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Abstract. This paper focuses on the challenge of answering questions
in scenarios that are composed of rich and complex dynamic audio-
visual components. Although existing Multimodal Large Language Mod-
els (MLLMs) can respond to audio-visual content, these responses are
sometimes ambiguous and fail to describe specific audio-visual events. To
overcome this limitation, we introduce the CAT, which enhances MLLM
in three ways: 1) besides straightforwardly bridging audio and video, we
design a clue aggregator that aggregates question-related clues in dy-
namic audio-visual scenarios to enrich the detailed knowledge required
for large language models. 2) CAT is trained on a mixed multimodal
dataset, allowing direct application in audio-visual scenarios. Notably,
we collect an audio-visual joint instruction dataset named AVinstruct,
to further enhance the capacity of CAT to model cross-semantic cor-
relations. 3) we propose AI-assisted ambiguity-aware direct preference
optimization, a strategy specialized in retraining the model to favor the
non-ambiguity response and improve the ability to localize specific audio-
visual objects. Extensive experimental results demonstrate that CAT
outperforms existing methods on multimodal tasks, especially in Audio-
Visual Question Answering (AVQA) tasks. The codes and the collected
instructions will be released soon.

Keywords: Multimodal Large Language Model · Audio-visual Question
Answering

1 Introduction

The real world revolves around sound and visual information, and their com-
bination enhances our ability to perceive the world. Similarly, the development
of Multimodal Large Language Models (MLLMs) [14, 64, 67] are closely related
to audio and visual. Supervised fine-tuning [35, 46, 66] with specific instruction
⋆ Corresponding author: zitong.yu@ieee.org
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Fig. 1: Comparison between existing MLLMs and CAT . Red words for incorrect re-
sponse, Green words for correct response, and Gray words for useless response. Left:
Most of the existing MLLMs straightforwardly bridge multimodal to large language
models. Instead, CAT builds on this foundation by designing the clue aggregator to
learn more detailed knowledge related to the question. Moreover, CAT constrains itself
to learn a sharper response through AI-assisted ambiguity-aware direct preference opti-
mization. Right: In comparison with audio-visual-language models Video-LLaMA [64]
and ChatBridge [67], our method accurately recognizes the answers to questions with
the most streamlined responses.

datasets empowers Large Language Models (LLMs) for multimodal understand-
ing. Despite MLLMs’ strong causal reasoning achieving impressive results in
common-sense answering [53,63], academic answering [16], etc., predicting ques-
tions in dynamic audio-visual scenarios remains challenging. This is due to the
difficulty of aligning LLMs with cross-domain data during training on large-scale
multimodal corpora. It leads to particular ambiguity when describing specific ob-
jects in dynamic audio-visual scenarios. These interferences not only cause the
model to make random guesses but also seriously affect the inference of detailed
answers in Audio-Visual Question Answering (AVQA) [1,26,59,62] tasks.

A series of bridging modules [12,20,31,32,39] for MLLMs have been designed.
The simplest methods [15, 18, 28, 33] use projectors to directly align text with
other modalities, but partially limit the ability to capture fine-grained informa-
tion. In addition, using a cross-attention mechanism to query the audio-visual
context [8,21,38,39] to solve multimodal alignment problems is effective but still
occurs that a certain visual object or sound cannot be localized in practice.

In this work, we explore possible factors contributing to the above failures: 1)
Audio-visual insufficiently correlates with the question. As illustrated
in the upper left of Fig. 1, most existing MLLMs [28,64,67] are mainly designed
with multiple branches to handle multiple modalities individually, followed by
concatenating the modality embeddings with prompts as inputs to the LLM.
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This paradigm cannot allow the network to learn paired text and audiovisuals,
and the tandem embedding is not relevant. 2) Alignment of multimodal with
text is challenging. The multimodal-text corpus [67] is difficult to be aligned,
making the model generation of responses sometimes ambiguous. This ambiguity
generally manifests in ambiguous words of the corresponding audio-visual con-
tent, as well as in generating useless text that overly responds. For example, the
descriptions illustrated by Video-LLaMA [64] and ChatBridge [67] in Fig. 1 are
all relatively ambiguous in describing the question-related video and audio con-
tent. These descriptions fail to identify the correct answer for “bagpipes” when
asked for audio-visual reasoning. In addition, when the description is accompa-
nied by many useless and controversy-prone words, it is unfavorable to evaluate
the closed-ended AVQA task or open-ended AVQA task.

