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In this supplementary material, we present network complexity (Section 1),
extra visual demonstration (Section 2) and definition of loss functions (Section
3). In addition, a video demo is provided to showcase the effectiveness of our
method in the supplementary video.

1 Network Complexity

1.1 Model Complexity and Parameters Comparison

We report the model complexity and parameters comparison in Table 1. The
GFLOPs and Runtime are calculated by inferring a video clip of three frames
with a resolution of 256×256. We demonstrate the effectiveness of our SemiVDN
by achieving state-of-the-art results on the synthetic and real-world video snow
removal datasets while maintaining a comparatively minimal computational ex-
pense. In the presented tabular data, our method obtained the best restora-
tion performance results compared to other comparative methods and achieved
the third fastest speed. Compared to state-of-the-art method SVDNet [3], our
SemiVDN has 3.26× fewer FLOPs and runs 2.39× faster. Moreover, our model
boosts a 1.66 dB improvement in PSNR compared to the fastest method S2VD
[12] , and achieving an inference speed of 19.19 FPS. Thanks to our temporal
decoupling experts, our approach can adaptively decompose the backbone fea-
ture from the temporal dimension, avoiding the typically employed slow sorting
or top-k operations prevalent in MoE-based methodologies [4, 7].

2 More Visual Demonstration

In this section, we show more visual results to demonstrate the effectiveness of
the proposed method.
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Table 1: Model complexity and parameters comparisons between our network and
other methods. Bolded and underlined values indicate the best and the second-best
performance, respectively.

Method PSNR↑ SSIM↑ LPIPS↓ GFLOPs Runtime(s) Parameters
TransWeather [10] 23.11 0.8543 0.2086 18.39 0.0217 37.68M

WeatherDiffusion [8] 22.01 0.8621 0.1539 745.2 332.17 113.68M
ViWS-Net [11] 24.43 0.8922 0.1142 53.11 0.4002 57.68M
MPRNet [14] 24.27 0.896 0.1266 445.65 0.5057 3.64M
Restormer [13] 24.34 0.8929 0.1164 422.97 0.1864 26.10M

BasicVSR++ [1] 22.64 0.8618 0.1868 907.13 0.2264 6.22M
S2VD [12] 24.02 0.8761 0.1513 30.68 0.0041 0.525M
SVDNet [3] 25.06 0.9210 0.0842 511.95 0.1248 14.78M

Ours 25.68 0.9254 0.0785 157.13 0.0521 33.92M

2.1 Visual Comparisons Against State-of-the-Art Methods

Figure 1 and Figure 2 demonstrate more visual comparisons between the re-
sults generated by our methods and the other compared methods on the RVSD
dataset and real-world dataset, respectively. The results on the synthetic dataset
demonstrate that our SemiVDN effectively eliminates diverse snow patterns,
particularly large snow accumulations. Also, our approach preserves the most
natural color compared to alternative comparative methods. Moreover, the re-
sults on the real-world dataset prove that our proposed model has better video
desnowing ability on real-world scenarios. More video desnowing results can be
found in the supplementary video.

2.2 More Results Across Real-World Scenarios

Figure 3 illustrates the results of our model across diverse scenarios. The top
row showcases several snowfall scenes observed within forest environments, which
are commonly accompanied by the presence of haze and snowflakes of varying
particle sizes. The second row displays multiple scenes of daily human activities,
including streets, parks and complex lighting at night. The third row exhibits
snowfall scenes extracted from movies. In the aforementioned array of scenes,
our approach effectively removal snow and haze while preserving the natural
coloration. This result is attributable to our proposed semi-supervised video
snow removal method, which incorporates both synthetic and real images during
the training process and employs contrast learning to address distribution shift.
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Fig. 1: Visually comparing video desnowing results produced by our network and state-
of-the-art methods. Input frame comes from the RVSD dataset. The proposed method
generates high-quality desnowing results with more accurate detail and texture recov-
ery.
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Fig. 2: Visually comparing video desnowing results produced by our network and state-
of-the-art methods. Input frame comes from the real-world dataset. Our method can
successfully remove most snow particles with various degradation scales and obtain
visual pleasant background recovery results.
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Fig. 3: More results of our proposed semi-supervised method in real snowy video sam-
ples.
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3 Definition of Loss Functions

