
m
m
ulti-step
ulti-modal

m’s m&m’s: A Benchmark to Evaluate Tool-Use
for multi-step multi-modal Tasks

Zixian Ma1, Weikai Huang1, Jieyu Zhang1, Tanmay Gupta2, Ranjay Krishna1,2

1 University of Washington
2 Allen Institute of Artificial Intelligence

Abstract. Real-world multi-modal problems are rarely solved by a sin-
gle machine learning model, and often require multi-step computational
plans that involve stitching several models. Tool-augmented LLMs hold
tremendous promise for automating the generation of such computa-
tional plans. However, the lack of standardized benchmarks for evaluat-
ing LLMs as planners for multi-step multi-modal tasks has prevented a
systematic study of planner design decisions. Should LLMs generate a full
plan in a single shot or step-by-step? Should they invoke tools directly
with Python code or through structured data formats like JSON? Does
feedback improve planning? To answer these questions and more, we in-
troduce m&m’s: a benchmark containing 4K+ multi-step multi-modal
tasks involving 33 tools that include multi-modal models, (free) public
APIs, and image processing modules. For each of these task queries,
we provide automatically generated plans using this realistic toolset.
We further provide a high-quality subset of 1,565 task plans that are
human-verified and correctly executable. With m&m’s, we evaluate 10
popular LLMs with 2 planning strategies (multi-step vs. step-by-step
planning), 2 plan formats (JSON vs. code), and 3 types of feedback
(parsing/verification/execution). Finally, we summarize takeaways from
our extensive experiments and provide practical recommendations for
designing planners for multi-step multi-modal tasks. Our dataset and
evaluation code are available on HuggingFace3 and Github4 respectively.

1 Introduction

Planning agents—powered by large language models (LLMs)—are becoming in-
creasingly proficient at decomposing user-specified tasks into a series of subtasks,
where each subtask is executed by invoking tools. For example, if a user wants
to learn about a new piece of clothing in an image, the LLM planner can create
a plan with multiple steps: first, it invokes an image classification tool to identify
the clothing as a “kimono”; once identified, it can issue a Wikipedia search query
to explain the cultural relevance of the kimono (Figure 1 first row).

LLM planning agents typically consist of an LLM and a set of tools to plan
over. Given an LLM and toolset, the design space of planning agents is extremely
3 https://huggingface.co/datasets/zixianma/mms
4 https://github.com/RAIVNLab/mms



2 Ma et al.

Image 

gen.

Object 

det.

Object 

det.

Tag

EmojiSelect 

object

Wiki. 
search

I need an illustration for my children's 
book. I've imagined a scene where 
there's a large group of little kids and 
adults at a long table with blue plates. 
After we have the image, we also need 
to identify all the objects, then add 
labels to them.

{'bbox': 
[933.94, 
342.2, 
1021.93, 
464.92], 
'label': 
'person'}...

I have an audio file '8455.flac' and it 
seems to describe an event. Can you tell 
me where did this event take place 
based on the content?

ASR

8455.flac

On arriving at home at my own 
residence, I found that our salon 
was filled with a brilliant company.

Q: where did this event take place?

my own 
residence

Barry Jenkins

{'bbox':
[196.89, 
138.1, 
270.09, 
285.9], 
'label': 'dog'}

a large group of 
little kids and 
adults at a long 
table with blue 
plates for a 
children's book

I've got an image 2329676.jpg. Could 
you find and highlight the dog in the 
picture, by replacing it with a 
smiling_face emoji? I think it would be 
great for my upcoming blog post on 
traveling with pets.

{'bbox':[-0.2, 
274.85, 
493.75, 
496.75], 
'label': 
'truck'}...

Title: Moonlight; Year: 2016; Genre: 
Drama, Director: Barry Jenkins; Plot: 
A young African-American man ...

Q: Who directs it?

Search 

movie QA

QA

I just heard about a movie called 
Moonlight that released in 2016. Can you 
find out some details about this movie 
and then tell me who directed it?

Moonlight

(2016)

I have an image '08773.jpg', and I'd like 
to know more about what's in the image. 
Once you determine that, can you 
provide me with a brief overview of the 
subject from Wikipedia ?

Image 

cls.

The kimono (きもの/着物, lit. 'thing 
to wear') is a traditional Japanese 
garment and the national dress of 
Japan.

kimono

User Query Executed Plan

Fig. 1: We present examples of query-plan pairs along with the execution results of
the plans in m&m’s. Our benchmark contains a large quantity of diverse user queries
involving three modalities (i.e. text, image, and audio) as well as human-verified plans
that consist of 1 - 3 tools across three categories: multi-modal machine learning models
(blue), public APIs (red) and image processing modules (yellow).

rich, involving many decisions such as planning strategy (e.g. generation of the
whole plan vs one step of the plan at a time), forms of feedback (e.g. no feedback
or parsing/verification/execution feedback), and plan format (e.g. JSON strings
that specify tools and arguments vs free-form Python code).