To overcome the two aforementioned issues, we introduce the CAT, enhanc-
ing MLLM in three ways: 1) Aggregation of question-related key clues.
As illustrated in the lower left of Fig. 1, besides the global visual and audio
information, we design a clue aggregator to dynamically capture question-aware
visual and audio hidden features to enrich fine-grained clues. The aggregator
receives sufficient low-level textual information to interact with audio-visual, it
is capable of improving audio-visual grounding. 2) Mixed audio-visual train-
ing strategy. The training of CAT includes feature alignment using video-text
pairs and audio-text pairs, and high-quality instructions to enhance audio-visual
awareness. This strategy allows the CAT to be directly involved in real-world
scenarios containing both visual and sound. Notably, we collect an audio-visual
joint instruction dataset, named AVinstruct, to further empower CAT in AVQA
tasks. 3) Retraining MLLMs to mitigate ambiguity. The DPO proposed by
Rafailov et al. [52] has inspired us. Although MLLMs after training are equipped
with multimodal understanding, they lack the flexibility to perceive ambiguity.
Therefore, we reframe ambiguity elimination as a model preference optimization
process and propose an AI-assisted Ambiguity-aware Direct Preference Opti-
mization (ADPO) strategy. Specifically, we refer to ambiguous responses that
express the lack of clarity of specific audio-visual objects as negative responses,
and then we collect negative responses in the training set and utilize GPT to
rewrite them into positive responses. After the multimodal training, we perform
ADPO to retrain the model to bias towards the positive response, which is the
precise description after the rewrite, and reject the negative response, which is
the ambiguous description. Through this learning strategy, CAT can constrain
itself to favor non-ambiguity responses. As shown in Fig. 1 on the right, CAT
correctly responds to the question and excludes all useless information.

Our main contributions are summarized as follows:

– We introduce a novel audio-visual-language model, dubbed as CAT, that is
capable of learning question-related clues and engaging directly in dynamic
audio-visual inference. Notably, we collect AVinstruct, an audio-visual joint
instruction dataset to ensure the stability of CAT in AVQA tasks.
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– As a powerful learning strategy, we propose AI-assisted ambiguity-aware
direct preference optimization to overcome the problem that MLLMs tend
to ambiguously describe specific audio-visual objects.

– We evaluate CAT on a wide range of multimodal tasks. Extensive experi-
ments demonstrate the superiority of CAT (e.g., outperforms the state-of-
the-art on a variety of AVQA tasks, and achieves remarkable results in the
evaluation of video-based text generation tasks and zero-shot video question-
answering tasks).

2 Related Works

Audio-visual question answering (AVQA). AVQA aims to produce the
most accurate linguistic representation of a given video and audio based on
the question content, which requires multimodal understanding and reasoning
across different semantic levels. The earliest studies [57, 58, 60] emphasize the
understanding of the whole video and return a simple word that is relatively
correct to the question. Subsequently, the emergence of dynamic audio-visual
datasets (e.g., music scenes [26,59], and 360-degree panoramas [62]) increases the
challenge of Question-Answering (QA), which requires the mining of temporal
and spatial information in different modalities. For instance, Music-AVQA [26]
requires distinguishing how many instruments are present based on the audio
content. AVQA [59] requires finding the most plausible of multiple options based
on the audio-visual clues from dynamic scenarios.
MLLMs for audio-visual question answering. Extending LLM to other
multimodal tasks is a recently emerging field. Despite the ability of MLLMs to
combine information between different modalities, performance on downstream
tasks, especially AVQA, remains suboptimal. Many works [8, 20, 39] emphasize
the design of elegant bridging methods to improve the performance of question
answering. The simplest bridging modules [37,40,64] use one or more linear layers
for feature alignment. Although such methods minimize parameter updates, they
still have limitations in exploring fine-grained information. Others design more
complex bridging networks to query visual information. For example, Lyu et
al. [38] propose an alignment module for harmonizing different representations
before entering the LLM. Ma et al. [39] propose to keep the distance between all
visual tokens and any linguistic tokens consistent within the LLM. However, a
large multimodal corpus is difficult to align during training, neither algorithms
with low parameter counts [12] nor complex bridging networks [4] are prone to
the problem of failing to accurately depict specific audio-visual events.
Human-preference learning. Reinforcement Learning from Human Feedback
(RLHF) [41, 46] is the most classical instance of human preference learning
[45,55], it constructs a reward model to optimize the policy model to favor pref-
erence responses. Dai et al. [8] have demonstrated that such preference learning
can enhance LLM to generate more accurate information. Recently, Rafailov
et al. [52] propose a Direct Preference Optimization (DPO) strategy that learns
preferences directly by bypassing learning reward models, this simple yet efficient
approach inspires us to solve the ambiguity problem.
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Fig. 2: Illustration of the proposed CAT and its training strategy. (a) Overview
of CAT. CAT first extracts overall audio-visual knowledge from video and audio and
transforms them into visual tokens xvid and audio tokens xaud. We input question
tagged with <Q></Q> in the prompt into the clue aggregator, aiming to aggregate
question-aware audio-visual hidden features and yield clue tokens xcue. Finally, we
merge multimodal tokens and language and feed into the frozen large language model
with LoRA [17] to output the response. (b) The training paradigm of CAT involves
pre-alignment of the audio-visual projectors and instruction tuning on the entire model.

