
High-Fidelity 3D Textured Shapes Generation by
Sparse Encoding and Adversarial Decoding

Supplementary Material

1 Sparse Quantization

See Supp-Fig. 1.

Supp-Fig. 1. We visualize the input dense point clouds (2880K points, left), low-
resolution voxelization result (resolution=100, middle), and high-resolution voxeliza-
tion result (resolution=1000, right).

2 Coordinate-based feature scatter

We first extract the feature of each point by SparseConv and then use TorchScat-
ter to project the point feature to triplanes with resolution 256. The following
code illustrates the process.

scatter_mean

Points features

Feature Plane

𝒇𝒊𝒋
𝒙𝒚 =

1
5 % 𝒇𝒑𝒌
&"∈𝒂𝒓𝒆𝒂𝒊𝒋

Supp-Fig. 2. ZoomIn for the best view.



High-Fidelity 3D Textured Shapes Generation 21

Supp-Fig. 3. Rendering configuration of Sparse3D.

3 Dataset Analysis

In Fig. 2, we split Objaverse into ten classes, but we drop two classes. In this
section, we give experiments and analysis of the reason behind it. We present
the quantitative results of two configurations(use or not use data from the two
classes for training) in Supp-Tab. 1. Note we are using the same test dataset for
the two configurations and the only difference is the amount of training data.
Building&&Ourdoor is not in the range of the Object but various union of
different objects. The internal space will bring obstacles for our rendering-based
pipeline and some similar pattern in conditional images will also cause ambiguity.
PoorQuality will influence the manufactured property of our generated shapes
and thus make the final geometry looks worse.

Supp-Tab. 1. Quantitative comparison on Objaverse-Clean(O) and full Objaverse(O-
full) when evaluate on the same test split from the clean eight classes.

Method Chamfer Dist.↓ ↑ PSNR↑ SSIM↑ LPIPS↓
Sparse3D (O-full) 0.131 18.49 0.887 0.124
Sparse3D (O) 0.108 19.23 0.908 0.110



22 Zuo et al.

4 Rendering Configuration

The main factors we need to consider are two-fold:

– The reprojected point clouds need uniform density everywhere since uneven
density will provide the wrong priority for VAE reconstruction. Our VAE
learns a mapping function from dense point clouds to coherent textured
shapes. If we input point clouds with uneven density, the network needs to
learn a function with stronger inductive bias, which makes it more difficult
to generalize across classes;

– The renderings need to cover the surface of the mesh as completely as pos-
sible. This gives a lower bound for the number of views if the camera’s
FOV(Field of View) is specific.

To satisfy the above requirements, we render 38 views of a centered object. As
depicted in Supp-Fig. 3, we render 24 views at elevation ∈ [5o, 30o], rotation =
{r × 15o|r ∈ [0, 23]}, and 12 views at elevation ∈ [−5o, 5o], rotation = {r ×
30o|r ∈ [0, 11]}, and 2 views for top and bottom respectively.

[𝑁, 6] [𝑁, 𝐷!]

Supp-Fig. 4. Structure of Sparse Convolution Network.

5 Detailed Structure of Sparse Convolution Network

As depicted in Supp-Fig. 4, we adopt a U-Net-like structure consisting of four
downsample blocks and four corresponding upsample blocks. Similar skip con-
nections are adopted to improve the performance. The input is xyz coordinates
and corresponding rgb values. At the beginning, the input will be voxelized into
dense volume and a hash table will be used to memorize the location of acti-
vated coordinates. These coordinates and corresponding colors are fed through
the sparse convolution network. The output of SCN is point-wise features with
aligned positions, and we set Df = 12 for all experiments. The point-wise fea-
tures further work as input to the modified VAE of StableDiffusion.

6 More Experimental Results

6.1 Interpolation Result

See Supp-Fig. 6



High-Fidelity 3D Textured Shapes Generation 23

Supp-Fig. 5. More conditional generation samples on ShapeNetV2.

Supp-Fig. 6. Interpolation results of Car, Chair, and Table. The decoded meshes
between two random samples maintain high fidelity and continuity, which shows the
smoothness of our neural mapping functions.

6.2 Text-to-3D

See Supp-Fig. 7

6.3 More conditional results

We have provided some results for benchmark in the paper and we put more
conditional results of our method in Supp-Fig. 5. As can be seen, Sparse3D gen-
erates high-fidelity textured shapes across various classes and various conditional
angles. To avoid cherry-picking of the rendering view, we also visualize multiple
views of the generated meshes in Supp-Fig. 8.

6.4 Analysis on loading pre-trained model

Triplanes exhibit spatial correspondence of three orthographic ‘images’. As de-
picted in Supp-Fig. 9, the latent of triplanes(from SparseEncoding) and the
latent of 2D images(from StableDiffusion) share similar patterns, motivating us
to leverage pre-trained StableDiffusion for domain adaptation and training ac-
celerating. We found that this indeed speeds up the training and costs only 1

3



24 Zuo et al.

A blue Porsche on the street A wooden table with four legs A sharp knife A middle size wooden cabinet

Supp-Fig. 7. Visualization of a text-image-3D pipeline utilizing off-the-shell
SDXL [34].