Unfortunately, there is no existing planning benchmark that supports evalua-
tion along this combinatorially rich design space with a realistic set of multimodal
tools. Recent concurrent benchmarks such as ToolEmu and TaskBench [21, 24]
provide user queries and ground truth plans but lack support for realistic plan
execution. For instance, TaskBench assumes that a list of tools is available for
planning without providing implementation of them. TaskBench also does not
instantiate the queries with actual inputs and uses placeholder input filenames
like “example.png” that do not exist. ToolEmu likewise uses LLMs to emulate
tool execution instead of providing tool implementations. The lack of actual im-
plementations of tools and real execution feedback while planning makes the
study of the design space elucidated above unrealistic at best, if not impossible.

Motivated by this dire need for a standardized benchmark for studying the
design space of multi-step multi-modal planning agents, we first propose the
m&m’s benchmark. m&m’s contains 4K+ realistic user tasks and automatically
generated task plans. 1565 of these task plans are human-verified and executable
with 33 curated tools consisting of multi-modal models, (free) public APIs, and
image processing modules.



m&ms 3

Table 1: Compared to previous tool planning benchmarks, m&m’s contains multi-
modal queries that are more realistic and executable. *: MetaTool only considers Open
AI plugins as tools. #: The queries of TaskBench contain textural placeholder of other
modality data such as images, while queries of m&m’s come with real images.

ToolBench ToolEmu TaskBench MetaTool m&m’s
[18] [21] [24] [9] (ours)

Query Real multi-modal inputs? ✗ ✗ ✗# ✗ ✓

Verified by human? ✗ ✓ ✓ ✓ ✓

Tools Are all tools executable? ✓ ✗ ✗ ✓ ✓

Multi-modal models ✗ ✗ ✓ ✗∗ ✓

Plan Format JSON JSON JSON JSON JSON/Code

Scale Number of unique tools 3,451 36 103 390 33
Number of queries 126k 144 17K 20k 1.5k

Next, we use m&m’s to systematically study the impact of 2 planning strate-
gies (step-by-step and multi-step), 3 kinds of feedback (parsing, verification and
execution), and 2 plan formats (JSON and code). Through extensive experi-
mentation with 10 LLMs – 5 popular open-source LLMs, 2 code LLMs and 3
proprietary LLMs of varying sizes – we provide a series of findings:

First, existing LLMs instructed to perform multi-step planning consistently
outperform step-by-step planning on m&m’s tasks, although the performance
gap is smaller with more capable larger models such as Llama-3-70B and GPT-
4. Second, verification and execution feedback improve LLMs’ ability to generate
overall executable plans and predict the correct argument names but don’t neces-
sarily improve their tool selection ability. We also observe a smaller improvement
from verification/execution feedback on larger models such as Llama-3-70B and
GPT-4, which already obtain relatively high scores with only parsing feedback.
Third, LLMs perform comparably on tool prediction with JSON-format and
Python code generation, but most models produce more executable plans with
JSON-format generation. Nonetheless, this gap in executability is smaller for
code LLMs such as CodeLlama-34B and 70B. Taken together, our experiments
suggest that for multi-step multi-modal tasks, multi-step planning in JSON with
feedback can result in the best overall tool-use performance compared to step-
by-step planning, code generation, or the same setup without feedback.

2 Related work

We situate our work amongst the ever-growing number of tool-use research.
Planning evaluations. Although many tool-use variants have been proposed,
evaluating LLMs on tool-use still lacks a standardized protocol. For instance,
VisProg and ViperGPT evaluate their plan’s executions on vision tasks using a
Python-like code format [7, 28]. HuggingGPT evaluates only the plan accuracy
(did the agent choose the right tools) without executing the proposed plans [23].
ToolFormer [22] and ToolLLaMA [18] both use natural language instead of code



4 Ma et al.

to interface with tools; while ToolFormer generates a multi-step plan all at once
and evaluates the program’s execution, ToolLLaMA generates the plan step-
by-step, with self-feedback to correct mistakes. ToolLLaMA evaluates only the
plans while ToolFormer evaluates both plans and executions. Unfortunately,
no single benchmark evaluates planning agents along this combinatorial design
space, which is what we contribute.
Tool-use benchmarks. Today, tool-use evaluation is spread out across a num-
ber of diverse benchmarks, including HotpotQA, WebShop, GQA, RefCOCO,
and NLVR [10,11,26,35,36]. None of these contains ground truth plans, conflat-
ing planning errors with execution error. In other words, it is hard to separate
whether an LLM failed to propose the correct plan or whether one of the tools
used in the plan failed. In response, recent concurrent efforts have proposed new
benchmarks, such as ToolEmu, TaskBench, and GAIA [15,21,24]. They do con-
tain ground truth plans but fail to support evaluating plans’ execution results.
Planning strategies. There are multiple strategies for planning. For instance,
Psychology literature reveals that people rarely plan tasks in their entirety due
to the cognitive cost of planning long-range tasks [3]. Instead, they plan the first
couple of subtasks, and execute them before planning the rest [1,3]. In the tool-
use literature, we identify two primary forms of planning strategies: step-by-step
planning [5,18,38] and multi-step planning [7,23,28]. Similar to people, step-by-
step planning generates plans sequentially with one subtask at a time. By con-
trast, multi-step planning creates the entire plan before executing any subtask.
Unfortunately, these two strategies have not been systematically compared; we
systematically compare both across multiple open-source and close-source LLMs.
Feedback mechanisms. LLM planners make mistakes, stitching together tools
that fail to execute or worse, fail to compile. Although human feedback is one
mechanism to align plans with human expectations and preferences [2,31], they
require real users, making evaluation stochastic. However, there have been several
automatic mechanisms that can improve plans [30, 39]. For instance, syntactic
mistakes can easily be detected using external verifiers and can guide planners
to iterate on their plans [8, 14, 16, 25]. Others require examining the output of
individual subtask executions [20, 27, 29, 38, 41]. In this work, we compare plan
parsing/verification feedback as well as tool execution feedback.

