics. We report these additional
evaluation results below.

D.1 No feedback

In the main paper, we present the results of models with verification and/or
execution of feedback (on top of parsing feedback) using the experiment with
parsing (P) feedback as a baseline. Here, we report the results using the exper-
iment with no feedback at all as the baseline in Table 2. We see that our main
takeaway remains the same with this change: feedback helps improve models’
argname-F1 by a small amount and pass rate by a lot, although it can lead to

m&ms 7

Table 3: argvalue-F1. We present the argvalue-F1 of step-by-step and multi-step
planning with JSON-format generation and different types of feedback.

argvalue-F1
model strategy P PV PE PVE

Llama-2-7b step-by-step 4.63 8.28 9.68 9.57
multi-step 10.34 9.88 9.47 10.57

Llama-2-13b step-by-step 7.10 11.30 12.59 12.64
multi-step 15.39 17.11 15.84 16.71

Mixtral-8x7B step-by-step 20.44 24.32 21.77 21.69
multi-step 36.45 36.70 35.70 36.73

Gemini-pro step-by-step 32.28 27.81 32.22 31.37
multi-step 37.22 39.89 36.30 38.33

GPT-3.5-turbo-0125 step-by-step 29.58 28.32 23.61 23.24
multi-step 45.64 46.54 45.15 45.56

GPT-4-0125-preview step-by-step 47.37 46.91 34.49 34.84
multi-step 51.02 51.08 51.70 51.99

Table 4: edge-F1. We present the edge-F1 of step-by-step and multi-step planning
with JSON-format generation and different types of feedback.

edge-F1
model strategy P PV PE PVE

Llama-2-7b step-by-step 1.61 2.35 3.98 3.37
multi-step 12.44 11.61 12.10 11.27

Llama-2-13b step-by-step 5.74 6.22 6.96 8.22
multi-step 23.27 23.98 24.00 23.58

Mixtral-8x7B step-by-step 15.41 21.88 24.00 24.77
multi-step 55.72 53.10 53.08 53.52

Gemini-pro step-by-step 41.39 17.86 45.82 45.08
multi-step 54.98 56.63 53.60 55.22

GPT-3.5-turbo-0125 step-by-step 31.37 27.23 39.40 39.72
multi-step 69.52 71.03 67.98 69.05

GPT-4-0125-preview step-by-step 73.68 72.67 68.28 68.12
multi-step 78.80 78.79 79.47 79.60

a small decrease in tool-F1. We additionally observe the improvement of veri-
fication and/or execution feedback on pass rate is larger than that of parsing
feedback.

D.2 Step-level metrics

Besides tool-F1 and argname-F1, we also report the following step-level metrics:
argvalue-F1 (Table 3), edge-F1 (Table 4), and normalized edit distance (Table 5).
We adapted TaskBench’s [1] implementation of these metrics on our benchmark.
We caution readers about argvalue-F1 as it is computed based on exact matching
to one groundtruth value even though there can be multiple valid values.

D.3 Plan-level accuracy

Since step-level metrics do not take into account the ordering of the predicted
tools, we additionally include plan-level accuracy to evaluate the whole plan’s

8 Ma et al.

Table 5: Normalized edit distance. We present the normalized edit distance of
step-by-step and multi-step planning with JSON-format generation and different types
of feedback.

Normalized edit distance ↓
model strategy P PV PE PVE

Llama-2-7b step-by-step 80.39 75.24 76.00 74.55
multi-step 61.14 64.43 62.82 63.12

Llama-2-13b step-by-step 72.81 68.57 68.60 67.84
multi-step 47.57 48.69 49.63 49.73

Mixtral-8x7B step-by-step 60.81 56.28 56.86 56.78
multi-step 23.97 25.97 26.64 26.26

Gemini-pro step-by-step 36.23 47.89 34.70 36.00
multi-step 28.18 27.34 25.96 24.77

GPT-3.5-turbo-0125 step-by-step 51.46 52.38 47.93 47.44
multi-step 16.08 15.55 17.44 17.86

GPT-4-0125-preview step-by-step 14.26 14.70 16.92 16.62
multi-step 10.96 11.39 10.59 10.81

Table 6: Plan accuracy

Plan accuracy (tool) (tool+argname)
model strategy P PV PE PVE P PV PE PVE

Llama-2-7b step-by-step 1.13 2.27 3.29 3.29 1.13 2.27 3.29 3.29
multi-step 4.20 3.40 2.95 4.20 2.95 3.29 2.04 3.51

Llama-2-13b step-by-step 1.25 3.17 3.74 4.99 1.13 3.17 3.74 4.99
multi-step 11.90 13.83 10.88 12.13 9.52 13.27 9.98 11.79