Supp-Fig. 8. Multiple views of conditional generation samples on ShapeNetV2.

of training time compared with training from scratch. However, the final gain
of performance seems relatively subtle(See the Right subfigure). Consequently,
we have chosen not to emphasize this as a distinct contribution, despite its sig-
nificant acceleration of the domain adaptation process

6.5 Demo Video

We have prepared a demo video named uncond.avi in the zipped files. Please
check it for all samples we generate in the unconditional setting. We use Blender
for the circular rendering and use only sunlight as the source of light.

6.6 Benchmark on G-Objaverse

Due to the limited computation resources, we only report metrics on the most
recent SoTA method. See Supp-Tab. 2 for the qualitative results and we will add



High-Fidelity 3D Textured Shapes Generation 25

Points Plane Feature(XY) Latent(Sparse3D) Renderings Latent(StableDiffusion)

Domain Adaptation

Supp-Fig. 9. (Left)latents from Sparse3D and StableDiffusion. (Right)Ablation
about loading the pre-trained StableDiffusion.

more methods for comparisons in the revision. For the single-class generation,
we report metrics of GET3D and Sparse3D on each class of our clean dataset
respectively. For the multi-class generation, we report metrics of 3DSVec and
Sparse3D on 8 classes. For the label-free generation, we have reported the met-
rics(Table 3 in the paper), so we abbreviate it here.

Supp-Tab. 2. Quantitative Results on our G-Objaverse.

Settings Single-Class Multi-Class
classes/metrics FID-3D(GET3D)↓ FID-3D(Sparse3D)↓ Chamfer(3DS2Vec)↓ Chamfer(Sparse3D)↓
Human-Shape 13.92 11.97 0.032 0.027
Animals 19.68 13.42 0.037 0.030
Daily-used 47.88 23.93 0.041 0.036
Furnitures 32.17 18.34 0.029 0.024
Transportations 19.07 12.11 0.024 0.025
Plants 57.63 29.06 0.058 0.051
Food 35.88 16.13 0.039 0.030
Electronics 52.11 32.10 0.048 0.042
mean(all) / / 0.039 0.033

7 TexturedLAS

7.1 Implementation Details

As depicted in Supp-Fig. 10, we add rgb channels in the occupancy diffusion in
LASDiffusion, which results in a field diffusion model. This field diffusion model
includes an occupancy field and a texture field. Modifications include:

– We use Ball-Query to compute rgb values from dense point clouds when we
prepare the ground-truth values of the texture field;



26 Zuo et al.

– We use a unified diffusion model to produce the occupancy and the texture
field, for which we have modified the input projection layer and the output
projection layer;

– We modify the volume resolution from 64 to 128 to further enhance the
precision of the texture field and double the base channel of LASDiffusion,
which gives a total amount of parameters of 100 MB.

Note we do not modify the second stage since we empirically find that sparse
octree-based diffusion models are hard to enhance the texture field.

7.2 Explanation of Black Surface Phenomenon

In Fig. 4, we can easily find that the generated texture of TexturedLAS always
contains some black patches. The reasons are two-fold:

– The first stage of TexturedLAS uses a discrete diffusion model for producing
better geometry, while it is not the best choice for the continuous texture
field in our design;

– When we process the data, the texture field is generated from a specific color
band, where all color values are set to be black if the points are not located
in this color band. This is inevitable since we must set a specific color of the
empty space.

ViT backbone

U-Net

Global Attention

Occupancy&&Texture Diffusion SDF Diffusion
U-Net

Supp-Fig. 10. Framework of TexturedLAS.

8 Choices of Conditions

Despite achieving some progress in textured shape generation, we find that
the single-view conditional paradigm may not be the best choice for the open-
vocabulary scenario. Through the experiments in ShapeNetV2(Aligned) and
Objaverse(Unaligned), we find that single-view reconstruction will cause am-
biguity if the dataset is not aligned. Here, Aligned means that two bananas are
posed in the same direction at least in the dataset. If a dataset is not aligned,
then there will be two answers for the same conditional image at least, which
will further bring obstacles to the network fitting. To solve the ambiguity, there
are two ways:



High-Fidelity 3D Textured Shapes Generation 27

– Align all data;
– Make the network pose-aware.

We need rough class labels and a further definition of the aligned direction if
we want to align all data. This requires huge efforts but we have finished the
classification. The second way requires us to design a pose-aware generation
network and feasible ways may include designing the network to be volume-
conditioned and rotating the original 3D data to follow the conditional image,
which are future works we are working on.

Supp-Fig. 11. Visualization of the vertices contouring.

9 Manufactured Property

We visualize the vertices contouring of generated samples in Supp-Fig. 11. Cur-
rently, the quality of generated 3D content can not satisfy the standard require-
ments of games, the movie industry, and VR applications, making it important
to preserve the manufactured property of meshes for further editing. Our method
can preserve the underlying property, which is not ensured by NeRF-based gen-
eration methods.