3 m&m’s: the benchmark

To facilitate the study of LLM planners for multi-step multi-modal tasks, we
curate the m&m’s benchmark. Before describing the dataset generation process,
we first formalize the tool-planning problem in Sec 3.1. We then describe our
benchmark creation process in Sec. 3.2 and present dataset statistics in Sec. 3.3.

3.1 Formalizing multi-step multi-modal tool-use

Given a tool set T , and the user query Q, a planner is required to produce a plan
P that consists of a sequence of tool invocations P = [t1({ak1 = vk1}k), t2({ak2 =



m&ms 5

Input example sampling User query generation

Rule-based plan generation Human verificationTool graph sampling

16611.jpg
16611.jpg

I have this old photo labeled '16611.jpg' and I'm not quite sure 
what's in it. Can you identify what's in the image and then find 
me some quick and simple information about it on Wikipedia?

Image 

cls.

Wiki.

 search

Image 

cls.

Wiki.

 search

JSON Python code

A

B

Fig. 2: Data generation pipeline. As shown in panel A, our generation process
consists of five main steps: input example sampling, tool graph sampling, user query
generation with GPT-4, rule-based plan generation, and human verification. Panel B
showcases an instantiation of this process with a real example.

vk2}k), · · · , tm({akm = vkm}k)], where tj represents the jth tool in the plan, and akj ,
and vkj represent tool tj ’s kth argument name and value respectively. Note that
the output of tj may be used as argument values for subsequent tools tj+1:m.
m&m’s contains a set of N query-plan pairs, i.e., {(Qi,Pi)}i∈[N ] with each plan
composed of executable tools chosen from a curated set of API-calling functions,
multi-modal models, and image processing modules.

3.2 Dataset generation

To create such a dataset, our data generation process consists of five ma-
jor steps: 1 We construct a valid tool graph with all the tools and sample a
subgraph from it as a sequence of tools in the target plan; 2 To instantiate
the tool plan with inputs, we pair plans with real inputs (e.g., images) from
existing datasets based on the first tool in the plan; 3 To generate the user
query, we prompt GPT-4 with the tool graph and input pair to generate realistic
user queries with few-shot demonstrations; 4 We transform the tool graph and
input pair to a fully specified JSON plan (tool names with corresponding argu-
ment names and values) with a rule-based program. Additionally, we map the



6 Ma et al.

JSON-format plans to Python code to support code generation evaluation; 5
Finally, three human annotators verify whether each plan can solve the corre-
sponding user query. To obtain the final tool-balanced human-verified subset, we
discard some plans from the initial human-verified set to avoid an overwhelming
representation of any tool.
1 Tool graph sampling. We first create a directed graph with all 33 tools

as the nodes and edges denoting valid connections between nodes. A connection
is valid only if the output of the source tool matches the expected input type of
the target tool. For example, there is an edge between image classification
and wikipedia simple search, because the output of image classification
- a text label - is a valid input type for wikipedia simple search. We then
sample subgraphs from the full tool graph to obtain tool sequences with valid
tool dependencies.
2 Input example sampling. We now need to instantiate queries with real

input examples. To do so, we first collect real-world examples from the valida-
tion sets of 11 existing datasets, including ImageNet [4], SQUAD [19], Visual
Genome [12], MagicBrush [40], librispeech [17]. Then, to pair a tool graph sam-
pled in the previous step with an input, we randomly sample an input based on
the input type needed for the first tool in the graph. For example, if the first
tool in a tool sequence is image classification, we randomly sample an image
(e.g. “16611.jpg”) from ImageNet as the input.
3 Query generation. With a set of tool sequences and input examples to the

first tools, we prompt GPT-4 to generate realistic user queries. Concretely, we
randomly sample five different input examples for each tool sequence and ask
GPT-4 to generate two queries for each tool sequence with the same input (See
Appendix for the full prompt).
4 Plan generation. For plan generation, we write a rule-based program to

