
High-Fidelity 3D Textured Shapes Generation by
Sparse Encoding and Adversarial Decoding

Qi Zuo1
∗
, Xiaodong Gu1

∗
, Yuan Dong1

∗
, Zhengyi Zhao1, Weihao Yuan1,

Lingteng Qiu2, Liefeng Bo1, and Zilong Dong1
†

1 Institute of Intelligent Computing, Alibaba Group
2 SSE, CUHKSZ

Fig. 1: Exported textured shapes of our single-class unconditional generation models.
All models are exported using an UV unwrapper xatlas [39] and rendered using Mit-
suba [16].

Abstract. 3D vision is inherently characterized by sparse spatial struc-
tures, which propels the necessity for an efficient paradigm tailored to 3D
generation. Another discrepancy is the amount of training data, which
undeniably affects generalization if we only use limited 3D data. To solve
these, we design a 3D generation framework that maintains most of the
building blocks of StableDiffusion with minimal adaptations for textured
shape generation. We design a Sparse Encoding Module for details preser-
vation and an Adversarial Decoding Module for better shape recovery.
Moreover, we clean up data and build a benchmark on the biggest 3D
dataset (Objaverse). We drop the concept of ‘specific class’ and treat
the 3D Textured Shapes Generation as an open-vocabulary problem. We

∗ Equal contribution.
† Corresponding author: list.dzl@alibaba-inc.com.

2 Zuo et al.

first validate our network design on ShapeNetV2 with 55K samples
on single-class unconditional generation and multi-class conditional gen-
eration tasks. Then we report metrics on processed G-Objaverse with
200K samples on the image conditional generation task. Extensive exper-
iments demonstrate our proposal outperforms SOTA methods and takes
a further step towards open-vocabulary 3D generation. We release the
processed data at https://aigc3d.github.io/gobjaverse/.

Keywords: 3D Generation · Sparse Encoding · Adversarial Decoding

1 Introduction

The vision community has witnessed the great success of 2D artificial intelligence-
generated content (AIGC) methods such as StableDiffusion [36] and GigaGAN [18].
This encourages us to rethink what we need to enable 3D generation.

When adding another dimension to the 2D generation task, the space com-
plexity increases from O2 to O3, leading to significant computation growth.
Therefore, 3D assets are more difficult to fit into the neural networks than 2D
assets. Sparsity is a distinct attribute of 3D vision that has been utilized in
large-scale scene perception tasks like 3D detection and semantic segmentation
of point clouds but merely discussed in 3D generation. Our key motivation in
this paper, however, is that sparsity is vital for 3D generation, especially when
we need to generate high-frequency textures simultaneously.

Signed Distance Function (SDF) [7,8,29], and Occupancy [44,55,59] are typ-
ical dense representations in 3D generation. Although they have advantages in
accurate shape modeling, their shortcomings are memory costing and inaccurate
alignment to texture, which limits their performance in textured shape gener-
ation. Methods using point clouds as representation are naturally sparse, yet
they lose detailed structure information. To recover the structural information,
conversions from sparse space to dense space and then reversely from dense
space to sparse space are used for point cloud applications and demonstrate
the highest quality of generated shapes [25, 49, 60]. To avoid the laborious con-
version, Sparse Convolution Networks [10, 47] are proposed to directly process
sparse point clouds, which demonstrate state-of-the-art (SOTA) performance on
large-scale vision perception tasks [15, 27]. Hence in this work, we propose to
use a sparse encoding module to alleviate the high computation complexity in
3D shape compression. Since we use a sparse encoding module to extract per-
coordinate features, these features can be further projected to 2D planes by
predefined angles. Then these 2D feature planes can be compressed by general
2D encoders.

A key difference with the geometry generation task is that we need to si-
multaneously generate the high-frequency texture attached to the underlying
low-frequency geometry. Unlike previous geometry generation methods [7, 8, 29,
44, 55, 59] which use thousands of points or a low-resolution feature volume as
feed-forward representation, texture generation requires the high-frequency sur-
face color features to be maintained as much as possible. Although the sparse

High-Fidelity 3D Textured Shapes Generation 3

Fig. 2: We manually split Objaverse into 10 general classes as the color bands depict.
Note we do not use the Building&&Outdoor and PoorQuality classes, since we em-
pirically find that they are harmful to model convergence and we put further analysis
in the appendix. By splitting Objaverse into general classes, we can build a benchmark
on it, which we have achieved by shuffling class data and splitting it into certain pro-
portions respectively for training, validation, and testing.

encoding module can preserve most of the information, the regularization item
(KL-divergence) on the latent space will block the feature flow to a certain extent.
To recover the lost information, we introduce a Dual MarchingCube layer [41] on
the decoding stage which can render and extract textured shapes differentiably
and we further conduct extra adversarial training [36] on the renderings to en-
hance the texture quality. We adopt the naive StableDiffusion framework which
sets up a diffusion model in the latent space for generation purpose and greatly
reduces the computation resources needed. Compared with StableDiffusion, the
differences are the conversion from 3D dense point clouds to 2D feature planes
in the encoding stage and the conversion from 2D feature planes to 3D textured
shapes in the decoding stage. With minimal modifications and enhancements,
our framework can generate a batch of high-fidelity textured shapes in less than
5 seconds using a DDIM [46] sampler.