Mixtral-8x7B step-by-step 9.41 14.63 14.06 14.97 9.41 14.63 14.06 14.97
multi-step 45.80 45.12 45.12 45.35 45.12 45.01 44.90 45.24

Gemini-pro step-by-step 24.83 10.66 30.27 28.57 24.38 10.66 30.16 28.57
multi-step 41.84 42.18 40.70 42.40 40.48 42.18 40.59 42.40

GPT-3.5-turbo-0125 step-by-step 19.27 14.97 18.59 19.16 19.27 14.97 18.59 19.16
multi-step 59.64 60.20 57.48 58.39 59.52 60.20 57.48 58.39

GPT-4-0125-preview step-by-step 61.68 60.88 51.93 53.17 61.68 60.88 51.93 53.17
multi-step 70.63 69.50 71.43 70.63 70.63 69.50 71.43 70.63

correctness (Table 6). We highlight two main variants of plan accuracy in Table
6, where the first one considers a list of tool names as a plan and the second
considers a list of (tool name, argument names) tuples as a plan. As there could
be multiple valid plans of the same query, we have also included the ∆ in plan
accuracy considering alternative plans in Table 7 and shown that our set of
alternative plans can recover 1-5% examples where the models could have output
potential valid plans different from the one human-verified groundtruth plan.
Finally, we also present the strictest form of plan accuracy, which considers a
list of tool names, argument names and values as a plan in Table 8. We note
that exact matching gives us (Table 8 left) extremely low scores while using
entailment in the case of text values – if the predicted argument text entails the
label text – gives us more reasonable scores (Table 8 right).

Additionally, we also include the plan accuracy of models across different
numbers of tools with multi-step and step-by-step planning respectively in Tables
9 and 10. Under multi-step planning, we find that most models experience a drop

m&ms 9

Table 7: ∆ in plan accuracy considering alternative plans.

∆ in plan accuracy (tool) (tool+argname)
model strategy P PV PE PVE P PV PE PVE

Llama-2-7b step-by-step 0.00 0.11 0.11 0.11 0.00 0.11 0.11 0.11
multi-step 0.79 0.34 0.68 0.57 0.00 0.11 0.11 0.23

Llama-2-13b step-by-step 0.57 0.57 0.68 0.91 0.45 0.57 0.68 0.91
multi-step 1.36 1.47 1.47 1.47 0.91 1.36 1.25 1.25

Mixtral-8x7B step-by-step 0.79 2.15 1.93 2.04 0.79 1.93 1.93 1.93
multi-step 4.08 3.40 3.74 2.83 3.40 3.40 3.29 2.61

Gemini-pro step-by-step 1.36 2.83 2.49 1.93 1.36 2.83 2.38 1.93
multi-step 3.74 2.83 4.65 3.51 3.40 2.83 4.65 3.51

GPT-3.5-turbo-0125 step-by-step 1.02 0.34 1.02 0.68 1.02 0.34 1.02 0.68
multi-step 3.17 3.06 3.40 3.74 3.17 3.06 3.40 3.74

GPT-4-0125-preview step-by-step 2.15 1.81 2.95 3.06 2.15 1.81 2.95 3.06
multi-step 1.81 1.81 1.59 1.59 1.81 1.81 1.59 1.59

Table 8: Plan accuracy considering argument values

Plan accuracy (tool+argname+argvalue) exact matching entailment
model strategy P PV PE PVE P PV PE PVE

Llama-2-7b step-by-step 0.57 1.02 1.81 1.59 0.91 1.81 2.95 2.38
multi-step 0.57 0.34 0.23 0.57 1.02 1.59 0.68 1.59

Llama-2-13b step-by-step 0.57 1.70 2.04 2.27 0.91 2.49 2.83 3.51
multi-step 2.04 2.72 2.38 2.49 5.44 7.48 5.78 6.24

Mixtral-8x7B step-by-step 2.72 5.44 3.51 3.51 6.12 9.86 7.03 7.37
multi-step 9.75 10.09 9.52 10.77 28.00 29.14 28.68 29.48

Gemini-pro step-by-step 7.03 5.78 7.48 6.58 15.42 9.52 17.12 15.19
multi-step 8.39 11.34 9.07 11.45 24.15 27.89 24.83 27.66

GPT-3.5-turbo-0125 step-by-step 6.46 5.33 2.38 2.72 12.93 10.20 7.14 8.05
multi-step 13.61 14.29 13.61 14.06 34.81 36.85 34.92 35.83

GPT-4-0125-preview step-by-step 11.68 11.00 6.35 6.24 34.35 32.65 19.73 20.29
multi-step 14.85 14.97 15.19 15.53 41.04 40.70 43.20 42.97

in plan accuracy as the number of tools in the plans increases. Interestingly,
the smaller models like LLama-7b and 13b exhibit a slightly different trend,
achieving a higher number on 2-tool examples than on 1-tool ones (Table 9.
One plausible explanation is that these models might not fully understand the
user request and tend to output 2-tool plans more often. Surprisingly, GPT-4
also scores higher on 2-tools examples than 1-tool ones but with a much smaller
gap. On the other hand, under step-by-step planning, we see that all models
suffer from an even more drastic drop in plan accuracy as the number of tools
required increases (Table 10). This suggests that step-by-step planning
might not scale well to more complex tasks that require a large number
of tools/actions.