3 Our Approach

In this section, we first present in detail the proposed CAT (Sec. 3.1 and 3.2). As
shown on the left in Fig. 2, CAT consists of three branches that draw on visual
knowledge, audio knowledge, and question-related clues to feed into the LLM,
respectively. Second, we present the multimodel training strategy for CAT as
shown on the right in Fig. 2, where a high-quality audio-visual joint instruction
dataset is collected for further fine-tuning (Sec. 3.3). Lastly, we introduce the
AI-assisted Ambiguity-aware Direct Preference Optimization (ADPO) strategy,
which reinforces CAT to favor non-ambiguous descriptions (Sec. 3.4).

3.1 Multimodal Inputs

ImageBind [13] with a single joint embedding space demonstrates strong modal-
ity learning ability. Therefore, we leverage the frozen ImageBind as a universal
encoder for all modalities. Given a video V and an audio A, the encoded mul-
timodal hidden features can be obtained by:

hv = ImageBind(V), ha = ImageBind(A), (1)

where hv ∈ RT×dh , ha ∈ R1×dh are video and audio features, respectively. T
denotes the length of the given video and dh is the specific dimension. Notably,
we temporally compress the frame-level features hv to address the computational
burden. Further, we employ two linear projection layers to align the hidden
dimensions of the inputs hv, ha to obtain visual tokens xvid and audio tokens
xaud, respectively.
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3.2 Aggregating Key Clues

An important component of MLLMs is the design of efficient bridging modules.
The simple approach is to apply linear layers to incorporate the full visual and
audio. The advantage is that it does not require any reduction of spatio-temporal
information. However, such bridge approaches sometimes make LLM fail to re-
flect certain content and consistently generate a chunk of description about the
video [28,64]. Therefore, we devise a Clue Aggregator (CA) that enriches LLM-
acquired knowledge by mining multimodal clues related to the question. CA is
divided into two steps, as illustrated in Fig. 3.
Step1: perceiving question-related visual and audio clues. To extract
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Fig. 3: Illustration of clue aggregator in a
simple example.

more sufficient details from the in-
put video and audio, we devise a clue
perceiver, which consists of multiple
different transformer layers. The per-
ceiver can be viewed as a tiny trans-
former network that arranges the self-
attention (SA), cross-attention (XA),
and feed-forward network (FFN) in
forward and reverse order. The for-
ward order block B1 is to perform
attention-based question-aware local-
ization. The reverse order block B2 is
to consolidate the original audio-visual
representation at the attentional level.

Specifically, given tokens representing “Is there a dog around? ” and the corre-
sponding text embedding ht:

B1(ht;X) = XA (ht,FFN(SA(X))) , (2)

B2(X;B1(ht;X)) = SA(FFN(XA(FFN(SA(X)),B1(ht, X)))). (3)

In XA(·,·), the former represents the query and the latter represents the key
and value. Based on Eqs. 2 and 3, we use h′

v = B2(hv;B1(ht;hv)) and h′
a =

B2(ha;B1(ht;ha)) to obtain h′
v, h′

a, the question-aware visual and audio fea-
tures, respectively. Notably, the perceiver for visual and the perceiver for audio
implement shared parameters to learn potential associations.
Step2: aggregating the perceived clues. A three-minute video undergoes a
frozen encoder to get frame-level features of about 400 to 500 in length, leading
to the fact that general machines cannot bear the burden of feeding all the frame-
level features into the LLM. Thanks to the Q-former architecture proposed by
Li et al. [27], which reduces the computational cost of end-to-end training of
multimodal-language models. Specifically, we customize a learnable query vector
q in length K to further extract useful information from the input question-aware
features. Notably, we expand the h′

a in the time dimension to be consistent with
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h′
v and concatenate them. In practice, we set K = 48 to aggregate all question-

aware features and obtain the clue tokens xcue via a clues projector to align the
dimension with the LLM.