generate a plan (i.e. an ordered list of tool names with corresponding argument
names and values fully specified) for each query. Each step in the plan contains
an id, tool name, and an argument dictionary with this tool’s argument names
as the keys and argument values as values. We populate each node’s ID and
name based on the sampled tool sequence and fill in the argument names for
each tool using a pre-defined metadata document. We also fill in the argument
values of the first tool using the input examples and those of subsequent tools
using a special notation ⟨node− id⟩.key, where id refers to the id of the previous
node and key refers to the output key. To further refine the plans to be even
more faithful to queries, we rewrite the argument values of text generation
and image generation (e.g. from “a shark” to “a child-friendly book cover image
of a shark”) by prompting GPT-4 with the queries and original plans.
5 Human verification Finally, we perform extensive human verification on

all 4427 generated query-plan pairs. We ask three expert annotators (who are
undergraduate and Ph.D. students in CS) to rate each query-plan pair with 0 or
1, where 1 indicates that the plan can resolve the query perfectly. We obtain a
subset of 1500+ examples on which all three annotators rate 1 and perform fur-
ther filtering of examples where the plan contains much more frequent tools (e.g.



m&ms 7

Table 2: The statistics of the m&m’s dataset.

Item Number
Raw examples 4427
Human verified examples 1565
Human verified & balanced examples 882
- 1 / 2 / 3-tool examples 70 / 159 / 653
Tools 33
- ML model / image processing / API 13 / 11 / 9
Tool graphs 317
Avg. # of unique queries per tool graph 2.78

image generation and text generation) to balance the overall distribution
of tools (See Appendix for more details on filtering and the tool distribution).

It is worth noting that two of the steps in our dataset generation pipeline
draw similarities with the recently released concurrent TaskBench [24]. Similar to
them, we also sample a subgraph of tools and query generation steps. However,
we want to highlight two major differences: first, we leverage real-world examples
as inputs to the tool sequences (in contrast to TaskBench’s “example.jpg”, “ex-
ample.wav” etc.), which not only leads to a more realistic instantiation of queries
but also enables plan execution on actual input which is crucial for studying exe-
cution feedback in planning agents. Second, we use a rule-based program instead
of GPT-4 to obtain the ground truth plans based on the sampled tool sequences,
which eliminates the possibility of hallucinated and incorrect plans.

3.3 Dataset quantity and quality

Overall, m&m’s contains a large quantity of diverse ecologically-valid
task queries (see Figure 1). Each task is associated with human-verified and
executable plans (Table 2). Concretely, there are a total of 4427 raw examples in
m&m’s, where 1565 have been verified to be correct by three human annotators.
After additional filtering for a balanced tool distribution (See Appendix for
more details), we select a subset of 882 examples for our evaluation. Tasks are
granular in difficulty with 70 queries that require a single tool, 159 need two
tools, and 653 need three tools. In terms of tools, there are 33 unique tools
in total across three different categories, of which 13 are multi-modal ma-
chine learning models on HuggingFace, 11 are image processing modules from
VisProg [7], and 9 are free public APIs from RapidAPI5. Our final dataset in-
cludes 317 representative tool graphs, where each graph has multiple queries.
See more examples in the Appendix.



8 Ma et al.

Fig. 3: Types of feedback. We present examples of parsing, verification, and execu-
tion feedback in both success and failure cases.

4 Planning agent

To systematically evaluate the design space of planning agents, we design a mod-
ular planning system with these components: planning LLM, parser, verifier, and
executor. We implement this system with AutoGen’s framework [33]. Given the
user query, the LLM must iteratively generate and refine the plan. Each iteration
involves generating the whole or a part of the plan and receiving feedback on the
generation. Given the raw text output from the LLM at the current iteration,
the m&m’s agent supports the following 3 kinds of feedback -

Parsing feedback. The parser attempts to parse the LLM text output to either
JSON or code formats and returns an error message in case of parsing failures.

Plan verification feedback. The verifier checks the parsed output accord-
ing to pre-defined rules and returns an error message in case of rule violations.
Specifically, the verifier checks if the predicted tool exists in our provided tool
list, if it forms a valid connection with the previous tool, and if the predicted
argument names match the ones specified in the metadata document.

Plan execution feedback. In the case of JSON output, the executor calls
the functions with specified arguments in a Python environment and returns
5 https://rapidapi.com/hub



m&ms 9

Fig. 4: Illustrating the three main planning setups in our evaluation: (1a)
multi-step and (1b) step-by-step JSON-format language generation [38], and (2) code
generation. (See the Appendix for the full prompts).

the output or execution errors. In the case of code output, the code is directly
executed with outputs or errors returned as feedback.

5 Experiment

Using our benchmark with a flexible agent design, we experiment with 10 instruction-
tuned large language models of varying sizes (7 open-source and 3 proprietary)
across different planning setups. We describe these evaluation setups in Sec. 5.1,
metrics in Sec. 5.2, and our experimental findings in Sec. 5.3.

