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Abstract. Snow degradations present formidable challenges to the ad-
vancement of computer vision tasks by the undesirable corruption in out-
door scenarios. While current deep learning-based desnowing approaches
achieve success on synthetic benchmark datasets, they struggle to re-
store out-of-distribution real-world snowy videos due to the deficiency of
paired real-world training data. To address this bottleneck, we devise a
new paradigm for video desnowing in a semi-supervised spirit to involve
unlabeled real data for the generalizable snow removal. Specifically, we
construct a real-world dataset with 85 snowy videos, and then present
a Semi-supervised Video Desnowing Network (SemiVDN) equipped by
a novel Distribution-driven Contrastive Regularization. The elaborated
contrastive regularization mitigates the distribution gap between the
synthetic and real data, and consequently maintains the desired snow-
invariant background details. Furthermore, based on the atmospheric
scattering model, we introduce a Prior-guided Temporal Decoupling Ex-
perts module to decompose the physical components that make up a
snowy video in a frame-correlated manner. We evaluate our SemiVDN on
benchmark datasets and the collected real snowy data. The experimental
results demonstrate the superiority of our approach against state-of-the-
art image- and video-level desnowing methods. Our code and the dataset
are available at https://github.com/TonyHongtaoWu/SemiVDN.

Keywords: Video desnowing · Semi-supervised learning · Mixture of
experts · Contrastive learning

1 Introduction

Snow, one kind of adverse weather, frequently appears in outdoor videos. The
degradation effects caused by snow particles and streaks severely impair the
visibility of video frames and subsequently hinder the advanced performance
of video processing algorithms in autonomous systems. Consequently, as an ill-
posed inverse problem, a large quantity of desnowing methods are designed to
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(b) Real-world snowy image samples(a) Synthetic snowy image samples

Fig. 1: The distribution shift of the synthetic snow and real snow.

Fig. 2: Left sub-figure: The proposed semi-supervised method trained using syn-
thetic and real videos yields favorable results on snowy video samples captured in
various scenarios, including forests, country roads and movies. Right sub-figure:
Trade-off between PSNR performance v.s Runtime and GFLOPs on RVSD dataset [8].

prevent the perturbation of snow not only in single-image but also in videos.
Early image snow removal methods tend to perform snow removal based on
physical priors [4, 42, 45, 82]. Subsequently, deep neural networks like Convolu-
tional Neural Networks (CNNs) and Transformers [10, 13, 14, 33, 36, 63, 69, 80]
are introduced to remove the snow more sophisticatedly. According to the at-
mospheric scattering model [39], Chen et al . [8] constructed a video desnowing
benchmark and the degradation caused by the snow could be formulated by:

Isnow (x) = J (x)T (x) +A (x) (1− T (x)) + S (x) , (1)

where Isnow denotes the video deteriorated by snow, J is the corresponding
clean video, T is the transmission map, A is the atmospheric light and S is the
snow map. They also proposed the first network SVDNet to leverage temporal
redundancy for snow removal task. Though such method has achieved success
on synthetic benchmarks, better results in recovering real-world snowy videos
are highly desired for deployment in real applications.

Unfortunately, as shown in Figure 1, due to the distribution shift between
synthetic data and real-world data, it inevitably happens that the existing desnow-
ing methods are impeded by unrealistic training data and fail to handle the real
snow with unpredictable shapes and motions. More importantly, it’s impracti-
cal to train these models with plenty of paired real-world data because variable
weather conditions, object and camera position make it extremely complicated
to align the videos from the real scene. To address the aforementioned issues, it’s
a natural practice to consider unlabeled real-world data into the training stage
in a semi-supervised fashion.

In this work, we collect 85 unpaired real-world snowy videos for the training
of the proposed model. We use the mixed set composed of synthetic and real
data under the Mean-Teacher architecture to enhance its generalizable capability
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across various real scenarios. Specifically, we introduce a Distribution-driven
Contrastive Regularization to prevent the deep model from the perturbation of
diverse snow shape and motion from synthetic and real data. To obtain ultra-
positive samples, we utilize the GMM likelihood to capture the synthetic snow
most similar to the real counterpart by approximating the distribution of real
snow components. We maintain and highlight the snow-invariant information by
replacing the snow-specific counterpart in ultra-positive samples and contrarily
replacing the background in negative samples.