3.3 Multimodal Training Strategy

We follow the previous works [35] to promote comprehension over video and
audio. As shown in Fig. 2 on the right, we pre-training CAT on the video-level
and audio-level tasks in stage-I. In stage-II, we fine-tune CAT on high-quality
audio-visual-level instructions.
Stage-I: feature alignment for audio and visual projectors. First, we
employ the video-text Webvid 2.5M dataset [3] to train the visual projector
(audio projector not involved in training). Second, we employ the audio-text
WavCap dataset [42] to train the audio projector (visual projector not involved
in training). During the above two training periods, we freeze the LLM and the
encoder to align the semantic information for vision and audio, respectively.
Stage-II: audio-visual joint instruction tuning. To equip CAT with the
ability to reason jointly based on visual and auditory, we collect an audio-visual
joint instruction dataset, named AVinstruct, which emphasizes co-learning dy-
namic audio-visual pairs to solve diverse AVQA tasks. Specifically, we collect
a large number of raw videos containing audio information from YouTube and
VGGSound [5] as well as QA pairs from the training set in closed-ended AVQA
tasks (i.e. music scene [26] and real-world scene [59]). Then different subtitle
generators (i.e. BLIP2 [27] and Whisper [51]) are utilized to obtain video de-
scriptions. Finally, we use GPT to generalize from human-written examples to
synthesize question-guided audio-visual descriptions. We integrate all composi-
tions after stage-I training and freeze the visual projector and audio projector,
only fine-tuning clue aggregator and combined LoRA parameters on 100k video
instruction [40] and AVinstruct. Notably, to highlight the question for applying
in the clue aggregator, we reconstruct the form of the input prompt by adding
two simple tokens < Q >, < /Q >, where < Q > denotes the start position of
the question and < /Q > denotes the end position of the question. During the
instruction fine-tuning phase, we use predefined prompts based on the template:

USER :< system >< Q >< /Q >< video >< audio >< clues > Assistant :

In this prompt, < system > denotes the official guidance message. < video >,
< audio >, and < clues > are associated with visual tokens, audio tokens, and
question-related clue tokens, respectively.

3.4 AI-assisted Ambiguity-aware Direct Preference Optimization

At first, we attempt to design various prompts to allow MLLMs to generate the
most concise descriptions. However, such a no-learning approach is challenging
to achieve the goal of accurate responses in a variety of dynamic audio-visual
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Fig. 4: Trained-CAT denotes CAT after feature alignment and instruction tuning. Our
proposed ADPO strategy involves two steps. First, we collect the negative response
generated by trained-CAT and correct it by GPT to obtain a positive response based on
the original answer. Second, we perform ADPO training to skew CAT toward positive
responses and reject negative responses.

scenarios. We find that MLLMs are easy to ambiguity when describing spe-
cific audio-visual objects. For example, an ambiguous response is illustrated by
trained-CAT in Fig. 4, where trained-CAT denotes CAT after feature alignment
and instruction tuning. ADPO is designed to allow MLLMs to review their mis-
takes and relearn with a new objective to better expression. Specifically, ADPO
is divided into two steps to optimize CAT:
Collecting ambiguous samples and rewriting. As illustrated on the left in
Fig. 4, assume that a given training set Dtrain and the corresponding trained-
CAT output set Ddes. We first provide GPT with a detailed prompt template
to review each output in Ddes for ambiguity. The rule of the review is to iden-
tify output ambiguities, i.e., responses that differ significantly from the origi-
nal answer, which is referred to as a negative response. We let GPT correct
this negative response, with the principle of generating a positive response that
clearly describes the visual objects or sound without significant modification.
Repeat the above steps to get the sample set Ddpo to be optimized, where
Ddpo = {xvid, xaud, xcue, xtxt, ypos, yneg}. x denotes the input modal token and
xtxt denotes the text tokens, ypos, yneg denote the positive and negative re-
sponses, respectively.
Encouraging CAT to favor positive responses. As illustrated on the right
in Fig. 4, ADPO directly optimizes the low-rank adaptation matrix parameters
[17] in the policy model. We assume CAT as a policy model fpol, given a reference
model fref , a positive response ypos, and a negative response yneg. The reference
model fref is a deep copy of fpol and during training we encourage fpol to favor
ypos, while fref does not update the weights. Specifically, we define DPO loss
LDPO as:

LDPO

(
fpol; fref

)
=− E(xvid,xaud,xcue,xtxt,ypos,yneg)∼Ddpo[

logσ

(
βlog

fpol(ypos|
[
xvid : xaud : xcue : xtxt

]
)

fref (ypos| [xvid : xaud : xcue : xtxt])