5.1 Setup

We establish a unified framework to categorize LLMs’ task planning setups
along the three axes below. Planning strategy: Prior works formulate task



10 Ma et al.

planning as either step-by-step or multi-step planning [18, 23, 38]. Step-by-step
planning refers to the setup where a language model is instructed to predict only
one action at a time (Figure 4 (1b)). On the other hand, in the setting of multi-
step planning, a model can predict multiple actions at once (Figure 4 (1a)). Plan
format: Additionally, existing works have also adopted different plan formats
for tool use: often as code, pseudo-code, or predefined structured representations
such as JSON [7,23,28]. In this work, we primarily focus on two of the common
plan formats: JSON and code. Feedback: We experiment with three kinds of
feedback - feedback from parsers, rule-based verifiers, and execution modules
(Figure 3). Nevertheless, our benchmark can be used to study other types of
feedback, such as self-feedback [13], which we leave to future work.

5.2 Evaluation metrics

To holistically evaluate planning agents’ performance on our benchmark, we
adopt three main metrics: tool-F1, argname-F1, and pass rate. Tool-F1 is
defined as the F1 score of tool name prediction, where we treat each predicted
tool name as one example and compare the set of predicted tool names to the
groundtruth set of tools in each plan. Similarly, argname-F1 is defined as the
F1 score of argument name prediction for each tool, where we consider each
(tool name, argument names) tuple as one example. Our implementation turns
each tuple into a string and compares the set of predicted “tool name-argument
names” strings to the labels. Pass rate is the percentage of predictions that exe-
cute successfully without any execution errors. It measures the executability but
not the correctness of the predicted plans. We choose these three metrics because
they assess two important aspects of planning and tool use: tool selection and
tool invocation. A higher tool-F1 indicates better tool selection, whereas higher
argname-F1 and pass rate imply improved tool invocation. To evaluate models
with the same metrics in the code generation setup, we parse the generated code
into an Abstract Syntax Tree (AST) with Python’s AST module and extract the
function names and argument names for calculating tool-F1 and argname-F1.

We also provide argvalue-F1 in the Appendix for completeness but caution
the reader about the challenges of evaluating argument values due to surface-
form or syntactic differences in the values, particularly for free-form text ar-
guments (e.g. the prompts in image generation and text generation). We
report additional results on plan evaluation metrics, including overall plan ac-
curacy, normalized edit distance, edge-F1, code-specific metrics such as AST
accuracy and CodeBLEU, and plan execution accuracy in the Appendix.

5.3 Results

We first highlight the key findings from our empirical analysis and then de-
scribe each finding in more detail:

1. All planning agents perform better on tool selection with multi-step planning
than with step-by-step planning, with a smaller gap for larger models (Fig. 5)



m&ms 11

Llama-2-7B
Llama-2-13B

Llama-2-70B
Llama-3-70B

Mixtral-8x7B
Gemini-proGPT-3.5 GPT-4

model

0

20

40

60

80

to
ol

-F
1

(a) tool-F1
planning strategy

step-by-step
multi-step

Llama-2-7B
Llama-2-13B

Llama-2-70B
Llama-3-70B

Mixtral-8x7B
Gemini-proGPT-3.5 GPT-4

model

0

25

50

75

100

pa
ss

 ra
te

(b) pass rate
planning strategy

step-by-step
multi-step

Fig. 5: Comparing planning strategies. We find that models consistently perform
better on tool-F1 under multi-step prediction compared to under step-by-step predic-
tion regardless of their sizes. Similarly, all models except for Gemini-pro achieve a
higher pass rate with multi-step prediction.

Table 3: We present the tool-F1 and argname-F1 of models with various feedback,
where P, V, and E represent parsing, verification, and execution feedback respectively.
We use parsing feedback only (P) under multi-step planning and JSON-format language
generation as the basis, while showing the ∆ of those with other feedback combinations.
We find that verification and execution feedback can improve models’ performance on
argument name prediction and pass rate, but can hurt tool selection.

tool-F1 argname-F1 pass rate
model P PV PE PVE P PV PE PVE P PV PE PVE
Llama-2-7B 29.78 -2.94 -2.59 -2.58 34.03 2.03 1.24 1.15 28.23 18.14 10.32 13.72
Llama-2-13B 42.27 -3.45 -2.78 -4.57 45.07 3.94 3.08 3.29 38.10 29.93 32.99 23.92
Llama-2-70B 54.40 -0.35 -0.49 -0.03 52.49 12.87 8.97 12.60 31.52 39.80 23.13 29.59
Mixtral-8x7B 66.79 1.18 -0.11 -0.04 72.52 2.00 1.89 2.72 75.74 10.32 8.96 10.77
Gemini-pro 69.38 1.18 -0.11 -0.04 73.37 2.00 1.89 2.72 77.32 13.27 14.06 16.67
Llama-3-70B 78.73 1.54 -0.30 0.70 84.97 0.45 -0.68 -0.08 92.40 -0.45 4.31 3.29
GPT-3.5-turbo-0125 80.52 -0.65 -2.80 -2.56 84.86 0.65 -0.92 -0.86 89.46 6.69 7.26 6.92
GPT-4-0125-preview 88.46 -0.60 0.25 -0.91 89.81 -0.18 0.48 0.32 97.73 1.13 -1.25 2.15
GPT-4o-2024-05-13 89.28 -0.22 0.48 -0.21 90.32 1.24 1.00 1.24 96.37 2.61 -0.45 2.15

Note: we use the experiments with parsing feedback as the baseline to highlight external feedback’s effects on tool selection
and invocation instead of parsing. We include the results of experiments with no feedback in the Appendix.