Furthermore, though SVDNet [8] manipulates the physical prior of Eq. 1,
they lack the beneficial guidance to present an explicit decoupling on each com-
ponent. To this end, we improve the vanilla transformer block to a physics-based
counterpart by introducing temporal decoupling experts. These experts explic-
itly attend to different compositions of the degradation based on the physical
formula, which provides the decomposed feature for the subsequent recovery. We
also introduce temporal decomposition router aggregating complementary infor-
mation within videos to explore the correlations between consecutive frames.

Our contributions can be summarized as:

– To the best of our knowledge, we present the first semi-supervised video
desnowing framework named SemiVDN, which explicitly explores the bene-
ficial knowledge from unlabeled data to improve the generalization capability
of the deep model.

– We introduce a Prior-guided Temporal Decoupling Experts module to explic-
itly decompose the physical components considering inter-frame coherence
for better snow removal.

– We also design a Distribution-driven Contrastive Regularization to mitigate
the appearance difference between the synthetic and real data, and conse-
quently maintain the desired snow-invariant information.

– Extensive experimental results on both synthesized videos and real-world
snowy videos demonstrate that our network significantly outperforms other
state-of-the-art snow removal methods. More importantly, it surpasses pre-
vious methods in trade-off and performance substantially and has a better
generalization ability to benefit real-world applications as shown in Figure 2.

2 Related Work

2.1 Snow Removal Methods

Prior to the advent of deep learning [17, 19, 44, 55, 67, 71, 74], snow removal
techniques [4, 42, 45, 82] predominantly relied on physics-based priors to ad-
dress the snow removal challenge. In recent years, deep-learning-based meth-
ods [9, 11, 13, 14, 33, 36, 66, 70, 73, 80] have achieved impressive results for snow
removal. JSTASR [13] proposed a snow removal algorithm that can jointly clas-
sify snow particles and remove the snow with different transparency. HDCW-
Net [14] utilized a hierarchical decomposition paradigm, incorporating dual-tree
wavelet transform and wavelet loss. DDMSNet [80] exploited semantic and depth
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priors for image snow removal. Li et al . [33] proposed an online multi-scale con-
volutional sparse coding model for online snow removal. Previous research has
primarily focused on single-image snow removal techniques, neglecting the com-
plexities of video sequences under snowfall conditions. SVDNet [8] presents a
video desnowing network with a snow-aware temporal aggregation module by
integrating optical flow and snow features to guide the detection and removal of
remaining snow within the video sequence. However, the aforementioned meth-
ods were only trained on synthetic data and may degenerate when deployed on
real images caused by the distribution shift.

2.2 Semi-Supervised Learning

In recent years, semi-supervised learning [54, 56, 57, 83] has played an increas-
ingly important role in tackling computer vision problems. Researchers intro-
duced semi-supervised methods to learn real data patterns in image restoration
tasks. Wei et al . [64] developed a semi-supervised image deraining model us-
ing a likelihood term from a parameterized distribution designed for residuals.
S2VD [77] proposed a semi-supervised video deraining model with a dynamical
rain generator. Recently, many semi-supervised methods have been developed,
such as Mean-Teacher [52] and MixMatch [3]. Among them, the Mean-Teacher
method often manipulates consistency regularization based on the high-quality
pseudo-labels obtained by an exponential moving average network, which trig-
gers its applications to vision tasks such as semantic segmentation [16] and image
restoration [35, 59]. DMT-Net [35] utilized a disentangled-consistency network
ensuring consistency between coarse predictions and refinements of real data
for image dahazing. Wang et al . [59] leveraged a student-teacher framework via
knowledge transfer for image super-resolution. To the best of our knowledge,
semi-supervised learning has not yet been explored in the video snow removal
task.