− βlog
fpol(yneg|

[
xvid : xaud : xcue : xtxt

]
)

fref (yneg| [xvid : xaud : xcue : xtxt])

)]
,

(4)

[ : ] denotes the concatenation. σ is the non-linear function, Sigmoid, and
β is a hyperparameter. This objective function aims to directly optimize the
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model that favors the positive response ypos and rejects the negative response
yneg. Assuming that β = 1, we simplify the output r̂ of the model based on Eq.
4 as:

r̂(xvid, xaud, xcue, xtxt, y) = log
fpol(y|

[
xvid : xaud : xcue : xtxt

]
)

fref (y| [xvid : xaud : xcue : xtxt])
. (5)

The optimal goal is to make the variance of r̂(xvid, xaud, xcue, xtxt, ypos)− r̂(xvid,
xaud, xcue, xtxt, yneg) larger and larger as a way to steer the model to generate
descriptions devoid of ambiguous. However, when the difference between positive
and negative responses is small, DPO loss supervision alone is not an effective
facilitator. Therefore, we introduce an additional objective LSFT , which is sim-
ilar to the process of supervised fine-tuning, to supervise the model to stabilize
the bias towards the positive response. Specifically, we define LSFT as:

LSFT = −
∑

logP (ypos|
[
xvideo : xaudio : xclues : xtxt

]
; fpol),

{xvid, xaud, xcue, xtxt, ypos} ∼ Ddpo,
(6)

this loss function can be interpreted as using the positive output probability
in the policy model to aid in optimization. During ADPO training, we sum up
LDPO and LSFT with a bias λ to achieve direct preference optimization:

L = LDPO + λLSFT , (7)

where we set λ = 0.1 by default.

4 Experiments

4.1 Datasets

Video-based text generation tasks. We evaluate the proposed CAT on the
video understanding benchmarks proposed by Video-ChatGPT [40]. Specifically,
Video-ChatGPT proposes five metrics: Correctness of Information, Consistency,
Detail Orientation, Contextual Understanding, and Temporal Understanding,
which test the ability of MLLMs to describe videos.
Zero-shot on video question answering tasks. To evaluate whether CAT
has the basic ability to communicate regarding video, we conduct zero-shot tests
on MSRVTT-QA [58] and ActivityNet-QA [60]. MSRVTT-QA and ActivityNet-
QA consist of 10k and 5.8k videos containing audio information, respectively,
where the QA pairs are mostly questions about daily life.
Closed-ended AVQA tasks. We categorize the Music-AVQA [26] and AVQA
[59] datasets as closed-ended AVQA tasks. These datasets consist of up to 42
candidate answers that require the selection of the most appropriate one based
on visual and auditory content.
Open-ended AVQA tasks. We select audio-visual dialogue (AVSD [1]), and
audio-visual captioning (VALOR [6]) tasks for the evaluation of open-ended
AVQA. These tasks require precise language to interpret, correlate, and rea-
son about cross-modal information. We evaluate the zero-shot ability of CAT on
these datasets.
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Table 1: GPT-based evaluation [40] for video-based text generation and zero-shot
video question answering. For clarity, five scores are reported ("Cr.": Correctness of
Information, "Cs.": Consistency, "De.": Detail Orientation, "Ct": Contextual Under-
standing, "Te.": Temporal Understanding). Score indicates the confidence.

Method LLM Size Video-based text generation Zero-shot on
MSRVTT-QA

Zero-shot on
ActivityNet-QA

Cr. De. Ct. Te. Cs. Acc. Score Acc. Score
LLaMA-VID [31] 13B 61.4 61.0 72.0 51.6 52.6 58.9 3.3 47.5 3.3
Video-LLaMA [64] 7B 39.2 43.6 43.2 36.4 35.8 29.6 1.8 12.4 1.1
LLaMA-Adapter [65] 7B 40.6 46.4 46.0 39.6 43.0 43.8 2.7 34.2 2.7
VideoChat [28] 7B 44.6 50.0 50.6 38.8 44.8 45.0 2.5 26.5 2.2
Video-ChatGPT [40] 7B 48.0 50.4 52.4 39.6 47.4 49.3 2.8 35.2 2.7
VISTA-LLaMA [39] 7B 48.8 52.8 63.6 45.2 46.2 60.5 3.3 48.3 3.3
VideoChat2 [29] 7B 60.4 57.8 70.2 53.2 56.2 54.1 3.3 49.1 3.3
Chat-UniVi [20] 7B 57.8 58.2 69.2 57.8 56.2 54.6 3.1 45.8 3.2
LLaMA-VID [31] 7B 59.2 60.0 70.6 49.2 50.2 57.7 3.2 47.1 3.3
CAT (Ours) 7B 61.6 59.0 69.8 56.2 57.8 62.1 3.5 50.2 3.5

4.2 Experimental Setup

Evaluation metrics. For video-based text generation and zero-shot on video
question-answering tasks, we follow the evaluation pipeline proposed by Video-
ChatGPT [40], which is based on GPT-3.5 to evaluate predictive descriptions
against correct descriptions, with a score from 0 to 5 indicating accuracy. In
this paper, we standardize 0 to 5 as 0 to 100 to align common accuracy rubrics.
For closed-ended AVQA tasks, we report the accuracy of the correct sample. For
open-ended AVQA tasks, we report the CIDEr [56] that specializes in evaluating
visually descriptive tasks.
Architecture. We use frozen ImageBind [13] and LLaMA2-7B [55] as audio-
visual encoders and LLM, respectively. The size of modality embeddings for each
modality are RT×1024. The outputs xvid, xaud, and xcue are R1×4096, R1×4096,
and R48×4096, respectively.
Training details. We complete feature alignment training, instruction tuning,
and ADPO training with 1 NVIDIA A100 GPU. In detail, For the feature align-
ment training and instruction tuning, we use the AdamW optimizer with a cosine
learning rate decay and a warm-up period. When LoRA is added, we set r = 64
and alpha = 128 for the LoRA parameters, and the total batch size is set to 128
for training 1 epoch with a learning rate of 2e−5. For ADPO training, we only
select the training set in the instruction tuning phase for optimization. We set
r = 64 and alpha = 16 for the LoRA parameters, and the total batch size is set
to 1 for training 1 epoch with a learning rate of 4e−6. The hyperparameter β is
set to 0.1.

4.3 Comparison to State-of-the-Art

Comparison on video-based text generation tasks. We follow the bench-
mark proposed by Video-ChatGPT [40] to evaluate CAT. On the left of Table 1,
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Table 2: Comparison with non-LLMs-based methods on fine-tuned Music-AVQA
dataset.

Method Language
Model

Trainable
Params (M) Audio avg. Visual avg. Audio-Visual

avg. Overall avg.

FCNLSTM [11] CLIP [50] 9.79 68.9 56.2 60.4 60.8
GRU [2] CLIP - 68.3 67.0 63.0 65.0
HCAttn [36] CLIP - 64.9 65.3 60.3 62.5
MCAN [61] CLIP 56.0 70.6 71.8 61.5 65.8
PSAC [30] CLIP - 72.0 69.4 63.6 66.6
HME [10] CLIP - 69.9 68.8 64.8 66.7
HCRN [24] CLIP - 63.7 65.2 49.8 56.3
AVSD [54] CLIP 8.35 68.8 70.3 65.4 67.3
Panp-AVQA [62] CLIP - 72.1 73.2 67.0 69.5
AVST [26] CLIP 18.48 73.9 74.4 69.5 71.6
PSTP-Net [25] BERT [9] 4.297 70.9 77.3 72.6 73.5
LAVISH [34] CLIP 21.09 77.1 77.3 77.0 -
CAD [43] GLoVE [48] - 78.1 79.7 76.9 78.2
VALOR [6] BERT - - - - 78.9
VAST [7] BERT - - - - 80.7

CAT-7B (Ours) LLaMA2 [55] 5.813 84.9 86.1 83.2 84.3

we show that CAT achieves the state-of-the-art in terms of correctness of descrip-
tion information (Cr.), detailed description of the problem (De.), and coherence
of the description (Cs.). In addition, CAT does not parse longer visual tokens, it
still achieves competitive results when comparing time-related descriptions (e.g.,
contextual and temporal understanding).
Comparison on zero-shot video question answering tasks. On the right
of Table 1, we show the zero-shot video question answering performance of CAT
on several open-ended datasets. While recent MLLMs designed with bridging
modules have produced substantial results, CAT is way ahead of them in recog-
nizing accurate answers. We consistently outperform the state-of-the-art on the
MSRVTT-QA [58] and ActivityNet-QA [60] benchmarks.
Comparison on closed-ended AVQA tasks. We choose to evaluate Music-
AVQA [26] to demonstrate that CAT can perceive specific audio-visual objects
to answer questions. In Table 2, under full supervision of the training set, CAT
accurately retrieves specific objects in dynamic audio-visual scenarios and com-
prehensively outperforms all non-LLMs-based models. Thanks to LoRA [17], we
can improve the evaluation quality with the help of the world knowledge inside
LLaMA2 [55] and only 5.8M parameters are trainable. Also, we examine the abil-
ity of CAT for zero-shot on Music-AVQA [26]. In Table 3, we show the results
comparing LLMs-based models. Notably, for a fair comparison, we remove the
LoRA parameters of CAT that are fine-tuned on AVinstruct, which is derived
from the Music-AVQA [26] and AVQA [59] training sets. Even though our model
does not draw on the larger-scale LLM, it still achieves a small advantage over
ChatBridge [67] with a 13B LLM size. Furthermore, we show the performance
of CAT in multiple-choice scenarios [59] in Table 4, CAT continues outstanding.
Comparison on open-ended AVQA tasks. Open-ended AVQA tasks require
responses to daily events based on audio-visual content. We conduct a compar-
ative analysis of our model with multimodal-based LLMs: OneLLM [14], and
ChatBridge [67]. The tests are divided into zero-shot and full supervision, and
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we only choose to evaluate the zero-shot to demonstrate the level of practical
application of the CAT. In Table 5, CAT surpasses OneLLM and ChatBridge
on zero-shot complex text reasoning tasks AVSD [1] and VALOR [6]. Moreover,
our approach is close to the results of FA [44] using fully supervised training,
further demonstrating the strong multimodal understanding of CAT.

Table 3: Comparison with LLMs-
based methods on zero-shot Music-
AVQA dataset.

Method zero-shot Acc.
OneLLM-7B [14] ✓ 43.0
ChatBridge-13B [67] ✓ 47.6
CAT-7B (Ours) ✓ 48.6

Table 4: Evaluation on fine-tuned
AVQA dataset.

Method Acc.
HGA + HAVF [19] 87.7
HCRN + HAVF [59] 89.0
PSTP-Net [25] 90.2
CAT-7B (Ours) 92.0

Table 5: Evaluation on zero-shot open-ended
AVQA datasets.

Method zero-shot AVSD
CIDEr

VALOR
CIDEr

VALOR [6] × - 61.5
VAST [7] × - 62.2
FA+HRED [44] × 84.3 -
MTN [23] × 98.5 -
COST [49] × 108.5 -
OneLLM-7B [14] ✓ 74.5 29.2
ChatBridge-13B [67] ✓ 75.4 24.7
CAT-7B (Ours) ✓ 79.0 32.4

4.4 Ablations and Analyses

In this subsection, we explore the effects of each component of CAT. We test
the effect of input modal tokens on video-based text generation [40]. In addition,
to avoid the huge expense associated with the GPT3.5 evaluation, we test each
component of the clue aggregator on the test set of AVinstruct, as well as the
generalizability of ADPO on AVSD [1].
Does question-related clues matter? Visual tokens and audio tokens al-
ready have the ability to distinguish video content. To explore whether the added
question-related clues are meaningful, we conduct ablation experiments on the
video-based text generation task in Table 6. We first test visual knowledge sep-
arately from question-related clues knowledge on video comprehension. Obser-
vations reveal that the results achieved when inputting question-related clues
alone have been able to outperform the joint input of audio-visual knowledge.
Further, we add clues knowledge to the original audio-visual knowledge, and the
results demonstrate that the fusion of the three can fully satisfy the information
required for LLM reasoning.
Ablation on clue aggregator. We categorize a portion of the collected audio-
visual joint instruction data into a test set and present the ablation results in
Table 7. The evaluation indicators B, M, and C denote BLEU-4 [47], METEOR
[22], and ROUGE-L, respectively. We split B1 and B2 and query subjects hv and
ha to explore the impact of CA internals on reasoning about dynamic audio-
visual pairs. We find that visual attention influences context much more than
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Table 6: Ablation experiment
about input modals on video-
based text generation.

Input-modal Cr. De. Te.
xvid xaud xcue

✓ 38.6 40.4 34.0
✓ ✓ 40.6 44.8 35.2

✓ 58.6 57.4 55.8
✓ ✓ ✓ 61.6 59.0 56.2

Table 7: Ablation exper-
iments about clue aggre-
gator on audio-visual joint
instruction dataset.

Method B@4 M R

B1 + B2 30.8 58.7 68.5
B1 + B2 w/o hv 10.0 37.1 49.9
B1 + B2 w/o ha 18.8 49.3 61.8
only B1 25.9 54.7 64.2

Table 8: Ablation exper-
iment about ADPO on
AVSD [1].