2. Verification and execution feedback can help models improve tool invocation
by predicting correct argument names and generating executable plans but
can lead to worse tool selection due to wrong fixes (Tab. 3 and Fig. 6)

3. While models perform comparably on tool selection with JSON versus code
generation, they produce more overall executable plans with JSON-format
generation (Fig. 7)

Models consistently perform better on tool-F1 and pass rate when in-
structed to perform multi-step planning instead of step-by-step plan-
ning. We find that all large language models achieve higher tool-F1 when they
are instructed to perform multi-step planning compared to when they perform
step-by-step prediction (Figure 5), although the gap is smaller for more capable
larger models like LLama-3-70B and GPT-4. All models except for Gemini-pro
achieve a higher pass rate with multi-step planning. Among the 10 models we
evaluated, Llama-2-7B, Llama-2-13B, and GPT-3.5 all showcase a large increase
(>10%) in performance with multi-step planning compared to step-by-step pre-
diction, with the greatest increase of 21.8% for GPT-3.5. Through qualitative



12 Ma et al.

30 40 50 60 70 80 90 100
pass rate

30

40

50

60

70

80

90

to
ol

-F
1

model
Llama-2-7b
Llama-2-13b
Mixtral-8x7B
Gemini-pro
GPT-3.5
GPT-4
feedback
P
PVE

Fig. 6: Comparing tool-F1 and pass rate without vs. with feedback. We find
that feedback greatly improves planning agents’ pass rates across different model sizes,
especially for Llama-7B/13B and Gemini-pro. However, feedback can also harm models’
tool prediction performance and decrease their tool-F1 by a small amount (< 5%).

analysis, we learn that when models are instructed to perform step-by-step pre-
diction, they tend to “Terminate” after they receive positive feedback (e.g. “ver-
ification/execution succeeded”) from the environment, disregarding whether the
user request has been fulfilled. This means that they often predict fewer steps
than required and miss necessary tools to resolve the requests (See Figure 8 A).

External feedback can improve planning agents’ performance on ar-
gument name prediction and pass rate. We find that both verification and
execution feedback can lead to slightly better argname-F1 and much higher pass
rates (Table 3), indicating that feedback can help models predict correct argu-
ment names and generate more executable plans. With feedback, most models
can increase argname-F1 by around 1-4% and pass rate by up to 20-30% (Table
3). There are only a few exceptions on GPT-3.5 and GPT-4, which already ob-
tain relatively high performance without feedback (Table 3). Also, verification
feedback can be more helpful than execution feedback on argument name pre-
diction. In qualitative analysis, we find that this is because our verifier pinpoints
where the error occurs and outputs a targeted and thus more helpful feedback
message. On the other hand, the execution module returns the error message
as it is, which can be vague and obscure, thus confusing the model and even
resulting in wrong fixes (Figure 8 B).

While we see generally positive effects of feedback on argname-F1 and pass
rate, we also observe that feedback can lead to a small decrease (< 5%) in mod-
els’ tool-F1. We observe that this is mainly because models can change some



m&ms 13

Llama-2-7B
Llama-2-13B

CodeLlama-34B
CodeLlama-70B

Mixtral-8x7B
Gemini-proGPT-3.5 GPT-4

model

0

25

50

75
to

ol
-F

1

(a) tool-F1
format

JSON
code

Llama-2-7B
Llama-2-13B

CodeLlama-34B
CodeLlama-70B

Mixtral-8x7B
Gemini-proGPT-3.5 GPT-4

model

0

50

100

pa
ss

 ra
te

(b) pass rate
format

JSON
code

Fig. 7: Comparing plan formats. We find that all models except for Llama-7-b per-
form comparably on tool-F1 with JSON-format and code generation. However, JSON-
format generation leads to a much higher pass rate across all models.

correct tools to the wrong ones or remove them even though the feedback in-
structs them to only fix the erroneous parts in the plan (Figure 8 B). One way
to mitigate this error can be using more fine-grained and localized feedback [34].
Additionally, neither verification feedback nor execution feedback provides use-
ful information on the correctness of the tool selection that can increase tool-F1.
Nevertheless, we also note that the decrease in tool-F1 with feedback is a lot
smaller compared to the gains in pass rate (Figure 6), which suggests feedback
can greatly improve tool invocation at a small cost to tool selection.

Models perform comparably on tool-F1 with JSON-format and code
generation but much worse on pass rate with code generation. We learn
that plan formats can also influence models’ tool use performance (Figure 7), es-
pecially on the executability of the generated plans. Concretely, our experiments
show that while all models except for Llama-2-7B achieve similar tool-F1s (<3%
difference) with JSON-format generation and code generation, they all suffer
from a large drop in pass rate with code generation. Upon qualitative analysis,
we find that one common execution error in code generation is failing to access
the output from a tool (See Figure 8 C). While the same error also happens to
JSON-format generation, it occurs less frequently due to the more rigid struc-
ture of JSON. These results suggest that JSON-format generation is preferable
to code generation when the executability of generated plans matters.