2.3 Mixture of Experts

Motivated by various successful cases of the Mixture of Experts (MoE) [26] in re-
cent advances natural language processing (NLP) tasks [20,48,49,58], especially
the large language model (LLM), sparse MoE have been popular in high-level
vision tasks [1,2,18,21,43,60,76] due to scaling up module capacity without sac-
rificing computational cost. Specifically, MoE involves a set of expert networks
and a gating network, where gating scores from the gating network adjust the
expert networks’ outputs. In the community of low-level vision, DRSformer [15]
introduces a mixture of experts feature compensators to perform a collaborative
refinement of data and content sparsity for image deraining. Rather than adopt-
ing a sparse and discrete router, all the weights in our Temporal Decoupling
Experts are continuously considered, while the physics-driven formula implicitly
trains the corresponding experts.
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Fig. 3: The schematic illustration of our Semi-Supervised Video Desnowing
Network (SemiVDN). SemiVDN is based on the mean teacher scheme with a stu-
dent model and a teacher model. We first develop a Prior-guided Temporal Decoupling
Experts (see Fig. 5) to decompose the physical components that make up a snow video
in a temporal spirit. After that, we compute supervised losses for labeled data and un-
supervised losses for unlabeled data. Based on the decomposed component features (F

′
B

and F
′
S ) in representation space, we develop a Distribution-driven Contrastive Reg-

ularization to highlight the snow-invariant information by replacing the snow-specific
feature in ultra-positive samples and replacing the background in negative samples.

2.4 Contrastive Learning

Contrastive learning, an efficient self-supervised learning method [12, 23, 40, 68,
72], aims to bring anchors closer to positive samples while distancing them from
negative samples in the representation space. Some works have explored such
the paradigm in low-level vision tasks [61, 65]. They adopted the original im-
ages as positive instances and the degraded images as negative instances, which
were subsequently projected into the feature space via VGG [50] for contrastive
learning. Semi-UIR [25] constructed a reliable bank to get the highest image
quality samples as pseudo ground truth, which applied contrastive learning on
unlabeled data. SVDNet [8] pioneered the application of contrastive learning in
the desnowing task, based on the observation that distinct videos exhibit unique
snow features, whereas identical videos maintain consistent snow features.

3 Methods

3.1 Network Architecture

Figure 3 illustrates the overall framework of the SemiVDN for video snow re-
moval, which is constructed based on the Mean-Teacher fashion [52]. Specifi-
cally, we develop a video desnowing network (VDN) consisting of an encoder, a
novel Prior-guided Temporal Decoupling Experts module, and a decoder. Given
a snowy video sequence {Ik ∈ R3×h×w | k ∈ [0, Nf )}, we adopt a universal
backbone ConvNeXt [37] as the encoder to extract the feature maps of frames.
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Fig. 4: Comparison of the snow layer decomposition results. It indicates our method
can decouple more accurate and clean snow layers without background interference.

The extracted feature is further fed into our Prior-guided Temporal Decoupling
Experts module, which aims to obtain the physical prior components that make
up snow videos and remove undesired snow based on Eq. 1. After that, we feed
the output desnowed background feature into a decoder to get the final predic-
tion {Jk ∈ R3×h×w | k ∈ [0, Nf )}. During the supervised stage, the labeled
data is fed into the student network, and pixel-wise supervised loss is computed
between the restored and clean frames. In the semi-supervised stage, we feed the
unlabeled data into the student and teacher network, and compute the pixel-
wise consistency loss, perceptual contrastive loss and prior losses to regularize
the student network. Moreover, we also exploit Distribution-driven Contrastive
Regularization Loss to prevent the model from the negative effects of the distri-
bution gap between synthetic and real data. In the testing stage, we utilize the
student network to predict the desnowed results from the input frames.

3.2 Prior-Guided Temporal Decoupling Experts

Previous works [8, 13] tended to remove snow by mimicking its physical model
in image and video. For example, SVDNet [8] decouples the fused feature and
derives several physical features by the convolutional layers based on the formula.
As shown in Figure 4, this approach frequently fails to capture clean decoupled
features (i.e. snow lay feature). To enhance the decoupling ability of the network,
we first define a physics transformer block with a set of experts that decomposes
the backbone feature into several representative physics-specific features.
Physics Transformer Block. Figure 5 illustrates the detailed procedure of
the proposed Prior-guided Temporal Decoupling Experts module. The encoder
obtains feature maps of frames {Xk ∈ Rh/4×w/4×c | k ∈ [0, Nf )}, and each
X is individually performed overlapped patch embedding. Then all patches are
linearly embedded into tokens Y ∈ R(Nf ·m)×d, where m is the number of to-
kens in one frame and d is the token channel. Then, Y is fed into transformer
blocks for physics-dependent information separation. In the physics transformer
blocks, we first improve the first transformer’s feed-forward network by a fusion
feed-forward network [34] to enhance feature fusion. Inspired by the popular
design of sparse MoEs [20, 31, 43, 46], we incorporate our Temporal Decoupling
Experts module into the second transformer of the Physics Transformer Block
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Fig. 5: Illustration of the proposed Prior-guided Temporal Decoupling Ex-
perts framework. Given an input snowy sequence, Physics Transformer Block (PTB)
accepts encoded features as input and employs Temporal Decoupling Experts module
to generate physics-specific components (i.e. S, A and T) for recovery. Specifically, we
utilize the Temporal Decomposition Router to compute the temporal weights Qij from
the temporal dimension, which are subsequently employed to compute a linear combi-
nation of all input temporal tokens and Qij . Then each expert (an MLP in this work)
processes its temporal adaptive tokens to obtain the corresponding output component
tokens Ẽj . Finally, we employ the decomposed weights from Temporal Decomposition
Router to convexly combine all the component tokens. The output combined features
X̂k and physics-specific features P̂ j

k are subsequently input into the Prior-guided Re-
covery Module and the decoder to generate the ultimate desnowed results.

by replacing its MLP blocks. The proposed module consists of specific experts
corresponding to diverse physics components, that are snow expert, transmis-
sion expert and atmospheric light expert. We denote the input tokens for one
sequence by Z ∈ R(Nf ·m)×d. Every Temporal Decoupling Experts module uti-
lizes a set of n expert functions, specifically denoted as

{
fj : Rd → Rd

}n

j=1
. Each

expert will process a temporal adaptive token, and each token has a correspond-
ing d-dimensional vector of parameters, denoted as Γ ∈ Rd×n. Then we can get
the temporal adaptive weight Qij based on the temporal dimension Nf ·m from
the Temporal Decomposition Router as follows:

Qij =
exp ((ZΓ )ij)∑Nf ·m

i=1 exp ((ZΓ )ij)
. (2)

Consequently, the weighted tokens Z̃ ∈ Rn×d are the convex combination of
Nf · m input tokens and Qij , which contains adaptive temporal information
from the input Nf frames:

Z̃ = Q⊤Z . (3)



8 Wu et al.

Then, the corresponding expert function is applied to each temporal adaptive
token Z̃j to obtain the output component tokens:

Ẽj = fj

(
Z̃j

)
. (4)

We can perform dynamic decoding of physics-specific features with the obtained
representative component tokens and decomposed weights based on the Tem-
poral Decomposition Router. Finally, the output tokens C are computed as a
convex combination of all output component tokens:

Dij =
exp ((ZΓ )ij)∑n
j=1 exp ((ZΓ )ij)

,C = DẼ , (5)

where D is the decomposed weights, i.e., the softmax results across the expert
dimension of Z · Γ . Sparse MoE algorithms typically have a discrete nature,
making them non-differentiable. This can lead to missing information, such as
token dropping and expert unbalance when using classical routing mechanisms.
In contrast, our Temporal Decoupling Experts employ continuous and differen-
tiable operations. They effectively leverage the information from all temporal
tokens and experts, resulting in the extraction of physics-specific features. Then,
the combined tokens sequence C and each component tokens are temporally
transformed to obtain spatial feature maps {X̂k ∈ Rh/4×w/4×c | k ∈ [0, Nf )}
and {P̂

j

k ∈ Rh/4×w/4×c | k ∈ [0, Nf ), j ∈ [1, n]}, respectively. After that, each
component feature is, respectively, concatenated with the combined counter-
part and then fed into their specific decoder to obtain the enhanced component
features. The three decoders are composed of three convolutional layers with up-
sampling, respectively. Finally, these enhanced features are utilized for the final
recovery in the subsequent prior-guided recovery module.
Prior-Guided Recovery Module. We employ the Eq. 1 for the simultaneous
removal of snow and haze in frames. This model facilitates the decomposition of
frames into three distinct components S, A, and T in the feature space. According
to the Eq. 1, the prior-guided recovery process can be formulated as:

F
′

B =
F

′

I − F
′

S − (1− F
′

T )F
′

A

F
′
T + β

, (6)

where F
′

I ∈ RNf×c×h×w is the encoded input feature, F
′

S ∈ RNf×c×h×w is the
snow feature, F

′

T ∈ RNf×c×h×w is the transmission feature, F
′

A ∈ RNf×1×h×w is
the global atmospheric light feature and the hyper-parameter β is set to 10−8.
Finally, we project the output desnowed feature F

′

B into RGB space with a
convolution layer to obtain the snow-free frame J.

3.3 Semi-Supervised Video Snow Removal

In order to enhance the generalization ability of our model across real-world
data, we introduce semi-supervised learning (SSL) in video snow removal tasks.
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SSL enables a learning system to explore complementary information from both
labeled synthesized and unlabeled real-world data. As illustrated in Figure 3, our
SSL framework follows the typical setup [52]. In the training process, the student
network is updated by minimizing the supervised losses and unsupervised losses,
while the teacher network is updated by the exponential moving average (EMA):

θ
′

teacher = ηθteacher + (1− η)θstudent , (7)

where the EMA decay η is empirically set as 0.99. With the adoption of this
update strategy, the teacher model can promptly aggregate weights that have
been acquired in prior training steps.
Supervised Loss. To constrain the outputs of the student network, we adopt
the Charbonnier loss [7] and the perceptual loss [29] to improve the visual quality
of the restored results. While the L1 Charbonnier loss is commonly utilized, the
perceptual loss is to quantify the disparity between the features of the prediction
and the ground truth. We extract features from the 3-rd, 8-th and 15-th layers of
the pretrained VGG-16 [50] to calculate the perceptual loss. We also introduced
the Focal Frequency Loss [27] to focus the model on the response of different
regions in the frequency spectrum to varying artifacts in the image. The overall
supervised loss is formulated as:

Lsup = Lpixel + λ1Lperceptual + λ2LFrequency , (8)

where λ1 and λ2 are the balancing hyper-parameters, empirically set as 0.03 and
10, respectively.
Unsupervised Loss. Firstly, we adopt the pixel level Charbonnier loss L′

pixel

as the unsupervised teacher-student consistency loss to ensure that the two net-
works generate consistent results. Secondly, we follow [61,65] to incorporate the
perceptual contrastive loss by constructing the corresponding perceptual fea-
tures of Jstu

t and J tea
t , and Îrealt as the anchor, positive and negative samples,

respectively. Furthermore, inspired by [13,14,32,47], we employ the dark channel
prior (DCP) [24] loss LDCP and the total variation loss LTV as the prior losses,
which regularize student network to produce results Jstu

t with similar statistical
characteristics of the clear images. The overall unsupervised loss is expressed as:

Lun = λ3L
′

pixel(J
stu
t , J tea

t ) + λ4Lcl(Î
real
t , J tea

t , Jstu
t ) + λ5LDCP + λ6LTV , (9)

where Îrealt denotes the strongly augmented unlabeled degraded video sequence,
Jstu
t and J tea

t denote the snow-free result predicted by student model and teacher
model, respectively. While λ3, λ4 ,λ5 and λ6 are the balancing hyper-parameters,
empirically set as 2, 0.1, 0.1 and 0.5. To get the description of unsupervised loss
functions, please refer to the Supplementary File in detail.

Finally, the overall optimization objective of the student network can be
formulated as minimizing the following loss:

Loverall = Lsup + µLun . (10)
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Inspired by [16,35], we apply a time-dependent Gaussian warming up function to
update the weight µ : µ(r) = µmaxe

(−5(1−r/rmax)
2), where r denotes the current

training iteration and rmax is the maximum training iteration.

3.4 Distribution-Driven Contrastive Regularization

Consistency regularization struggles to mitigate the distribution gap between
synthesized data and real data [25]. Such the domain gap between real and syn-
thetic snow unexpectedly results in numerous incorrect pseudo-labels. The false
information will be accumulated by overfitting on such pseudo-labels. In order
to tackle the aforementioned concern, we introduce contrast learning to shift
the attention of the network to the recovery of the snow-invariant background
details of the snowy video.

As shown in Figure 3, base on our physics transformer block, we can get the
pair of the background feature GS

B and snow feature GS
Snow from labelled data

and the background feature US
B and snow feature US

Snow from unlabelled data
in student network. Additionally, the background feature UT

B and snow feature
UT
Snow are obtained from unlabeled data in the teacher network. According to the

synthesis formula of snow IS (x) = J (x)+S (x), we recombine the background
features and snow layer features from labelled and unlabelled data. In order
to maintain and highlight the snow-invariant information, we replace the snow-
specific counterpart in positive samples and contrarily replace the background in
negative samples. Specifically, we set the US

B and GS
Snow as positive samples, UT

B

and US
Snow as anchor samples, GS

B and augmented UT
Snow as negative samples.

Due to the distribution differences between synthesized and real snow, the
snow layers generated by our network often exhibit noticeable differences. There-
fore, our objective is to acquire an ultra-positive sample, representing the syn-
thetic snow layer that closely resembles the characteristics of real snow layers,
to serve as a positive sample. Since the real snow generally contains inherent
varied structures due to their different generation states and observed perspec-
tives, they can be represented by a Gaussian Mixture Model (GMM). Employing
GMM enables precise approximation of the distribution of real snow layers, ef-
fectively capturing the diverse modes within the data. The distribution of snow
layers can be represented as:

ν ∼
K∑

p=1

πp · N (ν | αp, Σp) , (11)

where πp, αp, Σp denote the mixture coefficients, Gaussian distribution means
and variances, respectively. By leveraging the GMM, we can effectively quantify
the distribution of real and synthetic snow layers. This enables us to compute
the Kullback-Leibler (KL) Divergence, which serves as a measure of dissimilarity
between the Gaussian mixture module obtained from the real snow layer and
diverse synthetic snow layers. Through a selection process that prioritizes the
minimum KL divergence, we are able to identify the ultra-positive synthesized
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Fig. 6: Samples of the proposed real-world video dataset for video snow removal.

snow layers ĜS
Ultra that closely mirrored the distribution characteristics found

in real snow layers US
Snow. After constructing the positive and negative samples,

we can calculate the distribution-driven contrastive loss as follows:

LDCR =
LL1

(
UT
B + US

Snow, U
S
B + ĜS

Ultra

)
LL1

(
UT
B + US

Snow, G
S
B +Aug

(
UT
Snow

))
+ ε

, (12)

where the hyper-parameter ε is set to 10−7, LL1(x, y) is the ℓ1-distance loss be-
tween x and y, and the weight of this loss is set to 0.1. Eventually, we incorporate
the LDCR into the Lun to derive L

′

un.

4 Experiments

4.1 Real-World Snow Video Datasets

In order to tackle the aforementioned issue of lacking suitable video datasets to
generalize the performance of desnowing algorithms in real-world snow video, we
create the first video snow removal dataset Realsnow85, which is incorporated
into the training processing of the semi-supervised video desnowing network.
This dataset serves as a resource for researchers in this field to develop and
test novel methods for the removal of snow from video data. To collect videos
for training and testing, we select the snowy video data from the Internet. As
shown in Figure 6, we capture different video backgrounds, such as cities, parks,
villages and nature. In order to enable our model to cope with various snowfall
and lighting conditions, we also considered different snowfall levels and lighting
scenarios. In addition, we conduct a comprehensive experiment to evaluate our
desnowing network on the Realsnow85 dataset, encompassing 85 videos that ex-
hibit diverse scenes, resolutions, and degradation issues. Among these videos,
60 videos are utilized for training the network, while the other 25 videos are
employed for testing and evaluating. Following [9, 10], we use Neural Image As-
sessment(NIMA) [51] and Multi-scale Image Quality Transformer(MUSIQ) [30]
as the Non-reference Image Quality Assessment metrics to quantitatively com-
pare the performance of real-world snow degraded video restoration.
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Table 1: Quantitative comparisons between our network and other methods on syn-
thetic datasets and real-world datasets. Bolded and underlined values indicate the best
and the second-best performance, respectively.

Method Type Venue Synthetic Datasets Real-world Datasets
PSNR↑ SSIM↑ LPIPS ↓ NIMA↑ MUSIQ ↑

Input - - 18.37 0.7792 0.3095 4.075 48.64
JSTASR [13] Image ECCV 2020 22.08 0.8280 0.2336 4.173 48.82

HDCW-Net [14] Image ICCV 2021 22.63 0.8592 0.2010 4.208 47.54
Snowformer [10] Image arXiv 2022 24.01 0.8939 0.1219 4.215 49.78

SVDNet [8] Video ICCV2023 25.06 0.9210 0.0842 4.220 50.78
TransWeather [53] Image CVPR2022 23.11 0.8543 0.2086 4.182 48.06

WeatherDiffusion [41] Image TPAMI 2023 22.01 0.8621 0.1539 4.106 48.87
ViWS-Net [70] Video ICCV2023 24.43 0.8922 0.1142 4.238 50.56
MPRNet [79] Image CVPR2021 24.27 0.8960 0.1266 4.206 50.08
Restormer [78] Image CVPR2022 24.34 0.8929 0.1164 4.218 50.34
IR-SDE [38] Image ICML2023 22.71 0.8749 0.1168 4.099 47.45
IconVSR [5] Video CVPR2021 22.35 0.8482 0.2034 4.185 49.27

BasicVSR++ [6] Video CVPR2022 22.64 0.8618 0.1868 4.221 49.97
AECR-Net [65] Image CVPR2021 22.95 0.8530 0.1925 4.188 49.81

JRGR [75] Image ICCV2021 23.73 0.8729 0.1427 4.139 48.63
S2VD [77] Video CVPR2021 24.02 0.8761 0.1513 4.156 49.61
SemiVDN Video - 25.68 0.9254 0.0785 4.259 51.57

4.2 Implementation Details

Our network is trained on NVIDIA RTX 4090 GPUs and implemented on the
Pytorch platform. The number of frames per video clip is three. Each input frame
is randomly cropped to a spatial resolution of 256×256. The total number of the
training iteration is 300K. We use the AdamW optimizer and the polynomial
scheduler. The initial learning rate of our main network is set to 1× 10−4 with
a batch size of 4. We set the number of GMM components to be three.

4.3 Comparison with State-of-the-Art Methods

Compared Methods. To evaluate the effectiveness of the proposed method,
we compare it against 15 state-of-the-art methods, including four snow removal
methods [8,10,13,14], three adverse weather restoration methods [41,53,70], five
fully-supervised restoration methods [5, 6, 38, 78, 79], and three semi-supervised
restoration methods [65, 75, 77]. For a fair comparison, we implemented these
fully-supervised methods by their official codes following [8] and retrained them
on the RVSD dataset. For all compared semi-supervised methods, we follow the
same setting of our method to retrain them on a training set, which contains
the training set of the RVSD dataset and the training set of our proposed real
dataset. Follow [22,28], we employed the peak signal-to-noise ratio (PSNR), the
structural similarity index (SSIM) [62], and the learned perceptual image patch
similarity (LPIPS) [81] to quantitatively compare the performance between dif-
ferent methods. The average scores of the three metrics are computed for all the
frames between the predicted results and the ground truths in the testing set.
Synthetic Datasets. Table 1 reports the quantitative results of our network
and 15 state-of-the-art methods on the RVSD test dataset. Among these meth-
ods, SVDNet stands out as the most competitive with the highest PSNR score of
25.06 dB, the highest SSIM score of 0.9210, and the lowest LPIPS score of 0.0842.
Instead, our network outperforms SVDNet, evidenced by the higher PSNR and
SSIM scores of 25.68 dB and 0.9254 respectively, as well as a lower LPIPS score
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Fig. 7: Visual comparisons of desnowed results produced by our network and state-of-
the-art desnowing methods for input video frames from the RVSD dataset.

ViWS-Net S2VD OursSVDNetBasicVSR++Input

Fig. 8: Visual comparisons of desnowed results produced by our network and state-of-
the-art video desnowing methods for input video frames from real-world snowy videos.

of 0.0785. These results highlight the exceptional performance of our network in
effectively removing snow and preserving image quality.
Real-World Datasets. As shown in the comprehensive results presented in
the Table 1, our network also outperforms alternative methods in non-reference
image quality evaluation metrics such as NIMA and MUSIQ. The comparison
clearly demonstrates that our network excels in restoring images with superior
quality, offering clearer content and enhanced perceptual fidelity when compared
to other methods in real snowy scenarios.
Qualitative Comparison. Fig. 7 visually compares snow removal results pre-
dicted by our network and state-of-the-art methods from the RVSD dataset.
Compared with other approaches, our network demonstrates superior perfor-
mance in restoring the original background images by effectively eliminating
snow and haze from input video frames. To further validate its efficacy on real-
world data, we conduct a comparative analysis of different methods on snowy
videos from our Realsnow85 testing set, as illustrated in Figs. 8. The results
clearly indicate that our network excels in removing real snow and haze, while
also successfully recovering obscured background details. Conversely, other meth-
ods tend to retain certain levels of snow and haze in their desnowed outputs.

4.4 Ablation Study

Baseline Design. To analyze the effectiveness of our SemiVDN, we conduct
ablation studies to reveal the influence of three key components in our method,
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Table 2: Quantitative results of our network and constructed baseline networks (“M1”
to “M3”) of the ablation study on synthetic datasets and real-world datasets.

Method TDE SST DCR PSNR↑ SSIM↑ LPIPS ↓ NIMA ↑ MUSIQ↑
M1 24.41 0.9116 0.0932 4.165 49.53
M2 ✓ 25.16 0.9217 0.0822 4.212 50.69
M3 ✓ ✓ 25.29 0.9237 0.0806 4.239 51.05

SemiVDN ✓ ✓ ✓ 25.68 0.9254 0.0785 4.259 51.57

i.e., the temporal decoupling experts (TDE), the semi-supervised training (SST),
and the Distribution-driven Contrastive Regularization (DCR) of our SemiVDN.
The first baseline network (denoted as “M1”) is constructed by removing the tem-
poral decoupling experts module and the teacher model, which means that only
the supervised loss on labeled data is used for training. Then, we use the tem-
poral decoupling experts module to replace the FFN module in the transformer
block to build “M2”. After that, “M3” is constructed based on “M2” by combining
semi-supervised training with the unsupervised loss in Sect. 3.3.
Quantitative Comparison. Table 2 reports the quantitative scores of our
method and the three baseline networks (i.e., “M1” to “M3”). Specifically, com-
pared with “M1”, “M2” improves the PSNR score from 24.41 dB to 25.16 dB, the
SSIM score from 0.9116 to 0.9217, and the LPIPS score from 0.0932 to 0.0822.
This demonstrates the effectiveness of the temporal decoupling experts module
in decomposing the physical components of snow videos in a temporal spirit,
resulting in the enhanced recovery of background. Furthermore, our advanced
"M3" model performs superior results compared to "M2", effectively showcasing
the benefits of incorporating unlabeled data during the semi-supervised training
to enhance the model’s snow removal capabilities on synthetic and real data.
Moreover, our network outperforms “M2” and “M3” in terms of the six metrics,
which means leveraging the three components together enables the proposed net-
work to achieve the best performance in video snow removal on both synthetic
datasets and real-world datasets.

5 Conclusion

In this paper, we proposed the first semi-supervised video desnowing framework
named SemiVDN, which effectively leverages knowledge from unlabeled data to
enhance the generalization capabilities of deep models. To achieve superior snow
removal, we incorporate the Prior-guided Temporal Decoupling Experts mod-
ule, which explicitly decomposes the physical components of a snow video in a
temporal manner. Furthermore, we propose a Distribution-driven Contrastive
Regularization Loss that addresses the appearance discrepancy between syn-
thetic and real data, ensuring the preservation of snow-invariant information.
Observed from extensive experimentation on both synthesized and real-world
snowy videos, our network demonstrates promising performance, surpassing ex-
isting state-of-the-art methods in snow removal.
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