We formulate our design theoretically and experimentally validate it on the
public benchmark ShapeNetV2 [4] and further scale up it to Objaverse [11]. Dur-
ing our experiment, we clean the Objaverse dataset and manually label 10 general
classes which gives about 200K samples as depicted in Fig. 2. We split 8 gen-
eral classes into train/val/test splits and built a benchmark for the evaluation of
open-vocabulary image-conditional generation. We conduct three kinds of exper-
iments to demonstrate the effectiveness of our method including single-class un-

4 Zuo et al.

conditional generation, multi-class conditional generation, and open-vocabulary
image-conditional generation. Experiments on both datasets demonstrate the fi-
delity and variety of our generated samples. We claim our main contributions
include:

1) We analyze and propose a novel sparse encoding and dense decoding
paradigm (Sparse3D) that can achieve both high-fidelity single-class generation
and open-vocabulary 3D textured shapes generation.

2) We manually filter out and split the Objaverse dataset into 10 gen-
eral classes (200K shapes) and construct a benchmark (G-Objaverse) for open-
vocabulary 3D textured shapes generation.

3) We demonstrate SOTA performance on both datasets and we conduct
extensive experiments to confirm the insight of design. We also further give an
outlook on future works.

2 Related Work

Geometry Generation Many works in the 3D vision community seek to
solve problems with geometry first. Also in the generation task, pioneer works
mainly focus on the geometry structure, where various representations are ap-
plied. Methods which adopt point cloud [53,54,60], occupancy [28,33,40,44], and
signed distance function (SDF) [7,9,12,59] are mainly geometry-only. Although
they are short of generating texture for the underlying representation, their gen-
erations can potentially maintain the quality of man-made shapes, which is of
vital importance for subsequent manipulation like texturing or editing. A poten-
tial improvement in the geometry-only generation is the adaptation to large-scale
3D datasets like Objaverse [11], which currently may be hindered by the uneven
quality of its 3D assets.

Texture Generation As a complementary part of works on geometry genera-
tion, texture generation aims to generate feasible texture on fixed geometry given
text prompts. From rendering-based [45], inpainting-based [5] to optimization-
based [1, 58] methods, they are faced with the challenge of keeping multi-view
consistency, which we believe can be relieved by introducing explicit 3D inductive
bias (Objaverse). Approaches like a multi-view consistent depth inpainting Con-
trolNet or a 3D-conditioned (voxel or SDF) ControlNet can potentially improve
the consistency of texture generation. However, all these potential improvements
require a large amount of clean, high-quality 3D assets, which again motivates
us to select high-quality 3D assets from Objaverse.

3D-Aware Generative Models As a twin task, novel view synthesis (NVS)
focuses on the quality of multi-view renderings rather than the quality of un-
derlying geometry and texture. Previous works [57,61] using 2D GANs for NVS
often fall short in multi-view consistency. 3D-aware methods [2, 3, 30, 32] thus
adopt neural radiance fields or multi-level surfaces as their internal implicit rep-
resentations, directly introducing 3D prior constraints and achieving impressive

High-Fidelity 3D Textured Shapes Generation 5

view synthesis quality on both object-level and scene-level. Recently we have wit-
nessed diffusion-based NVS methods [62] like Zero123 [23], SyncDreamer [24],
Consistent123 [52], Wonder3D [26] and Zero123++ [42]. Although some of them
try to inject 3D-priori like coarse volume or multi-view correlations, they do
not directly enforce an underlying 3D representation like previous GAN-based
3D-aware methods, which is a potential future work. A common shortcoming of
NVS methods is that they need to use MarchingCubes for explicit mesh extrac-
tion first and then query the field to obtain vertex color and the best threshold
for each shape needs to be dynamically adjusted, which may make the final
geometry shattered.

Lifting 2D into 3D Due to the lack of 3D assets and the strong capability
of 2D generation models, some works also try to lift 2D images by rendering
poses into 3D representation. DreamFusion [34] first combines neural fields with
a fixed Imagen [38] and it uses score distillation loss to update the neural field
according to specific prompts. Follow-up works [6, 20, 21, 35, 43, 48, 51] mainly
focus on elevating the resolution of 3D representation, optimizing the stability
under various text prompts, avoiding over-saturated textures, accelerating and
dealing with the Janus problem. Though those methods achieve semantic control
and high fidelity under some prompts, they fall short in the long optimization
time and instability with random text prompts.

Textured Shapes Generation Recently, methods [13, 63] that can simul-
taneously output raw mesh and corresponding texture (i.e. Textured Shapes)
come out in a 3D-supervised way. Compared with NVS methods, these methods
produce more feasible topologies like man-made shapes and can also generate
corresponding textures. GET3D [13] is the first method capable of generating
explicit free-topology textured shapes in an end-to-end manner. It incorporates
a hybrid tri-plane representation together with a differentiable marching tetra-
hedron layer into a StyleGAN2 for end-to-end single-class textured shape gener-
ation. Since massive 3D contents collected from websites are hard to align, the
camera pose-conditioned paradigm of GET3D can not be generalized to multi-
class and open-vocabulary scenarios. Another work that should be noticed and
most similar to our approach is 3DGen [14], which utilizes a triplane-based Vari-
ational AutoEncoder(VAE) to convert the dense point clouds to tetrahedron
meshes. Also, a triplane stands as the latent representation and is fed through a
diffusion UNet [37] for generation purposes. It utilizes Objaverse for pretraining
and then finetunes the model on ShapeNetV2, achieving well generalizability on
multi-class conditional generation. However, the limitations of 3DGen lie in the
design of the autoencoding stage. It also uses the UNet structure for encoding
and decoding, which keeps the resolution of the triplane but hinders the opti-
mization of the latent diffusion model. In our design, we show that there is no
need to keep the semantic layout of projected triplanes, and we can treat the
feature planes like 2D natural images in the StableDiffusion pipeline.

6 Zuo et al.

Voxelization Hash Table

Bucket

SCN

𝜇

𝜎
𝑧

Grid Sample

StableDiffusion

Discriminator
Stage I. Reconstrcution

Stage II. Adversarial Fintuning ❄ViT-H14

Mean Signal

Coordinate-based Feature Scatter

𝑚𝑙𝑝!"#

𝑚𝑙𝑝"$#

𝑚𝑙𝑝%&

𝑚𝑙𝑝'()

Fig. 3: Sparse3D only varies with StableDiffusion in several specific components. In the
input stage, a dense point cloud (with 1M to 4M points) is voxelized by a resolution
of 10003, and then fed to a Sparse Convolutional Network to extract coordinate-based
features. To align the huge amount of sparse features to a dense representation, we
project multiple features onto specific pixel grids and compute the mean values of these
features. After we translate 3D dense point clouds into 2D feature maps, we finetune
the pre-trained StableDiffusion for 2D feature map generation. In the meanwhile, we
decode the feature maps as explicit mesh through a differentiable mesh extraction
layer (Flexicubes) and then optimize the variational autoencoder using a rendering-
based reconstruction penalty. Since our output contains RGB renderings in a similar
domain with natural images, we further use an N-layer discriminator for adversarial
finetuning to enhance the texture quality after reconstruction converges.

3 Method

The framework of our method is illustrated in Fig. 3, which comprises three
parts: Sparse Encoding, Generative Differentiable Mesh Decoding, and Latent
Diffusion Module. In this section, we first present preliminaries in Sec. 3.1, after
which the specific design of Sparse Encoding is stated in Sec. 3.2 and Adversarial
Differentiable Mesh Decoding is stated in Sec. 3.3. Further, we introduce the
LDM design of our case in Sec. 3.4.

3.1 Preliminaries

Sparse Convolution. In geometry generation, a common input consists of
thousands of points, which is sufficient for geometry generation but not for tex-
ture generation. We need more input information to recover the surface texture.
Traditional 3D convolutional neural networks use a unit grid as a dense repre-
sentation which often leads to explosive memory growth when we increase the
resolution of the unit grid. As an alternative, in large-scale scene understand-
ing which often formulates the input as point clouds with several million points,
sparse convolution is adopted to extract the structure features. For a point cloud
with point coordinates p ∈ RN×3 and point features p ∈ RN×Cf , sparse convo-
lution uses sparse structures like octree [50] or hashtable [10, 47] to store these
information and network operators are only applied on sparse points. To prove
the necessity of using sparse convolution, we show the sparse quantization results

High-Fidelity 3D Textured Shapes Generation 7

in Supp-Fig. 1, which shows that it is useless if we only increase the number of
input points with a low-resolution voxelization.

Differentiable Mesh Extraction. Conversion from raw meshes to implicit
fields like occupancy, signed distance function, and NeRF usually introduces
computation errors, while differentiable mesh extraction demonstrates an elegant
way to optimize the underlying implicit field in a probabilistic manner. In our
framework, we adopt the most recent Flexicubes [41] representation as it is more
elaborately designed to recover the structure details.

3.2 Sparse Encoding

For a long time, 3D representation has been fed to the network as a unit cube
with much free space useless. Simply increasing the resolution of the unit cube
is effective but burdens much on computation and memory. Sparsity is a unique
characteristic of the real 3D world which is different from dense projections
(images). Starting from sparsity, we design a Sparse Encoding Module for en-
coding 3D assets into latent space. The input of this module is a dense col-
ored point cloud p ∈ RN×6 with a random number of points N . We do not
decline the points to a certain number like previous approaches since it is im-
portant for recovering high-frequency information (texture). We then feed the
batched dense point clouds to a Sparse Convolutional Network (SCN) and ob-
tain point-wise features. For simplicity, we directly adopt a UNet-Style SCN
from MinkowaskiiEngine [10]. The feature is further projected to the triplane
space fin ∈ R3Cf×Kf×Kf through coordinate-based feature scatter. Then we di-
rectly apply the encoder of StableDiffusion Esd to fin after modifying the input
projection layer. The output of modified encoder E

′

sd is the concatenation of
mean µ and log variance ln(σ2) in a gaussian distribution. Then we employ the
KL-Divergence for regularization:

C(µ, ln(σ2)) = E
′

sd(P(S(p))),

Lkl = − 1

2b

∑
(1 + ln(σ2)− µ2 − σ2),

(1)

where S denotes the sparse feature extraction, P denotes the feature projection
based on coordinates, C denotes concatenation, and b denotes the batch size. The
usage of the SCN for feature extraction is the key to maintaining dense low-level
features of the high-frequency texture.