Model ADPO AVSD
B@4 M C

Video-LLaMA × 18.4 40.1 63.7
Video-LLaMA ✓ 22.2 48.2 69.2
CAT (Ours) × 28.9 56.2 74.8
CAT (Ours) ✓ 34.2 59.8 79.0

(a) Different number of visual tokens on video-
based text generation.

(b) Different number of clue tokens on video-
based text generation.

Fig. 5: The impacts of input modal tokens. Avg. represents the average accuracy of
temporal (Te.), consistency (CS.), and detail (De.).

auditory. This is because vision has more information that can be mined and is
more relevant to the question. Next, we reduce parameters to investigate whether
the same performance can be achieved with a single block. However, since the
question acts as a query, without B2 to recover the original modal length does
not provide an advantage over two blocks.
Number of input modal tokens. We evaluate the effect of the number of
input modal tokens on video understanding [40]. As shown in Fig. 5, we first
study the effect of the number of visual tokens on a time-related description task.
Indeed, as the number of visual tokens increases, the accuracy in the evaluation
of the various descriptions decreases, even if the change is not large, but it also
confirms that the language model may not be able to reason based on longer
visual tokens. Next, we examine the impact of the number of clue tokens set
by the Q-former [27]. Clue aggregator uses Q-Former to transform frame-level
features into specific tokens, and we find that it works best when the length of
queries K is set to 48.
Impact of ADPO. As the paper explains, supervised fine-tuning alone still
underperforms in audio-visual scenarios. We test the generalizability of ADPO
on Video-LLaMA [64] and ADPO’s effect on AVSD [1] in Table 8 to demonstrate
the superiority of this learning strategy. C denotes the CiDER [56]. We find that
for different MLLMs, ADPO does improve the descriptive power of the model
without much learning cost, it brings different levels of enhancement to both
Video-LLaMA and CAT.
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What instruments are in the video?Why does this video make that sound?

Video-specific contextual inference

Describe the video.

In the video, we see a young man wearing a black shirt sitting on a black leather 

couch in his living room. The room has a blue curtain on one side of the door. We 

also see a blue cloth on the couch that has a black border.
Video-LLaMA

The video shows a man sitting on a couch with a laptop on the table. He is also 

eating a bowl of noodles on the couch. The main source of sound in the video is the 

sound coming from the laptop.
CAT

Sorry, I don’t see any mention of sound in the given 

descriptions.
Video-LLaMA

CAT

There are four bassoon players playing music in a concert hall.  The audience 

applauds at the end of the performance.

The video features a large tornado swirling in the sky and causing a lot of 

destruction on the ground. The storm is so intense that it is visible from far away, 

and it seems to be causing a lot of damage to everything in its path.
Video-LLaMA

CAT

Because the video has a tornado appearing over a field, 

it seems to be very close to the camera.

Audio-specific question answering

Audio-visual contextual inference Audio-visual question answering

There are two cellos and a piano in the video.

Video-LLaMA

CAT

The video shows two women playing musical instruments in the room. One 

woman is playing the violin and the other is playing the large piano.

How many instruments are sounding in the video?

Fig. 6: Qualitative results of different types of question answering.

4.5 Qualitative Analysis

In Fig. 6, we analyze the qualitative results with Video-LLaMA [64]. In the
example of video-specific contextual inference, we show that CAT has a sharp
perception of complex indoor scenes. Our descriptions can accurately represent
what the person doing and what background sounds are in the video. Video-
LLaMA is biased towards describing scene information and incorrect character
information. In the specific audio question answering example, Video-LLaMA
lost the ability to answer “How many instruments are sounding in the video?”.
In contrast, CAT can accurately answer the quantity question. In the audio-
visual question answering example, Video-LLaMA answers incorrectly due to
failed audio-visual grounding, while our CAT answers correctly due to its strong
ability to capture specific objects in audio-visual scenarios.

5 Conclusion

In this work, we introduce CAT to enhance LLMs’ multimodal understanding
in dynamic audio-visual scenarios. We propose a clue aggregator to aggregate
the question-related clues for detailed reasoning. We mix datasets containing
audio and video to empower LLM with multimodal understanding. To more
consistently infer audio-visual scenarios, we collect an audio-visual joint instruc-
tion dataset to further fine-tune the CAT. Moreover, we propose an AI-assisted
ambiguity-aware direct preference optimization strategy to retrain the model for
more accurate responses. CAT has achieved comparable results when applied to
a variety of complex audio-visual scenarios.
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