3.1 Supervised Loss

Pixel-wise Loss. We first use the Charbonnier loss [2] as our basic restoration
loss:

Lpixel =

√(
Jgt
t − Jsyn

t

)2
+ χ2 , (1)

where Jgt
t is the corresponding ground-truth of the input snowy video sample,

and Jsyn
t is the corresponding student network’s prediction results. The hyper-

parameter χ is set to 10−6,

Perceptual Loss. We also add a perceptual loss that measures the discrepancy
between the features of prediction and the ground truth. We extract features
from the 3rd, 8th and 15th layers of the pretrained VGG-16 to calculate the
perceptual loss. The perceptual loss is formulated as follows:

Lperceptual = LMSE

(
V GG3,8,15(J

gt
t ), V GG3,8,15(J

syn
t )

)
. (2)

Focal Frequency Loss. We introduce the Focal Frequency Loss to focus the
model on the response of different regions in the frequency spectrum to varying
artifacts in the image, aiming to reduce artifacts and enhance image restoration
quality. The Focal Frequency Loss is formulated as:

LFrequency =
1

HW

H−1∑
u=0

W−1∑
v=0

ωf (u, v)
∣∣∣FJgt

t
(u, v)− FJsyn

t
(u, v)

∣∣∣2 , (3)

where the image size is H × W ; (u, v) represents the coordinate of a spatial
frequency on the frequency spectrum; the matrix element ωf (u, v) is the weight
for the spatial frequency at (u, v). The complex frequency value F (u, v) denotes
the 2D discrete Fourier transform as follows:

F (u, v) =

H−1∑
x=0

W−1∑
y=0

f(x, y) · e−i2π(ux
H + vy

W ) , (4)

where (x, y) symbolizes the coordinate of an image pixel in the spatial domain;
e and i represent Euler’s number and the imaginary unit, espectively. Further
elaboration and comprehensive details can be found in [6].

3.2 Unsupervised Loss

Pixel-Level Loss. For semi-supervised learning, we firstly apply the Charbon-
nier loss to ensure the student network’s prediction results Jstu

t are consistent
with the teacher network’s prediction results J tea

t in the pixel level, which can
be defined as:

L
′

pixel =

√
(J tea

t − Jstu
t )

2
+ χ2 . (5)
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Feature-Level Loss. We further exploit the feature representation of images to
constrain the alignment process of unlabelled data in the feature domain. Specif-
ically, we employ contrastive learning to ensure Jstu

t is pulled closer to J tea
t and

pushed far away from the strongly augmented unlabeled degraded images Îrealt

obtained by the pre-trained VGG feature extractor. The perceptual contrastive
loss can be formulated as:

Lcl =

R∑
r=1

ωr ·
LL1

(Gr(J
tea
t ), Gr(J

stu
t ))

LL1

(
Gr(Îrealt ), Gr(Jstu

t )
) , (6)

where {Gr | r ∈ [1, R]} extracts the r − th hidden features from the fixed pre-
trained VGG-19 model. ωr is a weight coefficient.

Prior Losses. Furthermore, we employ the dark channel prior (DCP) [5] loss
LDCP and the total variation loss [9] LTV as the prior losses. The total variation
loss is an ℓ1-regularization gradient prior, which can be expressed as:

LTV =
∥∥∂horJstu

t

∥∥
1
+

∥∥∂verJstu
t

∥∥
1
, (7)

where ∂hor denotes the horizontal gradient operators, and ∂ver represents the
vertical gradient operators.

We also apply the dark channel prior loss to ensure that the dark channel of
the predicted images are in consistence with similar statistical characteristics of
the clear images:

LDCP =

∥∥∥∥ min
y∈NL(x)

[
min

c∈{r,g,b}
(Jstu

t )c(y)

]∥∥∥∥
1

, (8)

where x and y are pixel coordinates of image Jstu
t , (Jstu

t )c represents c− th color
channel of Jstu

t , and NL(x) denotes the local neighborhood centered at x.
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