3.3 Adversarial Differentiable Decoding

Given µ and ln(σ2), we apply the reparameterization trick to obtain a resampled
latent code z, and we also reuse the decoder structure Dsd of StableDiffusion. We
modify the output projection layer of Dsd and denote the new non-linear trans-
formation as D

′

sd. The output of D
′

sd is the concatenation of geometry feature

8 Zuo et al.

planes fgeo ∈ R3Cgeo×Kf×Kf and texture feature planes ftex ∈ R3Ctex×Kf×Kf ,
sharing the same resolution Kf as the input feature planes.

We denote the geometry query positions of Flexicubes as Qfl
geo ∈ RNfl

geo×3

and use grid sample to query the corresponding feature in fgeo, resulting in
fQ
geo ∈ RNfl

geo×Cgeo . In Flexicubes, the input of the differentiable dual marching
cube layer includes the SDF, deformation, and cube weights at Qfl

geo. We thus
define three MLPs for them, respectively. The above process can be written as:

fsdf = mlpsdf (gs(fgeo, Qfl
geo)) ∈ RNfl

geo×1,

fdef = mlpdef (gs(fgeo, Qfl
geo)) ∈ RNfl

geo×3,

fcw = mlpcw(gs(fgeo, Qfl
geo)) ∈ RNfl

geo×21,

(2)

where gs denotes grid sample. The fcw in Eq. (2) has a feature dimension of 21,
which is composed of β ∈ RNfl

geo×12, α ∈ RNfl
geo×8, and γ ∈ RNfl

geo×1. β, α is
used to adjust dual vertices positioning, and γ is used to control the splitting
of quadrilaterals into triangles. The final vertices and faces can be extracted
from fsdf , fdef , and fcw in a differentiable manner. We refer the readers to
Flexicubes [41] for more details about the process.

Since we already have explicit vertices and faces, surface rendering tech-
niques [19] can be used to obtain the depth map Id and alpha Ia under a certain
camera pose ξ. Moreover, the rasterization process will generate query positions
for texture Qfl

tex ∈ RNfl
tex×3 under a certain rendering resolution, which can be

used to query ftex and be further decoded into RGB colors frgb by an MLP:

frgb = mlprgb(gs(ftex, Q
fl
tex)) ∈ RNfl

tex×3, (3)

where RGB map Ic can be obtained by clamping frgb in [0, 1] and projecting
the clamped RGB values back to pixel space. Now, we can easily define the
differentiable rendering-based reconstruction penalty as:

Lre = λdepthLdepth + λalphaLalpha + λcolorLcolor, (4)

where Ldepth = |Id − Igtd |1, Lalpha = |Ia − Igta |1, and Lcolor = |Ic − Igtc |1. gt
denotes the ground truth renderings and | · |1 denotes absolute difference.

To further improve the texture quality, we borrow a simple N-layer discrim-
inator from StableDiffusion and formulate an adversarial paradigm. To avoid
collapses, we only conduct adversarial training when the pure reconstruction
converges. The vanilla generative penalty can be written as:

LG =Ez∈N (µ,σ2)[−D(Ic)],

LD =Ez∈N (µ,σ2),Igt
c
[−D(Igtc) +D(Ic)],

(5)

where D denotes the N-layer discriminator. In all, we first train the encoder and
decoder using the following penalty,

LNoAdv = λklLkl + Lre. (6)

High-Fidelity 3D Textured Shapes Generation 9

Fig. 4: Qualitative conditional generation results on ShapeNetV2. For each conditioned
image, the result of our method stands in the first line and the result of TexturedLAS
stands in the second line. The last four columns show the shapes that are queried from
3DILG and 3DS2Vec using OpenShape [22].

After the reconstruction converges, we conduct adversarial training using the
following objective.

LAdv = λklLkl + Lre + λadvLG (7)

3.4 Latent Diffusion Model

We use off-the-shell 2D Diffusion Model [7] as our base model and load the pre-
trained weight when the training process starts. To enable large-scale conditional
generation, we use a vision transformer trained on laion2b for image feature
extraction, and we use cross-attention for condition injection at different scales.
The vision transformer is frozen during the training process since it tends to
overfit a specific concept when trained on a small dataset. Note that we do not
implement a text encoder since we find current text captions of publicly available
3D models are of poor quality, and we hold the concept that text-to-3d should
leverage the 2D generation models to formulate a text-to-image-to-3D paradigm
which is more controllable by introducing a powerful text-to-image generation
model.

4 Experiments

4.1 Datasets

We split our experiments into three folds: 1) Single-class unconditional gen-
eration comparison on three classes of ShapeNetV2 (Car, Chair, and Table)
following the train/valid split in previous methods [13]; 2) Multi-class condi-
tional generation comparison on all classes of ShapeNetV2, also following the

10 Zuo et al.

train/valid split in previous methods [55]; 3) Label-free conditional generation
comparison on the 8 general classes from Objaverse which is labeled manually,
and the splits are generated by randomly shuffling and splitting the data into
proportions of 0.9, 0.05, 0.05 respectively for train, validation, and test.

4.2 Hyperparameters and Details

In Sec. 3, our description involves many hyperparameters and hidden details
which should be clarified. We render each 3D model into 38 views of 1024×1024
resolution including depth, alpha, and RGB images with blender. The render-
ing poses are illustrated in the appendix in detail and we refer readers to the
appendix for more information. Since different shapes have different ratios of
occupancy of the rendering images, the reprojected point clouds may have dif-
ferent amounts of points N , which range mostly from 1 million to 4 million. The
point feature dimension Cf is set to 12, and the plane resolution Kf is set to
256. The shape of the latent code of our VAE is the same as StableDiffusion (i.e.
[4, 32, 32]), and we set the weight of KL-Divergence λkl to 1e−7. For simplicity,
we also put the structure of our SCN in the appendix and we refer the readers to
the appendix for more technique details. In the decoding stage, we set Cgeo = 8,
Ctex = 8, and we use Flexicubes with a resolution of 96 for all experiments. In
the final loss, we set λdepth = 2, λalpha = 2, λcolor = 1, and λadv = 0.01.

Table 1: Quantitative Metrics on ShapeNetV2 classes Car, Chair and Table.

Category Method COV-CD↑(%) MMD-CD↓(×10−3) FID-3D↓

Car GET3D [13] 44.00 2.28 10.54
Sparse3D 77.71 1.24 10.17

Chair GET3D [13] 76.63 5.81 33.18
Sparse3D 83.28 3.33 18.85

Table GET3D [13] 73.4 5.73 26.05
Sparse3D 82.90 3.72 11.44

4.3 Single-Class Unconditional Generation

Quantitative Comparison. We conduct the quantitative comparison to the
recent single-class unconditional generation model, GET3D [13]. For a fair com-
parison, we also render 26 views according to the script provided by GET3D
and set the object scale to 0.9, which means that the mesh will be normalized in
[−0.45, 0.45]. We keep the same setting in both our method and GET3D. FID
and Chamfer Distance are reported in Tab. 1. Note we find GET3D needs to
carefully choose a feasible normalized scale and weight of regularization for a

High-Fidelity 3D Textured Shapes Generation 11

Table 2: Quantitative Metrics of multi-class autoencoding on ShapeNetV2.

Metric Category 3DILG 3DS2Vec Sparse3D
Surface Structure

Chamfer↓

table 0.026 0.026 0.019 0.023
car 0.066 0.062 0.025 0.050

chair 0.029 0.027 0.023 0.030
airplane 0.019 0.017 0.014 0.017

sofa 0.030 0.029 0.018 0.038
rifle 0.017 0.014 0.011 0.014
lamp 0.036 0.032 0.026 0.037

mean(selected) 0.032 0.030 0.019 0.030
mean(all) 0.040 0.038 0.026 0.037

Table 3: Quantitative comparison on ShapeNetV2(S) between TexturedLAS and
Sparse3D and metrics achieved by Sparse3D on Objaverse datasets(O).

Method Chamfer Dist.↓ ↑ PSNR↑ SSIM↑ LPIPS↓
TexturedLAS(S) 0.149 18.79 0.901 0.121
Sparse3D(S) 0.081 20.03 0.921 0.099
Sparse3D(O) 0.108 19.23 0.908 0.110

specific class, and the training of class Table collapses at scale 0.9. We further
render the data of Table at scale 0.7 and report related metrics instead. For
the computation of Chamfer Distance, we normalize both the generated shapes
and ground truth shapes of the test dataset in a unit space and report Cover-
age (COV) and Minimum Matching Distance (MMD) evaluation metrics of two
groups of shapes.

Qualitative Comparison. Since it is hard to align two unconditional methods
for visualization, for qualitative comparison, we only generate and export tex-
tured shapes for each class using our method. As depicted in Fig. 1, Sparse3D
faithfully generates high-quality samples in the single-class unconditional gener-
ation on various classes. We further show the interpolation result of two random
samplings in Supp-Fig. 6, which demonstrates the smoothness of our distribution
mapping function.

4.4 Multi-Class Conditional Generation

Quantitative Comparison. As textured shape generation on multi-class con-
ditional generation of ShapeNetV2 does not have a public benchmark currently,

12 Zuo et al.

we conduct experiments with geometry-only SOTA methods, 3DILG [55] and
3DS2Vec [56], and further compare it with TexturedLAS‡, which is based on
LASDiffusion [59] but can simultaneously output occupancy and a texture field.
We refer the readers to the appendix for our implementation details of Textured-
LAS, which is also an early technical exploration of us. For 3DILG and 3DS2Vec,
we only report the autoencoding-related metrics since they have not released
image-conditioned pre-trained weights. For TexturedLAS, we report geometry-
related metrics (Chamfer Distance) and rendering-related metrics (PSNR, SSIM,
and LPIPS) for image-conditional generation. As depicted in Tab. 2, we directly
adopt the metrics reported in 3DILG and 3DS2Vec and use the dataset splits
released by 3DS2Vec. We normalize each generated shape in a unit cube between
[−1, 1] and follow the same evaluation script with 3DS2Vec. Since we train our
framework by differentiable rendering, we report chamfer distance in Surface
and Structure settings. For the Structure setting, we sample points in all faces
of a mesh and compute the chamfer distance between two point clouds, which
is the same as 3DS2Vec. For the Surface setting, we sample points from the
rendering surface of a mesh, which means that we do not consider the internal
structure. As a rendering-based method, we should only report the Surface set-
ting but we find that in the Structure setting, Sparse3D is comparable to the
SOTA shape generation method 3DS2Vec and sometimes even slightly better,
which demonstrates the superiority of our design.

In textured shapes generation, we report metrics on the whole test dataset
of ShapeNetV2. The final metrics are the average of 55 classes and the metrics
of each class are the average metrics of each instance. As depicted in Tab. 3,
Sparse3D achieves better geometry and texture generation quality than Tex-
turedLAS for the better ability to preserve high-frequency features. Although
we elevate the resolution of the occupancy diffusion stage from 64 to 128, Tex-
turedLAS still performs poorly both on geometry and texture generation.

Qualitative Comparison. We visualize conditional generation results of base-
lines and our method in Fig. 4. As is shown, our method can generate smooth
topology without direct 3D supervision and generate texture seamlessly with the
underlying geometry. TexturedLAS can also generate smooth and high-quality
geometry but can not generate decent texture since it is based on volume repre-
sentation. Note we have increased the resolution of the first stage in TexturedLAS
to 128, but we can not eliminate the black surface phenomenon which we further
explain in the appendix. We use shapes generated by our conditional generation
as a reference and use OpenShape [22] to search for similar shapes in the sam-
pling results of 3DS2Vec and 3DILG. The final visualization also shows that the
quality of the underlying geometry of generated shapes of Sparse3D is compa-
rable to or even slightly better than methods that directly use 3D supervision
(SDF).

‡ Verification code will be released at https://github.com/hitsz-zuoqi/TexturedLAS

High-Fidelity 3D Textured Shapes Generation 13

Cond/Input Point-E Shape-E Syncdreamer(Neus) Sparse3D

Fig. 5: Qualitative results on various image-to-3D methods. Due to different settings,
the image is treated as either a condition or the input.

4.5 Label-free Image-Conditional Generation

Quantitative Results. Since previous methods are not trained on the same
datasets as Sparse3D, we only report our metrics on the testing dataset as a
baseline for future work. As also depicted in Tab. 3, Sparse3D achieves poorer
metrics on Objaverse than ShapeNetV2. The reasons behind this are two-fold:
1) Objaverse contains various materials that will set obstacles for us to obtain
the ground-truth renderings using open-source rendering engines like Blender; 2)
Objaverse contains more complicated samples than CAD models in ShapeNetV2.
We leave these potential improvements to future work.

Qualitative Comparison. We visualize some typical samples generated by
Sparse3D, Point-E [31], Shape-E [17], and Syncdreamer(Neus) [24]. Point-E and
Shap-E are trained on private datasets with several million 3D models. Sync-
dreamer is trained on the whole Objaverse. Since all of these methods use differ-
ent training datasets, we only aim to illustrate typical strengths and problems
among current methods. As shown in Fig. 5, Sparse3D could generate topologies
like man-made shapes but fails to generate accurate texture based on the con-
ditioned image. We empirically find that an unaligned dataset(Objaverse) will
cause ambiguity in image-3D alignment since two objects with the same topol-
ogy but different rotations are treated as distinct objects in networks. Point-E
and Shap-E suffer from the same ambiguity problem as Sparse3D both in ge-
ometry and texture. SyncDreamer may generate a corrupted bottom for the

14 Zuo et al.

generated fixed up-hemisphere views. Current methods are hard to benchmark
for the reason of using different training sets, which again motivates us to build
up and release the benchmark. However, we show competitive visualization re-
sults in the open-vocabulary scenario. Also, as shown in Supp-Fig. 7, Sparse3D
can be adopted for a text-to-image-to-3D pipeline rather than directly learning
a mapping from text prompts to 3D models.

4.6 Ablation

We conduct an ablation study on significant modifications including sparse en-
coding and adversarial fintuning. As depicted in Tab. 4, sparse encoding greatly
improves both the geometry-related and texture-related metric since it preserves
more features of original shapes. Adversarial finetuning further enhances the
texture quality of reconstructed shapes, which builds a higher upbound for the
generation model. (The term “baseline" indicates that we only used a 20K point
cloud as input for PointNet, as opposed to a dense point cloud in the order of
millions as input for SparseConv.)

Table 4: Ablation on Sparse Encoding and Adversarial Fintuning.

Method IoU CD PSNR SSIM
Baseline 0.951 0.039 25.83 0.946
+SparseEncoding 0.954 0.036 26.11 0.951
+Adv Fintuning 0.952 0.039 27.03 0.954
Full Model 0.954 0.037 27.59 0.959

5 Conclusion

We propose Sparse3D, a novel framework that utilizes an off-the-shell 2D gener-
ation model (StableDiffusion) for 3D textured shape generation. Minimal mod-
ifications stand in the sparse encoding stage, which is aimed to boost the qual-
ity of texture and the adversarial finetune as a second stage of reconstruction.
Experiments on the single-class unconditional setting, multi-class conditional
setting, and open-vocabulary conditional setting demonstrate the superiority of
Sparse3D. Although we take a step further on textured shape generation on
large-scale scenarios and produce shapes similar to man-made ones, the data
limitation of 3D generation has not been fully resolved yet and the generaliz-
ability of Sparse3D is relatively weak when compared with NVS methods. In
future works, we want to combine the generalizability of NVS methods with the
topology-preserving ability of Sparse3D and incorporate an explicit 3D prior to
the NVS methods to formulate a 3D-aware diffusion model.

High-Fidelity 3D Textured Shapes Generation 15

Acknowledgements

We would like to express our special gratitude to Chao Xu for his assistance in
G-Objaverse rendering.

References

1. Cao, T., Kreis, K., Fidler, S., Sharp, N., Yin, K.: Texfusion: Synthesizing 3d tex-
tures with text-guided image diffusion models. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 4169–4181 (2023)

2. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo,
O., Guibas, L.J., Tremblay, J., Khamis, S., et al.: Efficient geometry-aware 3d
generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16123–16133 (2022)

3. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
5799–5809 (2021)

4. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet:
An Information-Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Technological Institute at
Chicago (2015)

5. Chen, D.Z., Siddiqui, Y., Lee, H.Y., Tulyakov, S., Nießner, M.: Text2tex: Text-
driven texture synthesis via diffusion models. arXiv preprint arXiv:2303.11396
(2023)

6. Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3d: Disentangling geometry
and appearance for high-quality text-to-3d content creation. arXiv preprint
arXiv:2303.13873 (2023)

7. Cheng, Y.C., Lee, H.Y., Tulyakov, S., Schwing, A.G., Gui, L.Y.: Sdfusion: Multi-
modal 3d shape completion, reconstruction, and generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4456–
4465 (2023)

8. Chou, G., Bahat, Y., Heide, F.: Diffusion-sdf: Conditional generative modeling of
signed distance functions. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 2262–2272 (2023)

9. Chou, G., Chugunov, I., Heide, F.: Gensdf: Two-stage learning of generalizable
signed distance functions. Advances in Neural Information Processing Systems 35,
24905–24919 (2022)

10. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolu-
tional neural networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 3075–3084 (2019)

11. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 13142–13153 (2023)

12. Dong, Y., Zuo, Q., Gu, X., Yuan, W., Zhao, Z., Dong, Z., Bo, L., Huang, Q.:
Gpld3d: Latent diffusion of 3d shape generative models by enforcing geometric
and physical priors. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 56–66 (June 2024)

16 Zuo et al.

13. Gao, J., Shen, T., Wang, Z., Chen, W., Yin, K., Li, D., Litany, O., Gojcic, Z.,
Fidler, S.: Get3d: A generative model of high quality 3d textured shapes learned
from images. Advances In Neural Information Processing Systems 35, 31841–31854
(2022)

14. Gupta, A., Xiong, W., Nie, Y., Jones, I., Oğuz, B.: 3dgen: Triplane latent diffusion
for textured mesh generation. arXiv preprint arXiv:2303.05371 (2023)

15. Gwak, J., Choy, C., Savarese, S.: Generative sparse detection networks for 3d single-
shot object detection. In: Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16. pp. 297–313.
Springer (2020)

16. Jakob, W., Speierer, S., Roussel, N., Vicini, D.: Dr.jit: A just-in-time compiler for
differentiable rendering. Transactions on Graphics (Proceedings of SIGGRAPH)
41(4) (Jul 2022). https://doi.org/10.1145/3528223.3530099

17. Jun, H., Nichol, A.: Shap-e: Generating conditional 3d implicit functions. arXiv
preprint arXiv:2305.02463 (2023)

18. Kang, M., Zhu, J.Y., Zhang, R., Park, J., Shechtman, E., Paris, S., Park, T.: Scaling
up gans for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10124–10134 (2023)

19. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
39(6) (2020)

20. Li, W., Chen, R., Chen, X., Tan, P.: Sweetdreamer: Aligning geometric priors in
2d diffusion for consistent text-to-3d. arXiv preprint arXiv:2310.02596 (2023)

21. Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3d: High-resolution text-to-3d content creation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 300–309 (2023)

22. Liu, M., Shi, R., Kuang, K., Zhu, Y., Li, X., Han, S., Cai, H., Porikli, F., Su, H.:
Openshape: Scaling up 3d shape representation towards open-world understanding.
arXiv preprint arXiv:2305.10764 (2023)

23. Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-
1-to-3: Zero-shot one image to 3d object. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. pp. 9298–9309 (2023)

24. Liu, Y., Lin, C., Zeng, Z., Long, X., Liu, L., Komura, T., Wang, W.: Syncdreamer:
Generating multiview-consistent images from a single-view image. arXiv preprint
arXiv:2309.03453 (2023)

25. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel cnn for efficient 3d deep learning.
Advances in Neural Information Processing Systems 32 (2019)

26. Long, X., Guo, Y.C., Lin, C., Liu, Y., Dou, Z., Liu, L., Ma, Y., Zhang, S.H.,
Habermann, M., Theobalt, C., et al.: Wonder3d: Single image to 3d using cross-
domain diffusion. arXiv preprint arXiv:2310.15008 (2023)

27. Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang, X., Xu, H., Xu, C.: Voxel
transformer for 3d object detection. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 3164–3173 (2021)

28. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 4460–4470
(2019)

29. Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: Shape priors for 3d com-
pletion, reconstruction and generation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 306–315 (2022)

https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/3528223.3530099

High-Fidelity 3D Textured Shapes Generation 17

30. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: Unsuper-
vised learning of 3d representations from natural images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7588–7597 (2019)

31. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751
(2022)

32. Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative
neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11453–11464 (2021)

33. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. pp. 523–540. Springer
(2020)

34. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988 (2022)

35. Qiu, L., Chen, G., Gu, X., Zuo, Q., Xu, M., Wu, Y., Yuan, W., Dong, Z., Bo,
L., Han, X.: Richdreamer: A generalizable normal-depth diffusion model for detail
richness in text-to-3d (2023), https://arxiv.org/abs/2311.16918

36. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)

37. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

38. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35, 36479–36494 (2022)

39. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive
meshes. In: Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. pp. 409–416 (2001)

40. Sanghi, A., Chu, H., Lambourne, J.G., Wang, Y., Cheng, C.Y., Fumero, M., Malek-
shan, K.R.: Clip-forge: Towards zero-shot text-to-shape generation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
18603–18613 (2022)

41. Shen, T., Munkberg, J., Hasselgren, J., Yin, K., Wang, Z., Chen, W., Gojcic, Z.,
Fidler, S., Sharp, N., Gao, J.: Flexible isosurface extraction for gradient-based
mesh optimization. ACM Transactions on Graphics (TOG) 42(4), 1–16 (2023)

42. Shi, R., Chen, H., Zhang, Z., Liu, M., Xu, C., Wei, X., Chen, L., Zeng, C., Su, H.:
Zero123++: a single image to consistent multi-view diffusion base model. arXiv
preprint arXiv:2310.15110 (2023)

43. Shi, Y., Wang, P., Ye, J., Long, M., Li, K., Yang, X.: Mvdream: Multi-view diffusion
for 3d generation. arXiv preprint arXiv:2308.16512 (2023)

44. Shue, J.R., Chan, E.R., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3d neural field
generation using triplane diffusion. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 20875–20886 (2023)

45. Siddiqui, Y., Thies, J., Ma, F., Shan, Q., Nießner, M., Dai, A.: Texturify: Generat-
ing textures on 3d shape surfaces. In: European Conference on Computer Vision.
pp. 72–88. Springer (2022)

https://arxiv.org/abs/2311.16918

18 Zuo et al.

46. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020)

47. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching efficient
3d architectures with sparse point-voxel convolution. In: European conference on
computer vision. pp. 685–702. Springer (2020)

48. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653 (2023)

49. Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K., et al.: Lion:
Latent point diffusion models for 3d shape generation. Advances in Neural Infor-
mation Processing Systems 35, 10021–10039 (2022)

50. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based con-
volutional neural networks for 3d shape analysis. ACM Transactions On Graphics
(TOG) 36(4), 1–11 (2017)

51. Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., Zhu, J.: Prolificdreamer: High-
fidelity and diverse text-to-3d generation with variational score distillation. arXiv
preprint arXiv:2305.16213 (2023)

52. Weng, H., Yang, T., Wang, J., Li, Y., Zhang, T., Chen, C., Zhang, L.: Consis-
tent123: Improve consistency for one image to 3d object synthesis. arXiv preprint
arXiv:2310.08092 (2023)

53. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 4541–4550 (2019)

54. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis,
K.: Lion: Latent point diffusion models for 3d shape generation. arXiv preprint
arXiv:2210.06978 (2022)

55. Zhang, B., Nießner, M., Wonka, P.: 3dilg: Irregular latent grids for 3d generative
modeling. Advances in Neural Information Processing Systems 35, 21871–21885
(2022)

56. Zhang, B., Tang, J., Niessner, M., Wonka, P.: 3dshape2vecset: A 3d shape repre-
sentation for neural fields and generative diffusion models (2023), https://arxiv.
org/abs/2301.11445

57. Zhang, P., Zhang, B., Chen, D., Yuan, L., Wen, F.: Cross-domain correspondence
learning for exemplar-based image translation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5143–5153 (2020)

58. Zhao, Z., Song, C., Gu, X., Dong, Y., Zuo, Q., Yuan, W., Dong, Z., Bo, L., Huang,
Q.: An optimization framework to enforce multi-view consistency for texturing 3d
meshes using pre-trained text-to-image models (2024), https://arxiv.org/abs/
2403.15559

59. Zheng, X.Y., Pan, H., Wang, P.S., Tong, X., Liu, Y., Shum, H.Y.: Locally
attentional sdf diffusion for controllable 3d shape generation. arXiv preprint
arXiv:2305.04461 (2023)

60. Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5826–5835 (2021)

61. Zhou, X., Zhang, B., Zhang, T., Zhang, P., Bao, J., Chen, D., Zhang, Z., Wen,
F.: Cocosnet v2: Full-resolution correspondence learning for image translation. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 11465–11475 (2021)

62. Zuo, Q., Gu, X., Qiu, L., Dong, Y., Zhao, Z., Yuan, W., Peng, R., Zhu, S., Dong,
Z., Bo, L., Huang, Q.: Videomv: Consistent multi-view generation based on large
video generative model (2024), https://arxiv.org/abs/2403.12010

https://arxiv.org/abs/2301.11445
https://arxiv.org/abs/2301.11445
https://arxiv.org/abs/2403.15559
https://arxiv.org/abs/2403.15559
https://arxiv.org/abs/2403.12010

High-Fidelity 3D Textured Shapes Generation 19

63. Zuo, Q., Song, Y., Li, J., Liu, L., Bo, L.: Dg3d: Generating high quality 3d tex-
tured shapes by learning to discriminate multi-modal diffusion-renderings. In: 2023
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 14529–
14538 (2023). https://doi.org/10.1109/ICCV51070.2023.01340

https://doi.org/10.1109/ICCV51070.2023.01340
https://doi.org/10.1109/ICCV51070.2023.01340

	High-Fidelity 3D Textured Shapes Generation by Sparse Encoding and Adversarial Decoding