6 Discussion

6.1 Limitations

There are a few limitations to our work. First, m&m’s only considers sequen-
tial task plans, which represent a majority of real-world user requests. However,
some tasks might require dynamic task plans depending on the output for one
subtask [6]. Dynamic plans require a more complex tool graph sampling pro-
cedure. Second, as our main goal is to study the effects of planning formula-
tions and feedback, we do not investigate another dimension of planning design:
prompt style. We use direct and ReACT-style [38] prompting and exclude more



14 Ma et al.

Fig. 8: We present examples of three common errors (A-C) in different planning setups.

sophisticated prompting strategies such as tree-of-thoughts prompting [32, 37].
Third, as some tools in our benchmark are suboptimal, generative and/or non-
deterministic, we only conducted evaluation of the execution results on a limited
subset (See Appendix). Finally, we have only evaluated LLM planners because
of their advanced abilities and leave the evaluation of multi-modal planners to
future work.

6.2 Conclusion

In conclusion, we highlight three major contributions of our work: first, we intro-
duce a new benchmark m&m’s to support comprehensive and rigorous evaluation
of tool-use abilities of planning agents for multi-step multi-modal tasks. m&m’s
contains a large and diverse set of queries and human-verified and executable
plans; second, we characterize the design space of existing tool-use methods and
conducted a systematic study of 10 LLMs with different design choices, includ-
ing planning formulations, plan formats and various types of feedback; finally,
our experiments reveal three takeaways, suggesting that current generation of
LLMs demonstrate gains in tool-planning performance on m&m’s when using
multi-step planning, outputting plans in JSON format, and using feedback. We
hope m&m’s enables further investigation into better planning formulations that
incorporate richer and more diverse kinds of feedback for solving multi-step,
multi-modal tasks.



m&ms 15

Acknowledgement

This work was partially funded by a Sony grant. It was also made possible
because of OpenAI’s credit grant. We also thank Zeyu Tang for his help with
figures and annotations, and Jiafei Duan, Chenhao Zheng, and Dylan Bunarto
for their help with data annotations.

References

1. Allen, K.R., Smith, K.A., Tenenbaum, J.B.: Rapid trial-and-error learning with
simulation supports flexible tool use and physical reasoning. Proceedings of the
National Academy of Sciences 117(47), 29302–29310 (2020)

2. Chen, P.L., Chang, C.S.: Interact: Exploring the potentials of chatgpt as a coop-
erative agent. arXiv preprint arXiv:2308.01552 (2023)

3. Correa, C.G., Ho, M.K., Callaway, F., Daw, N.D., Griffiths, T.L.: Humans decom-
pose tasks by trading off utility and computational cost. PLOS Computational
Biology 19(6), e1011087 (2023)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

5. Gao, D., Ji, L., Zhou, L., Lin, K.Q., Chen, J., Fan, Z., Shou, M.Z.: Assistgpt: A
general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640 (2023)

6. Grunde-McLaughlin, M., Lam, M.S., Krishna, R., Weld, D.S., Heer, J.: Designing
llm chains by adapting techniques from crowdsourcing workflows. arXiv preprint
arXiv:2312.11681 (2023)

7. Gupta, T., Kembhavi, A.: Visual programming: Compositional visual reasoning
without training (2022)

8. Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tomp-
son, J., Mordatch, I., Chebotar, Y., et al.: Inner monologue: Embodied reasoning
through planning with language models. arXiv preprint arXiv:2207.05608 (2022)

9. Huang, Y., Shi, J., Li, Y., Fan, C., Wu, S., Zhang, Q., Liu, Y., Zhou, P., Wan,
Y., Gong, N.Z., et al.: Metatool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint arXiv:2310.03128 (2023)

10. Hudson, D.A., Manning, C.D.: Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. pp. 6700–6709 (2019)

11. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: ReferItGame: Referring to
objects in photographs of natural scenes. In: Moschitti, A., Pang, B., Daelemans,
W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). pp. 787–798. Association for Computational
Linguistics, Doha, Qatar (Oct 2014). https://doi.org/10.3115/v1/D14-1086,
https://aclanthology.org/D14-1086

12. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International journal of
computer vision 123, 32–73 (2017)

https://doi.org/10.3115/v1/D14-1086
https://doi.org/10.3115/v1/D14-1086
https://aclanthology.org/D14-1086


16 Ma et al.

13. Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon,
U., Dziri, N., Prabhumoye, S., Yang, Y., Gupta, S., Majumder, B.P., Hermann,
K., Welleck, S., Yazdanbakhsh, A., Clark, P.: Self-refine: Iterative refinement with
self-feedback (2023)

14. Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U.,
Dziri, N., Prabhumoye, S., Yang, Y., et al.: Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Processing Systems 36 (2024)

15. Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y., Scialom, T.: Gaia: a
benchmark for general ai assistants. arXiv preprint arXiv:2311.12983 (2023)

16. Miao, N., Teh, Y.W., Rainforth, T.: Selfcheck: Using llms to zero-shot check their
own step-by-step reasoning. arXiv preprint arXiv:2308.00436 (2023)

17. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: Librispeech: An asr corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp. 5206–5210 (2015). https:
//doi.org/10.1109/ICASSP.2015.7178964

18. Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y., Cong, X., Tang, X.,
Qian, B., Zhao, S., Hong, L., Tian, R., Xie, R., Zhou, J., Gerstein, M., Li, D.,
Liu, Z., Sun, M.: Toolllm: Facilitating large language models to master 16000+
real-world apis (2023)

19. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for
machine comprehension of text. In: Su, J., Duh, K., Carreras, X. (eds.) Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
pp. 2383–2392. Association for Computational Linguistics, Austin, Texas (Nov
2016). https://doi.org/10.18653/v1/D16-1264, https://aclanthology.org/
D16-1264

20. Rana, K., Haviland, J., Garg, S., Abou-Chakra, J., Reid, I., Suenderhauf, N.: Say-
plan: Grounding large language models using 3d scene graphs for scalable task
planning. arXiv preprint arXiv:2307.06135 (2023)

21. Ruan, Y., Dong, H., Wang, A., Pitis, S., Zhou, Y., Ba, J., Dubois, Y., Maddi-
son, C.J., Hashimoto, T.: Identifying the risks of lm agents with an lm-emulated
sandbox (2023)

22. Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Hambro, E., Zettle-
moyer, L., Cancedda, N., Scialom, T.: Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems 36
(2024)

23. Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: Hugginggpt: Solving ai
tasks with chatgpt and its friends in hugging face (2023)

24. Shen, Y., Song, K., Tan, X., Zhang, W., Ren, K., Yuan, S., Lu, W., Li, D., Zhuang,
Y.: Taskbench: Benchmarking large language models for task automation. arXiv
preprint arXiv:2311.18760 (2023)

25. Shinn, N., Labash, B., Gopinath, A.: Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366 (2023)

26. Suhr, A., Lewis, M., Yeh, J., Artzi, Y.: A corpus of natural language for visual rea-
soning. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers).
pp. 217–223. Association for Computational Linguistics, Vancouver, Canada (Jul
2017). https://doi.org/10.18653/v1/P17-2034, https://aclanthology.org/
P17-2034

27. Sun, H., Zhuang, Y., Kong, L., Dai, B., Zhang, C.: Adaplanner: Adaptive planning
from feedback with language models. Advances in Neural Information Processing
Systems 36 (2024)

https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.18653/v1/P17-2034
https://aclanthology.org/P17-2034
https://aclanthology.org/P17-2034


m&ms 17

28. Surís, D., Menon, S., Vondrick, C.: Vipergpt: Visual inference via python execution
for reasoning. arXiv preprint arXiv:2303.08128 (2023)

29. Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., Anand-
kumar, A.: Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291 (2023)

30. Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J.,
Chen, X., Lin, Y., et al.: A survey on large language model based autonomous
agents. arXiv preprint arXiv:2308.11432 (2023)

31. Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H., Ji, H.: Mint: Evaluating
llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691 (2023)

32. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A.,
Zhou, D.: Self-consistency improves chain of thought reasoning in language models
(2023)

33. Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., Li, B., Jiang, L.,
Zhang, X., Wang, C.: Autogen: Enabling next-gen llm applications via multi-agent
conversation framework. arXiv preprint arXiv:2308.08155 (2023)

34. Wu, Z., Hu, Y., Shi, W., Dziri, N., Suhr, A., Ammanabrolu, P., Smith, N.A.,
Ostendorf, M., Hajishirzi, H.: Fine-grained human feedback gives better rewards
for language model training (2023)

35. Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhutdinov, R., Manning,
C.D.: HotpotQA: A dataset for diverse, explainable multi-hop question answering.
In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. pp. 2369–2380.
Association for Computational Linguistics, Brussels, Belgium (Oct-Nov 2018).
https://doi.org/10.18653/v1/D18-1259, https://aclanthology.org/D18-
1259

36. Yao, S., Chen, H., Yang, J., Narasimhan, K.: Webshop: Towards scalable real-world
web interaction with grounded language agents. Advances in Neural Information
Processing Systems 35, 20744–20757 (2022)

37. Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y., Narasimhan, K.:
Tree of thoughts: Deliberate problem solving with large language models (2023)

38. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React:
Synergizing reasoning and acting in language models (2023)

39. Zhang, J., Krishna, R., Awadallah, A.H., Wang, C.: Ecoassistant: Using llm assis-
tant more affordably and accurately. arXiv preprint arXiv:2310.03046 (2023)

40. Zhang, K., Mo, L., Chen, W., Sun, H., Su, Y.: Magicbrush: A manually annotated
dataset for instruction-guided image editing. Advances in Neural Information Pro-
cessing Systems 36 (2024)

41. Zhu, X., Chen, Y., Tian, H., Tao, C., Su, W., Yang, C., Huang, G., Li, B., Lu, L.,
Wang, X., et al.: Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory.
arXiv preprint arXiv:2305.17144 (2023)

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259

	0.05[width=]figures/MMsgreensingle.pdf m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks

