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A Overview

The supplementary material encompasses the subsequent components.

– Additional related work
– Supplementary experiments

– Cross-resolution experiment on different target resolutions
– Cross-domain experiment on multi-class organ segmentation
– Cross-domain experiment on large-scale medical datasets
– Ablation study on different dropout probability
– Ablation study on different LoRA ranks

– Computational complexity of inference
– Additional visualization results

– Visualization for cross-resolution
– Visualization for cross-domain

– Limitation

B Additional related work

Spectral Representation. In the context of medical image analysis, the em-
phasis on textual information over edge information aligns with findings that
deep neural networks tend to bias towards learning low-frequency representa-
tions [14, 16]. To better leverage high-frequency information, numerous studies
have extensively investigated the integration of spectral representation into deep
neural networks, such as FFT, DCT, and Wavelet. Among these spectral rep-
resentations, the FFT-based frequency representation emerges as particularly
prevalent [13, 15, 21, 25]. The use of FFT-based frequency representation not
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only establishes a robust foundation for modeling but also facilitates various
operations, harnessing the advantages of both spectral and spatial representa-
tions [18,19]. While recent efforts have focused on developing adapters for SAM,
there is a notable oversight in integrating information from the frequency domain
to achieve accurate segmentation boundaries. To the best of our knowledge, we
are the first to introduce an adapter for SAM that embeds frequency features,
enhancing high-frequency modeling for more precise boundary delineation.

C Supplementary experiments

C.1 Cross-resolution experiment on different target resolutions

As shown in Fig. 1 and Fig. 2, for a fixed source input resolution of 384×384, with
the target resolution ranges from 16×16 to 2048×2048, I-MedSAM consistently
achieves high-precision segmentation results across a broad spectrum of target
resolutions, particularly within the range of 64 × 64 to 2048 × 2048. It notably
demonstrates superior performance in scaling to higher resolutions, all while
preserving minimal loss in segmentation accuracy.

C.2 Cross-domain experiment on multi-class organ segmentation

To further showcase the generalization ability of our method across organs
of varying sizes, we implement cross-domain segmentation experiments from
BCV [11] to AMOS [8] (a substantially larger dataset compared to BCV) for
multi-class organ segmentation in Tab. 1. We compare against state-of-the-art
discrete methods like nnUNet [6], MedSAM [12], and the implicit method rep-
resented by IOSNet [9]. In this experiment, we exclude SwIPE [23] as one of
our major comparison baselines, which is also an implicit method, due to its
limited reporting of segmentation results only for the liver class in the same
setting, and its code is not available for reproduction. The experimental results
indicate that models leveraging SAM [10] as the backbone exhibit superior gen-
eralization capabilities across different organs. Compared to IOSNet, an implicit
method utilizing ResNet-based backbone, SAM-based methods with ViT as the
backbone demonstrate superior performance in terms of generalization.

Table 1: Cross-domain experiment results of multi-class organ segmentation from
BCV to AMOS (Dice %).

Classes Spleen Right Kidney Left Kidney Gall Bladder Esophagus Stomach Arota

IOSNet [9] 72.19 86.66 79.21 31.69 39.26 59.17 71.16

nnUNet [6] 73.82 46.14 57.83 47.06 38.94 62.76 82.80

MedSAM [12] 81.15 85.22 84.22 77.52 82.29 78.92 86.91

I-MedSAM(Ours) 90.44 91.10 90.78 82.88 71.78 85.27 88.80
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Fig. 1: Experiments on lower target resolutions on Kvasir-Sessile [7] dataset.
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Fig. 2: Experiments on higher target resolutions on Kvasir-Sessile [7] dataset.

C.3 Cross-domain experiment on large-scale medical datasets

To further evaluate the cross-domain performance on larger scale datasets, we se-
lect CTooth+ [4], a large-scale dental cone beam computed tomography dataset.
CTooth+ comprises 22 fully labeled and 146 unlabeled volumes. We divide the
3D volumes into slices, retaining those slices where the sum of pixel-wise 0-1 la-
bels exceeded 100 (following a data processing method similar to that proposed
in [5]). This process results in 1600 training samples and 400 test samples. Ad-
ditionally, we utilize the Panoramic radiography database [17], consisting of 598
panoramic radiographs, to assess the cross-domain capability of the model. We
partition the training and testing sets at an 80:20 ratio, and the cross-domain
experiment is conducted using pre-trained weights from CTooth+ on the testing
set. Experiments on both datasets take 256 × 256 images as inputs.

Since SwIPE’s code is not publicly available, we select IOSNet [9] as a repre-
sentative of the implicit approach. As depicted in Tab. 2, our model significantly
outperforms MedSAM [12] and IOSNet on Ctooth+, although it slightly under-
performs compared to nnUNet [6]. However, our model demonstrates superior
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Table 2: Evaluate cross-domain performance on a larger scale dataset with Dice(%).

Settings CTooth+ CTooth+ → Panoramic

IOSNet [9] 79.68 65.47

MORSE [20] 89.21 74.17

SAMed [22] 89.73 84.93

MedSAM [12] 84.31 74.14

H-SAM [3] 91.29 81.08

SAM-Med2D [2] 87.69 82.06

nnUNet [6] 92.49 85.47

I-MedSAM(Ours) 91.34 87.01

cross-domain capabilities, indicating its proficiency in handling various dataset
sizes. This highlights the practical relevance of our model in clinical medical
image segmentation across different domains.

C.4 Ablation study on different dropout probability

Table 3: Effect on different dropout probability.

Setting (x100%) 0.0 0.1 0.4 0.5 0.6 0.9

Dice (%) 87.74 90.12 90.89 91.34 90.59 89.75

To further investigate the impact of dropout, we conduct experiments with
different dropout probability settings. The results are presented in Tab. 3. It
is crucial to select an appropriate dropout probability for uncertainty-guided
sampling to ensure robust training. A smaller dropout probability may overly
smooth the variance distribution, making it challenging for the coarse INR to
identify difficult samples for the fine INR to refine. Conversely, a larger dropout
probability may introduce instability to the training process. For a new dataset,
we recommend initially setting this hyperparameter to 0.5 and adjusting it based
on specific circumstances as needed.

C.5 Ablation study on different LoRA ranks

Table 4: Ablation study on LoRA ranks.

LoRA Ranks 8 6 4

Dice (%) 90.29 90.41 91.49

HD 12.41 12.39 11.59



Supplementary Materials for I-MedSAM 5

Tab. 4 illustrates the impact of different values of LoRA ranks in I-MedSAM.
When LoRA ranks is set to 4, it exhibits optimal performance while minimiz-
ing training parameters. This demonstrates the effectiveness of this parameter-
efficient fine-tuning technique.

D Computational complexity of inference

We outline the inference stage implementation and the computational cost. We
start with combined features of RHW×C from SAM’s image encoder and prompt
encoder, concatenating the original positional embedding with grid coordinates
as zp ∈ RHW×(C+Cp). The coarse INR Decc processes this into RHW×(C′+Co).
Using UGS, we sample the Top-k percent of feature points with the highest
variance T times based on the coarse prediction result RHW×Co

, which has
a computational cost of O(HW log(HW )), resulting in zs ∈ RkHW×C′

. The
fine INR Decf then refines the selected features into RHW×Co

. Both Decc and
Decf are MLPs, with computational cost related to the intermediate feature
dimensions, represented as O(HW

∑N−1
i=1 Di · Di+1), where N is the number

of linear layers and Di is the dimension of each layer. Detailed computational
evaluation for MLPs is case-specific and omitted here for simplicity.

E Additional visualization results

E.1 Visualization for cross-resolution

As illustrated in Fig. 3 and Fig. 4, we conduct cross-resolution experiments on
Kvasir-Sessile, with segmentation boundaries highlighted in green lines. The fig-
ures demonstrate that I-MedSAM consistently maintains accurate boundaries
across different resolutions. In contrast, baselines employing discrete represen-
tations like nnUNet [6] struggle to segment target objects accurately when pre-
sented with inputs of varying resolutions. Additionally, directly interpolating
ground truth segmentation maps often results in either blurred boundaries or
sparse segmentation maps.

E.2 Visualization for cross-domain

As depicted in Fig. 5 and Fig. 6, we conduct cross-domain experiments from
Kvasir-Sessile to CVC [1] and from BCV [11] to AMOS [8] datasets. Our ap-
proach, I-MedSAM, along with baseline methods, is trained on the source domain
and directly tested on the target domain. Following SwIPE [23], we specifically
compare liver segmentation results for the BCV to AMOS transition. From the
figures, it is evident that I-MedSAM achieves superior segmentation maps and
demonstrates the best generalization capability.
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Image Ground Truth nnUNet MedSAMIOSNet I-MedSAM (Ours)

Fig. 3: Qualitative comparison for cross-resolution experiment from 384×384 to 128×
128. The blurring in the image is normal because we zoom in on a low-resolution image
directly in latex. Best viewed in colors.
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Image Ground Truth nnUNet MedSAMIOSNet I-MedSAM (Ours)

Fig. 4: Qualitative comparison for cross-resolution experiment from 384×384 to 896×
896. Please zoom in for more boundary details.
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Image Ground Truth nnUNet MedSAMIOSNet I-MedSAM (Ours)

Fig. 5: Qualitative comparison for cross-domain from Kvasir-Sessile to CVC dataset.
Best viewed in colors. Please zoom in for more boundary details.
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CT Image Ground Truth nnUNet MedSAMIOSNet I-MedSAM (Ours)

Fig. 6: Qualitative comparison for cross-domain from BCV to AMOS dataset on liver
segmentation. Best viewed in colors. Please zoom in for more boundary details.
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F Limitation

While SAM has been equipped with various adapters to address diverse tasks,
the simultaneous handling of medical images from multiple domains, including
MRI and CT, remains a formidable challenge in the field of medical image pro-
cessing [24]. A potential strategy for improvement is the extension of I-MedSAM
with a more universal adapter capable of generalizing across different modali-
ties. Despite these challenges, I-MedSAM has effectively showcased the utility of
leveraging Implicit Neural Representations (INRs) to enhance SAM’s adaptabil-
ity, demonstrating promising outcomes in aligning with out-of-distribution data
for specific tasks.
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