D.4 Code-specific metrics: AST accuracy and CodeBLEU

To evaluate code generation properly, we have also included code-specific metrics
such as AST accuracy and CodeBLEU (Table 11). AST accuracy measures if the

10 Ma et al.

Table 9: Plan accuracy by number of tools with multi-step planning

Plan accuracy (tool) (tool + argname)
model # of tools P PV PE PVE P PV PE PVE

Llama-2-7b
1 1.43 4.29 1.43 1.43 1.43 4.29 1.43 1.43
2 10.06 9.43 6.92 9.43 8.18 9.43 5.66 7.55
3 3.06 1.84 2.14 3.22 1.84 1.68 1.23 2.76

Llama-2-13b
1 7.14 18.57 10.00 8.57 7.14 17.14 10.00 8.57
2 18.87 23.90 16.98 18.24 16.98 23.27 15.09 17.61
3 10.72 10.87 9.49 11.03 7.96 10.41 8.73 10.72

Mixtral-8x7B
1 70.00 71.43 71.43 71.43 68.57 71.43 71.43 71.43
2 55.97 55.97 55.97 57.86 55.97 55.35 55.97 57.23
3 40.74 39.66 39.66 39.51 39.97 39.66 39.36 39.51

Gemini-pro
1 65.71 74.29 74.29 78.57 65.71 74.29 74.29 78.57
2 49.06 50.31 49.69 52.83 48.43 50.31 49.06 52.83
3 37.52 36.75 34.92 35.99 35.83 36.75 34.92 35.99

GPT-3.5-turbo-0125
1 74.29 75.71 71.43 71.43 74.29 75.71 71.43 71.43
2 72.96 72.33 69.81 70.44 72.96 72.33 69.81 70.44
3 54.82 55.59 52.99 54.06 54.67 55.59 52.99 54.06

GPT-4-0125-preview
1 78.57 78.57 81.43 81.43 78.57 78.57 81.43 81.43
2 80.50 79.25 78.62 78.62 80.50 79.25 78.62 78.62
3 67.38 66.16 68.61 67.53 67.38 66.16 68.61 67.53

AST tree of the predicted code is the same as the label code, whereas CodeBLEU
measures the similarity of the predicted code to the reference code. We find
that feedback, especially verification feedback, can help improve models’ AST
accuracy but not necessarily CodeBLEU scores.

D.5 Efficiency

Besides models’ planning performance, we also kept track of their token usage
(Table 13) and numbers of conversation turns (Table 12). As expected, step-by-
step planning generally requires more conversation turns and more tokens than
multi-step planning. Similarly, feedback also increases token usage.

E Evaluation of plan execution outputs

E.1 Human evaluation

Since m&m’s consists of open-ended queries, which do not always have one
single final answer, it is challenging to evaluate the execution results of the
plans automatically. Thus, we resort to human evaluation of a small subset of
85 examples with reasonable execution results. Our manual evaluation reveals
that GPT-4 achieves the best execution accuracy with multi-step planning and
JSON-format generation compared to step-by-step planning or code generation
(Table 14).

m&ms 11

Table 10: Plan accuracy by number of tools with step-by-step planning

Plan accuracy (tool) (tool + argname)
model # of tools P PV PE PVE P PV PE PVE

Llama-2-7b
1 14.29 24.29 34.29 32.86 14.29 24.29 34.29 32.86
2 0.00 0.63 2.52 3.14 0.00 0.63 2.52 3.14
3 0.00 0.31 0.15 0.15 0.00 0.31 0.15 0.15

Llama-2-13b
1 11.43 32.86 31.43 35.71 10.00 32.86 31.43 35.71
2 1.89 0.63 5.03 6.29 1.89 0.63 5.03 6.29
3 0.00 0.61 0.46 1.38 0.00 0.61 0.46 1.38

Mixtral-8x7B
1 40.00 67.14 51.43 52.86 40.00 67.14 51.43 52.86
2 22.64 30.19 28.93 32.70 22.64 30.19 28.93 32.70
3 2.91 5.21 6.43 6.58 2.91 5.21 6.43 6.58

Gemini-pro
1 52.86 78.57 62.86 55.71 52.86 78.57 62.86 55.71
2 36.48 10.69 42.77 42.14 35.85 10.69 42.77 42.14
3 18.99 5.97 23.74 22.36 18.53 5.97 23.58 22.36

GPT-3.5-turbo-0125
1 67.14 72.86 32.86 31.43 67.14 72.86 32.86 31.43
2 28.93 18.87 37.74 37.74 28.93 18.87 37.74 37.74
3 11.79 7.81 12.40 13.32 11.79 7.81 12.40 13.32

GPT-4-0125-preview
1 84.29 82.86 80.00 84.29 84.29 82.86 80.00 84.29
2 70.44 70.44 71.70 72.96 70.44 70.44 71.70 72.96
3 57.12 56.20 44.10 45.02 57.12 56.20 44.10 45.02

Table 11: Code-specific metrics. We present the AST accuracy and CodeBLEU
score of models under multi-step planning with code generation with or without feed-
back.

AST accuracy CodeBLEU
model P PV PE PVE P PV PE PVE
Llama-2-7b 0.00 0.00 0.00 0.00 22.64 21.28 17.58 21.19
Llama-2-13b 0.11 0.23 0.00 0.00 29.96 27.09 20.29 27.62
Mixtral-8x7B 2.04 3.06 4.22 2.30 54.17 48.48 53.01 47.21
Gemini-pro 3.85 5.33 3.74 4.54 62.37 61.13 59.00 59.18
GPT-3.5-turbo-0125 3.29 4.76 3.29 4.42 60.79 60.32 58.96 59.99
GPT-4-0125-preview 4.31 5.10 4.42 5.33 68.52 68.37 68.68 68.51

E.2 Automatic evaluation

Nevertheless, as human evaluation is not scalable, we have also implemented
automatic evaluation, which uses the groundtruth plans’ final outputs as the
golden answers and compares the predicted plans’ results against them. Our
implementation invokes different metrics (all in [0,1]) based on the outputs’
modality: cosine similarity with SentenceBERT embeddings for texts, and CLIP
embeddings for images and Average Precision for predicted objects. We report
the average accuracy on 210 queries with plans that yield good and deterministic
outputs in Tables 15 and 16.

Similar to our planning evaluation, most models achieve the best execution
accuracy in multi-step planning with JSON format generation except for LLama-
7b and Gemini-pro, where step-by-step planning leads to higher execution accu-
racy (Table 15). In addition, we also observe that verification and/or execution
feedback do lead to some improvement (up to 10+%) in execution accuracy

12 Ma et al.

Table 12: Average turn count. We present the average number of conversation turns
in step-by-step and multi-step planning with JSON-format generation and different
types of feedback.

Average # of turns
model strategy N/A P PV PE PVE

Llama-2-7b step-by-step 2.00 3.54 4.03 3.26 3.52
multi-step 1.00 1.10 2.18 1.95 1.99

Llama-2-13b step-by-step 2.87 2.87 3.09 3.06 2.99
multi-step 1.00 1.04 1.98 1.91 1.97

Mixtral-8x7B step-by-step 2.98 6.37 5.55 6.02 6.09
multi-step 1.00 1.14 2.43 2.74 2.81

Gemini-pro step-by-step 2.31 3.01 2.28 3.67 3.78
multi-step 1.00 1.20 1.84 1.80 1.88

GPT-3.5-turbo-0125 step-by-step 2.40 3.39 4.10 5.43 5.30
multi-step 1.00 1.02 1.36 1.46 1.62

GPT-4-0125-preview step-by-step 3.22 3.52 3.51 3.59 3.59
multi-step 1.00 1.00 1.05 1.06 1.07

Table 13: Average number of input and output tokens

Avg # of input tokens Avg # of output tokens
model strategy N/A P PV PE PVE N/A P PV PE PVE

Llama-2-7b step-by-step 5497.25 20627.60 22021.08 14356.79 13562.25 108.54 659.02 673.01 436.63 432.34
multi-step 2184.19 3065.88 10215.74 6792.83 8570.81 273.65 320.95 735.02 478.79 636.73

Llama-2-13b step-by-step 13084.77 14793.73 13962.84 11498.10 13025.18 535.74 620.00 495.34 446.56 489.17
multi-step 2184.19 2651.22 8141.48 7375.54 8309.38 326.91 345.01 738.19 648.41 753.93

Gemini-pro step-by-step 5661.28 7651.78 5653.98 10136.36 10560.46 115.70 171.22 96.98 216.03 232.53
multi-step 2184.19 3062.00 4962.19 4786.80 5022.53 86.12 155.05 219.64 216.77 225.45

GPT-3.5-turbo-0125 step-by-step 5891.36 8938.04 11693.37 16497.09 15966.33 109.61 189.53 207.51 317.43 318.30
multi-step 2184.19 2247.54 3199.10 3502.05 4017.90 96.24 99.47 136.24 149.94 166.76

GPT-4-0125-preview step-by-step 8046.55 8852.87 8832.17 9601.61 9618.19 166.17 172.37 171.03 235.51 236.76
multi-step 2184.19 2184.19 2318.98 2331.06 2354.78 102.28 103.49 110.55 107.74 111.09

compared to parsing feedback only, with only one exception in GPT-4 with ex-
ecution feedback where the execution accuracy is comparable but not better
(Table 16). Overall, these results suggest our execution output evaluation aligns
well with our planning evaluation, providing further evidence to support our
findings on the positive effects of multi-step planning, JSON-format generation
and feedback.

References

1. Shen, Y., Song, K., Tan, X., Zhang, W., Ren, K., Yuan, S., Lu, W., Li, D., Zhuang,
Y.: Taskbench: Benchmarking large language models for task automation. arXiv
preprint arXiv:2311.18760 (2023)

m&ms 13

Table 14: Human evaluation of execution outputs. We present the execution
accuracy of GPT-4 and Mixtral-8x7B on a selected subset of 85 examples across dif-
ferent setups, including step-by-step and multi-step planning, with JSON-format and
code generation, and different types of feedback.

model strategy format feedback accuracy
Mixtral-8x7B multi-step JSON P 42.94± 1.76
GPT-4-0125-preview step-by-step JSON P 49.41± 1.18
GPT-4-0125-preview multi-step Code P 61.18± 0.0
GPT-4-0125-preview multi-step JSON PVE 64.12± 2.94
GPT-4-0125-preview multi-step JSON P 70.00± 6.47

Table 15: Automatic evaluation of execution outputs. We present the execution
accuracy of models in step-by-step and multi-step planning and with JSON-format and
code generation.

model strategy format accuracy

Llama-2-7b
step-by-step JSON 10.52
multi-step JSON 7.54
multi-step code 1.45

Llama-2-13b
step-by-step JSON 9.17
multi-step JSON 12.27
multi-step code 7.43

Mixtral-8x7B
step-by-step JSON 34.16
multi-step JSON 42.28
multi-step code 34.03

Gemini-pro
step-by-step JSON 45.74
multi-step JSON 44.25
multi-step code 34.28

GPT-3.5-turbo-0125
step-by-step JSON 38.36
multi-step JSON 49.47
multi-step code 42.85

GPT-4-0125-preview
step-by-step JSON 50.86
multi-step JSON 60.51
multi-step code 54.49

Table 16: Automatic evaluation of execution outputs with feedback. We
present the execution accuracy of models in multi-step planning with various feedback.

model P PV PE PVE
Llama-2-7b 7.54 13.54 8.90 8.51
Llama-2-13b 12.27 25.44 22.58 16.29
Mixtral-8x7B 42.28 45.57 46.19 42.92
Gemini-pro 44.25 51.72 49.47 55.18
GPT-3.5-turbo-0125 49.47 55.23 55.12 55.26
GPT-4-0125-preview 60.51 60.72 59.07 61.73

14 Ma et al.

TOOL LIST #:

text generation: It takes an input text prompt and outputs a text that is most likely to follow the input text. Its input includes text, and output
includes text.

text summarization: it takes a paragraph of text and summarizes into a few sentences. Its input includes text, and output includes text.
text classification: It takes a text and classifies it into a category in the model's vocabulary (e.g. positive or negative based on its sentiment).
Its input includes text, and output includes text.

question answering: It takes a text and a question, and outputs an answer to that question based on the text. Its input includes text, question,
and output includes text.

image generation: It takes a text prompt and generates an image that matches the text description. Its input includes text, and output includes
image.

image captioning: It takes an image and generates a text caption of the image. Its input includes image, and output includes text.
optical character recognition: It takes an image and outputs recognized texts in the image. Its input includes image, and output includes text.
image classification: It takes an image and classifies the subject in the image into a category such as cat or dog. Its input includes image, and
output includes text.

image editing: It takes an image and a text prompt and outputs a new image based on the text. Its input includes image, prompt, and output
includes image.

object detection: It takes an image and outputs rectangular bounding boxes of objects detected in the image. Its input includes image, and
output includes image, objects.

image segmentation: It takes an image, segments it into different parts, and outputs segmentation masks of any shape for the parts. Its input
includes image, and output includes image, objects.

automatic speech recognition: It takes an audio file and produces a transcription of the audio. Its input includes audio, and output includes
text.

visual question answering: It takes an image and a question about the image, and generates an answer to the question. Its input includes
image, question, and output includes text.

image crop: It takes an image and 4 numbers representing the coordinates of a bounding box and crops the image to the region within the box.
Its input includes image, object, and output includes image.

image crop left: It takes an image, crops and keeps the left part of the image. Its input includes image, and output includes image.
image crop right: It takes an image, crops and keeps the right part of the image. Its input includes image, and output includes image.
image crop top: It takes an image, crops and keeps the top part of the image. Its input includes image, and output includes image.
image crop bottom: It takes an image, crops and keeps the bottom part of the image. Its input includes image, and output includes image.
background blur: It takes an image and one or multiple objects in the foreground, and returns an image where the backgroud is blurred. Its
input includes image, object, and output includes image.

color pop: It takes an image and one or multiple objects, and returns an image where only the object is colored and the rest is black and white.
Its input includes image, object and output includes image.

count: It takes a list of objects and returns the count of the objects. Its input includes objects, and output includes number.
tag: It takes an image and a list of objects with their bounding boxes and classes, and tags all the objects Its input includes image, objects, and
output includes image.

select object: It takes a list of objects, and selects the object based on the input object name. Its input includes objects, object_name, and
output includes object.

emoji: It takes an image and the bounding box coordinates of one or multiple objects, and replaces the object with an emoji (e.g. angry/
flushed/crying/dizzy/sleepy/grimacing/kissing/smiling_face, alien, ghost, goblin etc). Its input includes image, object, emoji, and output
includes image.

get date fact: It provides interesting facts about dates. Its input includes date, and output includes text.

get year fact: It provides interesting facts about years. Its input includes year, and output includes text.

get math fact: It provides interesting math facts about numbers. Its input includes number, and output includes text.
get trivia fact: It provides interesting trivia facts about number. Its input includes number, and output includes text.
love calculator: Enter your name and the name of your partner/lover/crush to find Love compatibility & chances of successful love relationship.
Its input includes first_name, second_name, and output includes number.

get location: Convert a city name or address to geographical coordinates using OpenStreetMap's Nominatim API. Its input includes city, and
output includes lon, lat.

search movie: Retrieve basic movie information, including title, year, genre, and director. Its input includes movie_title, movie_year, and output
includes text.

get weather: Provides weather forecast data based on specific geographical coordinates. Its input includes lon, lat, and output includes
objects.

wikipedia simple search: Perform a basic search query on Wikipedia to retrieve a summary of the most relevant page. Its input includes text,
and output includes text.

GOAL #: Based on the above tools, I want you to generate the task nodes to solve the # USER REQUEST #. The format must be in a strict
JSON format, like: {"nodes": [{"id": an integer id of the tool, starting from 0, "name": "tool name must be from # TOOL LIST #", "args": { a
dictionary of arguments for the tool. Either original text, or user-mentioned filename, or tag '<node-j>.text' (start from 0) to refer to the text
output of the j-th node. }}]}

REQUIREMENTS #:

1. the generated tool nodes can resolve the given user request # USER REQUEST # perfectly. Tool name must be selected from # TOOL LIST #;

2. The arguments of a tool must be the same number, modality, and format specified in # TOOL LIST #;

3. Use as few tools as possible.

EXAMPLE #:

USER REQUEST #: "Based on reading the article titled 'Would you rather have an Apple Watch - or a BABY?', generate an extended paragraph
on the topic."

RESULT #: {"nodes": [{"id": 0, "name": "text generation", "args": {"text": "an extended paragraph on the topic: Would you rather have an Apple
Watch - or a BABY?"}}]}

EXAMPLE #:

USER REQUEST #: "Could you take the image, specifically 'image 17320.jpg', and adjust it so the green ball in the picture becomes blue, then
describe for me what the resulting

image looks like?"

RESULT #: {"nodes": [{"id": 0, "name": "image editing", "args": {"image": "17320.jpg", "prompt": "change the green ball to blue"}}, {"id": 1,
"name": "image captioning", "args: {"image": "<node-0>.image"}}]}

EXAMPLE #:

USER REQUEST #: "Could you provide a brief summary of the key points discussed in the audio file '1995-1826-0002.flac' about John Taylor
and his interest in cotton? And then, can you also help me create a vivid illustration based on the key points?"

RESULT #: {"nodes": [{"id": 0, "name": "automatic speech recognition", "args": {"audio": "1995-1826-0002.flac"}}, {"id": 1, "name": "text
summarization", "args": {"text": "<node-0>.text"}}, {"id": 2, "name": "image generation", "args": {"text": "a vivid illustration based on
<node-1>.text"}}]}

USER REQUEST #: "I need to give a quick presentation for kindergarteners on 'Why is the sky blue?'. I don't really have time to sift through
lots of complex information and I need simple, straightforward explanations with a relevant image that kids can understand. Can you assist me
with that?"

Now please generate your result in a strict JSON format:

RESULT #:

Fig. 6: Multi-step planning prompt. We present the full prompt used for multi-
step planning.

m&ms 15

TOOL LIST #:

text generation: It takes an input text prompt and outputs a text that is most likely to follow the input text. Its input includes text, and output
includes text.

text summarization: it takes a paragraph of text and summarizes into a few sentences. Its input includes text, and output includes text.

text classification: It takes a text and classifies it into a category in the model's vocabulary (e.g. positive or negative based on its sentiment).
Its input includes text, and output includes text.

question answering: It takes a text and a question, and outputs an answer to that question based on the text. Its input includes text,
question, and output includes text.

image generation: It takes a text prompt and generates an image that matches the text description. Its input includes text, and output
includes image.

......

GOAL #: Based on the above tools, I want you to reason about how to solve the # USER REQUEST # and generate the actions step by step.

REQUIREMENTS #:

1. The thoughts can be any free form texts to help with action generation;

2. The action must follow this JSON format strictly: {"id": an integer id of the tool, starting from 0, which should be the same as the id of the
ACTION "name": "tool name must be from # TOOL LIST #", "args": { a dictionary of

arguments for the tool. Either original text, or user-mentioned filename, or tag '<node-j>.text' (start from 0) to refer to the text output of the
j-th node. }};

3. The arguments of a tool must match the number, modality, and format of the tool's arguments specified in # TOOL LIST #.

EXAMPLE #:

USER REQUEST #: "Based on reading the article titled 'Would you rather have an Apple Watch - or a BABY?', generate an extended
paragraph on the topic."

RESULT #:

THOUGHT 0: First, I need to perform text generation.

ACTION 0: {"id": 0, "name": "text generation", "args": {"text": "Would you rather have an Apple Watch - or a BABY?"}}

EXAMPLE #:

USER REQUEST #: "Could you take the image, specifically 'image 17320.jpg', and adjust it so the green ball in the picture becomes blue,
then describe for me what the resulting

image looks like?"

RESULT #:

THOUGHT 0: First, I need to perform image editing.

ACTION 0: {"id": 0, "name": "image editing", "args": {"image": "17320.jpg", "prompt": "change the green ball to blue"}}

OBSERVATION 0: {'image': 'an image with a blue ball in it'}

THOUGHT 1: Based on the user query and OBSERVATION 0, then, I need to perform image captioning.

ACTION 1: {"id": 1, "name": "image captioning", "args": {"image": "<node-0>.image"}}

EXAMPLE #:

USER REQUEST #: "Could you provide a brief summary of the key points discussed in the audio file '1995-1826-0002.flac' about John
Taylor and his interest in cotton? And then, c

an you also help me create a vivid illustration based on the key points?"

RESULT #:

THOUGHT 0: First, I need to perform automatic speech recognition.

ACTION 0: {"id": 0, "name": "automatic speech recognition", "args": {"audio": "1995-1826-0002.flac"}}

OBSERVATION 0: {'text': 'John Taylor, who had supported her through college, was interested in cotton.'}

THOUGHT 1: Based on the user query and OBSERVATION 0, then, I need to perform text summarization.

ACTION 1: {"id": 1, "name": "text summarization", "args": {"text": "<node-0>.text"}}

OBSERVATION 1: {'text': 'John Taylor was interested in cotton.'}

THOUGHT 2: Based on the user query and OBSERVATION 1, then, I need to perform image generation.

ACTION 2: {"id": 2, "name": "image generation", "args": {"text": "a vivid illustration based on <node-1>.text"}}

USER REQUEST #: I came across a term - 'Juneteenth' in a book. To better comprehend the context, can I have a summarized information
about 'Juneteenth' along with a visual depi

ction of it?

Now please generate only THOUGHT 0 and ACTION 0 in RESULT:

RESULT #:

Fig. 7: Step-by-step planning prompt. We present the full prompt used for step-
by-step planning.

16 Ma et al.

TOOL LIST #:

text_generation(text) -> text: It takes an input text prompt and outputs a text that is most likely to follow the input text.

text_summarization(text) -> text: it takes a paragraph of text and summarizes into a few sentences.

text_classification(text) -> text: It takes a text and classifies it into a category in the model's vocaburary (e.g. positive or negative based on its
sentiment).

question_answering(text, question) -> text: It takes a text and a question, and outputs an answer to that question based on the text.

image_generation(text) -> image: It takes a text prompt and generates an image that matches the text description.

image_captioning(image) -> text: It takes an image and generates a text caption of the image.

optical_character_recognition(image) -> text: It takes an image and outputs recognized texts in the image.

image_classification(image) -> text: It takes an image and classifies the subject in the image into a category such as cat or dog.

image_editing(image, prompt) -> image: It takes an image and a text prompt and outputs a new image based on the text.

object_detection(image) -> image, objects: It takes an image and outputs rectangular bounding boxes of objects detected in the image.

image_segmentation(image) -> image, objects: It takes an image, segments it into different parts, and outputs segmentation masks of any
shape for the parts.

automatic_speech_recognition(audio) -> text: It takes an audio file and produces a transcription of the audio.

visual_question_answering(image, question) -> text: It takes an image and a question about the image, and generates an answer to the
question.

image_crop(image, object) -> image: It takes an image and 4 numbers representing the coordinates of a bounding box and crops the image to
the region within the box.

image_crop_left(image) -> image: It takes an image, crops and keeps the left part of the image.

image_crop_right(image) -> image: It takes an image, crops and keeps the right part of the image.

image_crop_top(image) -> image: It takes an image, crops and keeps the top part of the image.

image_crop_bottom(image) -> image: It takes an image, crops and keeps the bottom part of the image.

background_blur(image, object) -> image: It takes an image and one or multiple objects in the foreground, and returns an image where the
backgroud is blurred.

color_pop(image, object) -> image: It takes an image and one or multiple objects, and returns an image where only the object is colored and
the rest is black and white.

count(objects) -> number: It takes a list of objects and returns the count of the objects.

tag(image, objects) -> image: It takes an image and a list of objects with their bounding boxes and classes, and tags all the objects

select_object(objects, object_name) -> object: It takes a list of objects, and selects the object based on the input object name.

emoji(image, object, emoji) -> image: It takes an image and the bounding box coordinates of one or multiple objects, and replaces the object
with an emoji (e.g. angry/flushed/crying/dizzy/sleepy/grimacing/kissing/smiling_face, alien, ghost,

goblin etc).

get_date_fact(date) -> text: It provides interesting facts about dates.

get_year_fact(year) -> text: It provides interesting facts about years.

get_math_fact(number) -> text: It provides interesting math facts about numbers.

get_trivia_fact(number) -> text: It provides interesting trivia facts about number.

love_calculator(first_name, second_name) -> number: Enter your name and the name of your partner/lover/crush to find Love compatibility &
chances of successful love relationship.

get_location(city) -> lon, lat: Convert a city name or address to geographical coordinates using OpenStreetMap's Nominatim API.

search_movie(movie_title, movie_year) -> text: Retrieve basic movie information, including title, year, genre, and director.

get_weather(lon, lat) -> objects: Provides weather forecast data based on specific geographical coordinates.

wikipedia_simple_search(text) -> text: Perform a basic search query on Wikipedia to retrieve a summary of the most relevant page.

GOAL #: Based on the above tools, I want you to generate a python program to solve the # USER REQUEST #.

REQUIREMENTS #:

1. the generated program can resolve the given user request # USER REQUEST # perfectly. The functions must be selected from # TOOL LIST
#;

2. The arguments of a function must be the same number, modality, and format specified in # TOOL LIST #;

3. Use as few tools as possible.

EXAMPLE #:

USER REQUEST #: "Based on reading the article titled 'Would you rather have an Apple Watch - or a BABY?', generate an extended paragraph
on the topic."

RESULT #: ```python

def solve():

 output0 = text_generation(text="an extended paragraph on the topic: Would you rather have an Apple Watch - or a BABY?")

 result = {0: output0}

 return result

```

# EXAMPLE #:

# USER REQUEST #: "Could you take the image, specifically 'image 17320.jpg', and adjust it so the green ball in the picture becomes blue, then 
describe for me what the resulting image looks like?"

# RESULT #: ```python

def solve():

    output0 = image_editing(image="17320.jpg", prompt="change the green ball to blue")

    output1 = image_captioning(image=output0['image'])

    result = {0: output0, 1: output1}

    return result

```

EXAMPLE #:

USER REQUEST #: "Could you provide a brief summary of the key points discussed in the audio file '1995-1826-0002.flac' about John Taylor
and his interest in cotton? And then, can you also help me create a vivid illustration based on the ke

y points?"

RESULT #: ```python

def solve():

 output0 = automatic_speech_recognition(audio="1995-1826-0002.flac")

 output1 = text_summarization(text=f"{output0['text']}")

 output2 = image_generation(text=f"a vivid illustration based on {output1['text']}")

 result = {0: output0, 1: output1, 2: output2}

 return result

```



# USER REQUEST #: "I need to give a quick presentation for kindergarteners on 'Why is the sky blue?'. I don't really have time to sift through 
lots of complex information and I need simple, straightforward explanations with a relevant image that kids can understand. Can you assist me 
with that?"  

Now please generate your program enclosed in ```python ```:

Fig. 8: Code generation prompt. We present the full prompt used for code gener-
ation.


	0.05[width=]figures/MMsgreensingle.pdf m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks

