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Abstract. Panoptic Scene Graph Generation (PSG) aims to segment
objects and recognize their relations, enabling the structured under-
standing of an image. Previous methods focus on predicting predefined
object and relation categories, hence limiting their applications in the
open world scenarios. With the rapid development of large multimodal
models (LMMs), significant progress has been made in open-set object
detection and segmentation, yet open-set relation prediction in PSG re-
mains unexplored. In this paper, we focus on the task of open-set rela-
tion prediction integrated with a pretrained open-set panoptic segmen-
tation model to achieve true open-set panoptic scene graph generation
(OpenPSG). Our OpenPSG leverages LMMs to achieve open-set re-
lation prediction in an autoregressive manner. We introduce a relation
query transformer to efficiently extract visual features of object pairs and
estimate the existence of relations between them. The latter can enhance
the prediction efficiency by filtering irrelevant pairs. Finally, we design
the generation and judgement instructions to perform open-set relation
prediction in PSG autoregressively. To our knowledge, we are the first
to propose the open-set PSG task. Extensive experiments demonstrate
that our method achieves state-of-the-art performance in open-set rela-
tion prediction and panoptic scene graph generation. Code is available
at https://github.com/franciszzj/OpenPSG.

Keywords: Panoptic Scene Graph Generation · Open-set · Large Mul-
timodal Models

1 Introduction

Panoptic scene graph generation (PSG) [36] aims to segment objects within an
image and recognize the relations among them, thereby constructing a panoptic
scene graph for a structured understanding of the image. Given its significant
potential in applications such as visual question answering [13], image caption-
ing [4,10], and embodied navigation [29], PSG has attracted considerable atten-
tions from researchers ever since its emerging [19,33,35,46–48].
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Fig. 1: The left image is the input to our OpenPSG, the middle one displays the
panoptic segmentation result, and the right one shows the predicted relations between
objects. Our method can predict both known (close-set) relations, e.g ., (0_person,
playing, 1_skateboard), (2_person, looking at, 0_person), and unknown (open-set) re-
lations, e.g ., (0_person, pop shove-it, 1_skateboard), (2_person, recording, 0_person).

Previous PSG methods [33, 47, 48] are only capable of predicting closed-
set object and relation categories while failing to recognize objects/relations
beyond predefined categories. Recently, with the advent of large multimodal
models (LMMs) such as CLIP [27], BLIP-2 [18] etc., a significant number of
open-set prediction methods for object detection [9, 21, 37, 42, 44] and segmen-
tation [11, 20, 39, 44] are introduced, attributing to LMMs’ rich understanding
of language and strong connections between vision and language. Nevertheless,
open-set prediction of relations has been largely unexplored so far.

Compared to open-set object detection and segmentation, open-set relation
prediction is more complex: the model is required to both understand different
objects and recognize relations of object pairs based on their interactions; espe-
cially, the computation of the latter can be exponentially increased. To bridge
the gap, in this paper, we focus on the open-set relation prediction.

LLMs [18, 25, 49] have demonstrated exceptional semantic analysis and un-
derstanding abilities across various multimodal tasks. In particular with the text
processing, LMMs are not only good at interpreting on nouns (i.e. represent-
ing objects) but also pay considerable attention on predicates (i.e. representing
relations between objects), ensuring their generated contents to be sufficiently
coherent [1]. Inspired by this, we propose the Open-set Panoptic Scene Graph
Generation architecture, OpenPSG, leveraging the capabilities of LMMs for
open-set relation prediction.

To this end, we utilize a large multimodal model (e.g ., BLIP-2 [18]) to
achieve open-set relation prediction. Specifically, our model comprises three
parts. First, the open-set panoptic segmenter, we adapt an existing model (e.g .,
OpenSeeD [44]) which is capable of extracting open-set object categories, masks,
and visual features from the whole image, forming object pairs and pair masks.
Second, the relation query transformer, which has two functions: extracting vi-
sual features of object pairs based on pair masks and with a special focus on
pair interactions; judging the potential relations between object pairs. They are
realized by two sets of queries, pair feature extraction query and relation exis-
tence estimation query. Only those object pairs that are judged to likely have
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relations are fed into the third part, the multimodal relation decoder. This de-
coder directly inherits from the LMM to predict the open-set relations given an
object pair in an auto-regressive manner, on condition of specifically-designed
text instructions and pre-extracted pair visual features.

To the best of our knowledge, we are the first to propose the task of open-set
panoptic scene graph generation, enabling the open-set prediction of both object
masks and relations. Extensive experiments demonstrate that our OpenPSG
achieves state-of-the-art results in the closed-set setting and exhibits outstanding
performance in the open-set setting.

2 Related Work

2.1 Panoptic Scene Graph Generation

Panoptic scene graph generation stems from scene graph generation (SGG) by
replacing bounding boxes with panoptic segmentation masks to represent the
objects, so as to achieve a more comprehensive understanding of scenes. Fol-
lowing the introduction of PSG [36], a series of related works [19, 33, 36, 46–48]
emerge, significantly advancing its performance. For example, Yang et al . [36],
based on DETR [3], introduce an end-to-end framework with learnable queries
to generate panoptic scene graphs. Wang et al . [33] design a pair proposal net-
work to filter irrelative subject-object pairs, achieving performance improvement
of the PSG. Subsequently, Zhou et al . [47] build a HiLo architecture based on
Mask2Former [6] and devise separate branches for high- and low-frequency rela-
tions respectively, hence achieving an unbiased relation prediction method. Li et
al . [19] re-balance the relation prediction by adaptively transferring information
from high-frequency to low-frequency relations. Additionally, Zhao et al . [46]
implement a weakly-supervised PSG method given only image-text pairs as an-
notations, allowing for the learning of panoptic scene graphs from image-level
ground truth. Recently, Zhou et al . [48] leverage the rich language information
inherent in large language models [1] and design effective image-text interaction
modules to assist unbiased PSG. All these works are learned in the closed-set
setting, in this paper, we study the open-set PSG, which has been unexplored.

2.2 Open-set Scene Graph Generation

Open-set SGG has been studied in recent years. Earlier works [15, 40], often
termed as zero-shot SGG, focus on transferring the knowledge from known re-
lations to unknown relations given their prior connections; for example, Kan et
al . [15] leverage the external commonsense knowledge while Yu et al . [40] use
knowledge graphs for the knowledge transfer. Subsequently, with the advance-
ment of large multimodal models, various open-set SGG works [5,12,38,45] have
emerged; for example, He et al . [12] and Zhang et al . [45] focus on predicting
relations between unknown objects in the SGG using multimodal models. Yu et
al . [38] and Chen et al . [5] on the other hand focus on the open-set relation pre-
diction in PSG, sharing the same aim with us. Specifically, Yu et al . [38] utilize
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the CLIP model to match visual features with textual relation features for open-
set relation prediction; Chen et al . [5] employ a student-teacher network to align
visual concepts in multimodal models for predicting open-set relations. In this
paper, different from previous works, we introduce an auto-regressive method
based on the LMM to achieve open-set relation prediction.

2.3 Large Multimodal Models

Since the introduction of large models like the GPT series [1], recent years have
witnessed rapid development in large multimodal models [18, 25, 27]. Benefit-
ing from its nature of connecting vision and language, LMMs have significantly
advanced various downstream tasks, ranging from computer vision [9,39] to nat-
ural language processing [14,28,32]. Early multimodal models, such as CLIP [27],
trained on image-text paired datasets through contrastive learning to align the
visual and textual information. Subsequently, owing to enlightenment of the au-
toregressive prediction in large language models [1,31], there has been an explo-
sive growth of LMMs [18,24,25]; by introducing mechanisms that can transform
visual information into large language models, they facilitate the communication
between visual and textual information. Furthermore, this has endowed LMMs
with the capability to generate free text, leading to substantial improvements
in numerous multimodal tasks. In this paper, we leverage LMMs to design a
multimodal relation decoder to predict relations in an open-set scenarios.

3 Task Definition

We define the task, open-set panoptic scene graph generation. Given an image
I ∈ RH×W×3, the objective of this task is to extract an open-set panoptic scene
graph G = {O,R} from the image I, where H and W are the height and width
of the image. Here:

– O = {oi}Ni=1 represents N objects segmented from the image, each defined
as oi = {c,m}, where c is the object category that can belong to either
predefined base object categories Cbase or undefined novel object categories
Cnovel. m represents the binary mask in {0, 1}H×W of the object.

– R = {ri,j | i, j ∈ {1, 2, . . . , N}, i ̸= j} represents the relations between
objects, where ri,j denotes the relation between oi and oj , with oi as the
subject and oj as the object. Each relation r can belong to either predefined
base relation categories Kbase or undefined novel relation categories Knovel.

4 Method

As illustrated in Fig. 2, our OpenPSG comprises three components: object seg-
menter, relation query transformer (RelQ-Former), and multimodal relation de-
coder (RelDecoder). For the object segmenter (Sec. 4.1), we utilize a pretrained
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Fig. 2: The overall framework of our OpenPSG, which comprises three components:
object segmenter, relation query transformer and multimodal relation decoder.

open-set panoptic segmentation model to transform the input image into object
categories and masks, as well as visual feature representing the whole image.
Subsequently, we input the object categories, masks, and visual feature into the
RelQ-Former (Sec. 4.2). Through two sets of learnable queries and complemented
by designed instructions, we obtain visual features of object pairs compatible
with LMMs’ input format as well as judgements on potential relation existence.
Finally, only those object pairs being judged to likely have a relation are sent into
the RelDecoder (Sec. 4.3) for open-set relation prediction, ultimately yielding an
open-set panoptic scene graph.

4.1 Object Segmenter

Given an image I, we utilize the pretrained open-set object segmenter (e.g .,
OpenSeeD [44]) to predict the objects O within the image and the whole-image
visual feature FI ∈ Rh×w×D. Here, h and w represent the height and width of FI ,
and D denotes the feature dimension. The segmenter has a similar architecture
to Mask2Former [6] includeing a pixel decoder. The whole-image visual feature
FI refers to the visual feature output by the pixel decoder. Below, we develop the
patchify module and pairwise module to process the output of the segmenter,
generating the input for RelQ-Former.

Patchify Module. Patchify module aims to serialize visual feature FI and
object masks m, enabling them to be processed as inputs by the RelQ-Former
(Sec. 4.2). Similar to the input patchify layer of vision transformer (ViT) [8], we
utilize a single convolution layer to transform the extracted FI into a sequence
of visual tokens FIseq ∈ RL×D, where L is the number of patches and D is
the feature dimension. When the kernel size and stride of the convolution layer
are both p, L is calculated as L = h

p × w
p . Simultaneously, we employ nearest

neighbor interpolation to each extracted object’s mask mi, where the size of mi
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is of height h
p and width w

p , and then reshape it to a one-dimensional vector with
the length L. After processing all masks in the same way, we obtain the mask
sequence mseq ∈ {0, 1}N×L for all objects.

Pairwise Module. Pairwise module aims to construct subject-object pairs.
Given N objects in the image I, we pairwise all objects O into subject-object
pairs P = {(oi, oj)|i, j ∈ {1, 2, . . . , N}, i ̸= j}. The number of subject-object
pairs in P is N × (N − 1), which exhibits exponential growth as N increases.
Consequently, we also obtain the combined subject-object pair category set
cpair ∈ {(ci, cj)|i, j ∈ {1, 2, . . . , N}, i ̸= j}. We construct the mask sequences
for the two objects corresponding to the indices i and j from mseq for each
subject-object pair by using the logical OR operation. This operation is per-
formed for all subject-object pairs, resulting in the pair mask sequence mpair

seq ∈
{0, 1}N×(N−1)×L for the subject-object pairs, where L is the number of patches.

4.2 Relation Query Transformer

Relation query transformer, leveraging the obtained FIseq, cpair, and mpair
seq , em-

ploys two distinct types of queries, pair feature extraction query and relation
existence estimation query, along with customized instructions. This approach fa-
cilitates the extraction of subject-object pair features and assesses which subject-
object pairs likely have relations.

Pair Feature Extraction Query. The objective of the pair feature extraction
query is to extract corresponding subject-object pair features from the whole
image visual feature based on the subject-object pair masks. A common extrac-
tion method involves mask pooling [7], which extracts features for the target
subject-object pair, treating each area on the subject-object pair equally. How-
ever, for features used in relation prediction, they should focus more on areas
where interactions between objects occur. By leveraging attention mechanisms,
we facilitate interactions among visual tokens representing different areas within
the visual feature sequence FIseq of a subject-object pair. This way can enhance
areas that are crucial for relation predictions. Furthermore, inspired by [24],
we design an instruction to assist the this learnable query in understanding its
purpose for extracting subject-object pair features.

Specifically, for each subject-object pair (oi, oj), we first input the pair fea-
ture extraction query Qfeat ∈ RE×D into a self-attention layer (SA(·)), along
with the pair instruction designed specifically for the pair feature extraction
query. This pair instruction is processed through a tokenizer layer to obtain
F feat
Inst ∈ RXfeat×D, which specifies the function of the pair feature extraction

query, namely “Extracting subject-object (ci, cj) features from visual features
according to the mask”. Here E is the token number of the pair feature extrac-
tion query, and Xfeat is the token number of the pair instruction. Note that we
also incorporate the category names of the subject and object (ci, cj) into this
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pair instruction. This operation is formulated as

F feat
SA = Trunc(SA(Concat(Qfeat, F feat

Inst )), E), (1)

where Concat(·) denotes the concatenation operation, Trunc(·) represents the
truncation operation, and E in this truncation operation indicates that we only
extract the first E features, namely the features corresponding to the pair feature
extraction query. Next, we use a mask cross-attention layer (MaskCA(·)), with
F feat
SA as the query, FIseq as key and value, and mseq as the mask, to extract

features corresponding to the subject-object pair, formulated as

F feat
CA = MaskCA(F feat

SA , FIseq,mseq). (2)

The features F feat
CA are further refined through a feed-forward network (FFN(·)),

formulated as F feat
FFN = FFN(F feat

CA ).
By repeating this process twice, we obtain the visual features for the subject-

object pair to be input into the multimodal relation decoder, F pair(i,j)
I ∈ RE×D.

We perform these operations in parallel for all subject-object pairs to obtain the
corresponding features for all pairs.

Relation Existence Estimation Query. In addition to the pair feature ex-
traction query, we also design a relation existence estimation query to determine
whether a relation likely exists between the subject oi and object oj , without
predicting the specific relation category. The objective is to filter out irrelevant
subject-object pairs to save the computation for subsequent LMM decoding.

Specifically, for each subject-object pair (oi, oj), the relation existence es-
timation query Qexist ∈ R1×D, similar to the pair feature extraction query, is
input into the self-attention, mask cross-attention, and feed-forward network lay-
ers, interacting respectively with FIseq, mseq and the specially designed relation
instruction. The purpose of the relation instruction is to direct the relation ex-
istence estimation query towards determining whether a relation likely exists in
the subject-object pair, e.g . “Is there a relation between oi and oj?” The relation
instruction, after being processed by the tokenizer, results in F exist

Inst ∈ RXexist×D,
where Xexist represents the number of tokens. Eventually, the extracted features
are input into a relation existence prediction layer, which includes a 2-layer MLP,
and the predicted scores are normalized to [0, 1] using the sigmoid function. It
is worth noting that we train it using binary labels indicating whether a rela-
tion exists between objects, and a selector module specified below is utilized to
perform filtering during inference.

Selector. The selector module implemented by 2-layer MLP is set to filter
irrelvant subject-object pairs. Only those with a score higher than the threshold
θ can be input into the multimodal relation decoder. Compared to predicting
for all subject-object pairs, this can enables a 20× speedup in our experiment.
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4.3 Multimodal Relation Decoder

Multimodal relation decoder aims to utilize the subject-object pair feature F i,j
I

extracted by the aforementioned modules, combined with an instruction guiding
it to achieve open-set relation prediction. Inspired by [39, 41], we first design a
generation instruction to perform open-set relation prediction in an autoregres-
sive manner. This works well, yet we find that it tends to favor common relations
more or less. Therefore, we further design a judgement instruction, leveraging the
LMMs’ strong analytical and judgment capabilities. The judgement instruction
also utilizes an autoregressive manner but to judge whether a specific relation
exists between objects, thereby simplifying the complexity of open-set relation
prediction. Next, we specify the two instructions, respectively.

Generation Instruction. For the generation instruction, we follow the instruc-
tion design used in open-set object recognition [39], utilizing “What are the rela-
tions between ci and cj?”. Here, ci and cj respectively refers to the name of the
subject and object. We convert this instruction into features F gen

inst ∈ RXgen×D

using the tokenizer, where Xgen is the token number of the generation instruc-
tion. We input the features of this generation instruction F gen

inst together with
the subject-object pair features F

pair(i,j)
I into the multimodal relation decoder

Dec(·), predicting all possible relations in an autoregressive way, formulated as

ri,j = Dec(Concat(F
pair(i,j)
I , F gen

inst)). (3)

If multiple relations are predicted, they are separated by the delimiter “[SEP]”.

Judgement Instruction. Unlike generation instruction, the judgement in-
struction guides relation decoder to judge, based on a given relation name,
whether this relation exists between the subject and object. For example, “Please
judge between ci and cj whether there is a relation rk”. In this case, we only need
the multimodal relation decoder to answer “Yes” or “No” to determine the exis-
tence of this relation. Note that inputting the complete judgement instruction
for each relation into the decoder can be costly. Therefore, we place the relation
name at the end of the instruction. During inference we divide the judgement
instruction into two parts: the section before the relation name, transformed
into F judge

inst through the tokenizer, and the relation name itself, processed into
F rel
inst. Benefiting from the autoregressive manner for open-set relation predic-

tion, we initially input the subject-object pair feature F
pair(i,j)
I and F judge

inst into
the multimodal relation decoder, formulated as

F
(i,j)
prefix = Dec(Concat(F

pair(i,j)
I , F judge

inst )), (4)

which is then cached for subsequent calculations for each relation. For each
relation rk, the multimodal relation decoder only needs to process Fprefix and
F

rel(k)
inst to achieve relation prediction, formulated as:

Ji,j,k = Dec(Concat(F
(i,j)
prefix, F

rel(k)
inst )), (5)
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where Ji,j,k represents the judgement for (oi, rk, oj) triplet. When Ji,j,k is “Yes”,
it indicates that the relation rk exists between oi and oj ; otherwise, it does not
exist. Through this approach, we can maintain the same prediction time as with
the generation instruction.

We perform the aforementioned process for all subject-object pairs that may
have a relation, ultimately achieving open-set relation prediction. For method
using generation instruction, we denote it as OpenPSG-G, and for those using
judgement instruction, as OpenPSG-J. In next section, OpenPSG by default
refers to the latter.

4.4 Loss Function

During the model training, there are two losses involved: the binary cross-entropy
loss Lexist for estimating the existence of a relation using the relation existence
estimation query in the relation query transformer, and the cross-entropy loss
LLM consistent with language model training used by the multimodal relation
decoder. The total loss is: L = λLexist + LLM , where λ is a weight factor.

5 Experiments

5.1 Datasets

Panoptic Scene Graph (PSG) dataset [36] is constructed based on the COCO
dataset [2, 22], consisting of 48,749 annotated images: 46,563 for training and
2,186 for testing. It encompasses 80 “thing” object categories [22] and 53 “stuff”
object categories [2], as well as 56 relation categories.
Visual Genome (VG) dataset [17] is a widely used dataset in the SGG task.
To further validate our method, we follow previous works [5, 38] and test our
method on the VG-150 variant, which contains 150 object categories and 50
relation categories.

5.2 Tasks and metrics

Tasks. In both PSG and SGG, there are three distinct subtasks: Predicate Clas-
sification (PredCls), Scene Graph Classification (SGCls), and Scene Graph De-
tection (SGDet) [34]. In PredCls, the categories and locations of objects within
the image are given, and only the relation categories between the objects need
to be predicted. SGCls requires predicting both the categories of objects and the
relations between them, given the locations of objects within the image. SGDet
requires the simultaneous prediction of object categories, locations, and relations
between objects, based on the given image. In this paper, we focus on the Pred-
Cls and SGDet subtasks. The PredCls excludes the influence of segmentation
performance and only compares the relation prediction performance, while the
SGDet considers the combined results for both object segmentation and relation
prediction.
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Furthermore, to validate our method’s capability in open-set relation predic-
tion, we divide the dataset into base relations and novel relations at a ratio of
7:3. For the PSG dataset, please refer to the supplementary material for the spe-
cific division method. For the division of the VG dataset, we follow the practice
in previous works [5, 38]. In the open-set scenarios, our model is trained with
data only from base relations and tested on both base and novel relations. It is
noteworthy that the test sets for open-set and closed-set are same.
Metrics. Following previous works [36,47], we use Recall@K (R@K) and mean
Recall@K (mR@K) as our evaluation metrics. Additionally, in open-set scenarios,
we also report the R@K and mR@K metrics for base and novel relations.

5.3 Implementation details

In our experiments, we utilize the pretrained OpenSeeD [44] as the open-set
object segmenter. The patch size p of the patchify module is set to 8. Within
the relation query transformer, the length E of the pair feature extraction query
is 32, and the threshold θ used to filter subject-object pairs is set to 0.35. In
the multimodal relation decoder, we employ the decoder of BLIP-2 [18]. During
model training, the weight factor λ for the loss is set to 10. We adopt the same
data augmentation strategies as in previous methods [36,47]. To train our model,
we use the AdamW [26] optimizer with a learning rate of 1e−4 and a weight decay
of 5e−2. Our model is trained for a total of 12 epochs, reducing the learning rate
to 1e−5 at the 8th epoch. The experimental platform uses four A100 GPUs.
Note that during training we freeze the parameters of the object segmenter and
multimodal relation decoder but only train the proposed RelQ-Former.

5.4 Comparison to the state of the art

PSG dataset. Tab. 1 consists of two parts, comparing the performance of our
method against previous methods in closed-set and open-set scenarios under the
subtasks of predicate classification and scene graph detection. For the first part,
in the closed-set scenario, our method significantly surpasses previous methods.
For the predicate classification subtask, only methods that predict segmentation
and relation separately are applicable [36], and our method achieves a substantial
improvement compared to previous best results, for instance, a 26.6% increase in
R@100 and a 25.0% increase in mR@100. For scene graph detection, our method
also achieves a significant increase of 9.0% over the best previous method [47] in
R@100 and a 17.0% increase in mR@100. This indicates that in the closed-set
scenario, our method demonstrates significant performance improvements. For
the second part, in the open-set scenario, we train the model only on base rela-
tions and test it on all relations. Notably, for predicate classification, our method
even outperforms previous methods trained on all relations, which demonstrates
the superiority of our method. For example, compared with previous best results,
we achieve a 39% improvement in R@100 and a 7.2% improvement in mR@100.
For the scene graph detection subtask, our method with judgement instruction
remains very competitive compared to [36] trained on all relations.
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Table 1: Comparison between our OpenPSG and other methods on the PSG dataset
in both closed-set and open-set scenarios. Our method shows superior performance
compared to all previous methods.

Predicate Classification Scene Graph Detection

Method R/mR@20 R/mR@50 R/mR@100 R/mR@20 R/mR@50 R/mR@100

Train on all relations (closed-set)

IMP [34] 31.9/9.6 36.8/10.9 38.9/11.6 16.5/6.5 18.2/7.1 18.6/7.2
Motifs [43] 44.9/20.2 50.4/22.1 52.4/22.9 20.0/9.1 21.7/9.6 22.0/9.7
VCTree [30] 45.3/20.5 50.8/22.6 52.7/23.3 20.6/9.7 22.1/10.2 22.5/10.2
GPSNet [23] 31.5/13.2 39.9/16.4 44.7/18.3 17.8/7.0 19.6/7.5 20.1/7.7
PSGTR [36] – / – – / – – / – 28.4/16.6 34.4/20.8 36.3/22.1
PSGFormer [36] – / – – / – – / – 18.0/14.8 19.6/17.0 20.1/17.6
ADTrans [19] – /29.0 – /36.2 – /38.8 26.0/26.4 29.6/29.7 30.0/30.0
PairNet [33] – / – – / – – / – 29.6/24.7 35.6/28.5 39.6/30.6
HiLo [47] – / – – / – – / – 34.1/23.7 40.7/30.3 43.0/33.1
OpenPSG 55.1/39.2 70.6/53.8 79.3/63.8 38.1/32.3 46.8/40.9 52.0/50.1

Train on base relations (open-set)

OpenPSG 45.1/29.1 55.5/38.7 61.5/46.0 25.9/20.9 31.6/24.0 36.7/25.4

Table 2: Comparison between our OpenPSG and other methods on the VG dataset
in both closed-set and open-set scenarios with predicate classification subtask.

Train on all relations (closed-set) Train on base relations (open-set)

Method R/mR@50 R/mR@100 R/mR@50 R/mR@100

Motifs [43] 65.2/15.9 67.1/17.2 – / – – / –
VCTree [30] 66.4/16.8 68.1/19.4 – / – – / –
Cacao+Epic [38] – /39.0 – /40.8 – /16.5 – /21.8
OvSGTR [5] 36.4/ – 42.4/ – 22.9/ – 26.7/ –
OpenPSG 60.2/45.8 71.4/50.3 25.7/21.5 30.6/27.2

VG dataset. To further validate our method on the VG dataset, we compare to
two closed-set SGG methods [30,43] and two recent open-set SGG works [5,38].
Since our method relies on an object segmentation model while [5, 30, 38, 43]
rely on an object detector, for a fair comparison, we only present the results
for predicate classification subtask. Tab. 2 shows the results in both closed-
set and open-set scenarios. In the closed-set scenario, compared with previous
closed-set methods [30, 43], our method only performs a few points lower on
R@50, yet yields significantly better results on the other metrics. In addition,
compared with previous best open-set methods [5, 38], our method improves by
29.0% in R@100 and by 9.5% in mR@100. In open-set scenario, our method
improves upon [5,38] by 3.9% in R@100 and by 5.4% in mR@100. These results
demonstrate the effectiveness of our method in both closed-set and open-set
relation prediction.
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Table 3: Ablation study of comparison of different segmenters.

Predicate Classification Scene Graph Detection

Segmenter PQ R/mR@20 R/mR@50 R/mR@100 R/mR@20 R/mR@50 R/mR@100

OpenSeeD [44] 55.1 55.1/39.2 70.6/53.8 79.3/63.8 38.1/32.3 46.8/40.9 51.9/50.1
Mask2Former [6] 51.7 54.8/39.1 70.4/52.9 78.9/63.7 36.1/30.3 44.8/38.4 48.4/47.8

5.5 Ablation study

To validate the effectiveness of each module in our method, we conduct ablation
studies, using the model trained on all relations with judgement instruction for
relation prediction as the baseline unless otherwise specified. To eliminate inter-
ference, we validate the object segmenter and modules in RelQ-Former under
closed-set settings, and test two types of instructions in the multimodal relation
decoder under open-set settings.
Different segmenters. Our method is based on a pretrained segmenter. To ver-
ify the impact of different segmenters on model performance, we experiment with
two options: the closed-set Mask2Former [6] and the open-set OpenSeeD [44]. As
shown in Tab. 3, OpenSeeD outperforms Mask2Former on the Panoptic Quality
(PQ) [16] metric (55.1 vs. 51.7) in PSG test set in closed-set senario. For the
predicate classification subtask, the results show that using OpenSeeD is slightly
better than using Mask2Former, with R@100 higher by 0.4% and mR@100 by
0.1%. For the scene graph detection subtask, OpenSeeD is a better segmenter
than Mask2Former, with an increase of 3.5% in R@100 and 2.3% in mR@100,
due to its superior object segmentation capability (see PQ in Tab. 3).
Subject-object pair features extraction. To validate the effectiveness of
the RelQ-Former in extracting subject-object pair features via the attention
mechanism, we design an experiment by extracting subject-object pair features
using mask pooling. Specifically, for mask pooling, we derive object features by
applying mask pooling to their respective positions in the visual features and
then concatenate these to form the subject-object pair features. As shown in
Tab. 4, it demonstrates that our attention mechanism outperforms mask pooling
based pair feature extraction method by 5.2% in R@100 and by 4.7% in mR@100.
This indicates that our method using RelQ-Former can better focus the extracted
features on the interactions between objects, thereby enhancing the performance
for relation prediction.
Selector in RelQ-Former. To validate the efficacy of the selector, we set θ to
0, meaning that during inference, we predict relations for all subject-object pairs.
As shown in Tab. 4, we find that when we set θ to 0, the model performance is
approximately the same. However, under these conditions, the model takes 20
times longer to run on the whole PSG test set. This indicates that our selector
allows for a significant improvement in computational efficiency with a small
sacrifice in performance. For more details, please refer to supplementary material.
Relation Existence Loss. To evaluate the impact of the relation existence
estimation loss (Sec. 4.4) on the model, we set the training λ to 0, thereby
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Table 4: Ablation study of comparison of different designs in RelQ-Former.

Predicate Classification

Method R@20 mR@20 R@50 mR@50 R@100 mR@100

RelQ-Former 55.1 39.2 70.6 53.8 79.3 63.8
Change to Mask Pooling 51.5 36.3 65.9 49.3 74.1 59.1
Set θ = 0 in Selector 56.8 40.7 70.9 54.0 79.6 63.9
Set λ = 0 in Loss 54.9 38.7 69.8 53.6 78.5 63.2

Table 5: Ablation study of different instruction types in multimodal relation decoder
under various base-to-novel relation ratios. OpenPSG-G: using generation instruction.
OpenPSG-J: using judgement instruction.

OpenPSG-G OpenPSG-J

base:novel R/mR@20 R/mR@50 R/mR@100 R/mR@20 R/mR@50 R/mR@100

7:3 40.1/24.5 49.4/32.4 57.1/36.8 45.1/29.1 55.5/38.7 61.5/46.0
6:4 34.9/21.3 46.3/29.2 52.9/32.0 40.6/25.1 53.9/35.3 57.0/43.5
5:5 25.4/14.0 38.6/23.2 40.1/24.2 36.4/19.2 48.9/29.3 50.3/40.8
4:6 19.8/11.2 32.9/14.3 33.2/18.8 29.8/17.3 40.9/21.6 44.3/34.7
3:7 13.0/10.7 17.6/13.0 18.5/14.4 22.8/15.7 28.3/19.7 35.1/23.7

removing this loss for model training. We discover that this loss not only aids in
training a relation existence classifier, but also has beneficial effect on the model.
As shown in Tab. 4, setting λ to 0 leads to a decrease in R@100 by 0.8% and in
mR@100 by 0.6%.

Analysis of instruction types in multimodal relation decoder. To fur-
ther analyze the two types of instructions, generation instruction and judgement
instruction of open-set relation prediction in our multimodal relation decoder
(Sec. 4.3), we conduct a series of experiments by adjusting the proportion of novel
relation categories, conducting tests with base:novel ratios of 7:3, 6:4, 5:5, 4:6,
and 3:7, to validate the performance, and results shown in Tab. 5. First, under
the same base:novel ratio, the method using judgement instruction (OpenPSG-J)
consistently outperforms the one using generation instruction (OpenPSG-G). For
example, at a base:novel ratio of 7:3, OpenPSG-J is 4.4% higher than OpenPSG-
G in R@100, and is 9.2% higher in mR@100. Second, the results indicate that as
the proportion of novel relations increases, the performance of both OpenPSG-G
and OpenPSG-G gradually decreases. For OpenPSG-G, R@100 decreases from
57.1% at a base:novel ratio of 7:3 to 18.5% at a base:novel ratio of 3:7, a drop
of 38.6%. OpenPSG-J’s R@100 decreases by 26.4%, which is less than the de-
crease for OpenPSG-G, indicating that OpenPSG-J has a stronger capability for
relation prediction in an open world.
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Image Panoptic Segmentation Relation Prediction
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Fig. 3: Visualization results produced by our OpenPSG. The left image is the input
to our OpenPSG, the middle one displays the panoptic segmentation result, and the
right one shows the predicted relations between objects.

5.6 Visualization

As shown in Fig. 3, our OpenPSG method can predict relations not defined
in the dataset, such as “flying”, “observing”, and “fighting”, which qualitatively
demonstrates the excellent open-set relation prediction capability of our method.

6 Conclusion

In this paper, we propose the open-set PSG task and introduce the OpenPSG
to accomplish open-set relation prediction. With the help of large multimodal
models, our method employs an autoregressive approach to predict open-set
relations. Additionally, we have developed a relation query transformer which
contains pair feature extraction and relation existence estimation queries, one
for extracting features of subject-object pairs, the other for predicting the ex-
istence of relations between them to filter out irrelevant pairs. Furthermore, we
design generation and judgement instructions to enable the multimodal relation
decoder to predict open-set relations. Extensive experiments demonstrate that
our method achieves excellent performance in open-set relation prediction. In the
future, we plan to employ model distillation to reduce the model size, thus en-
hancing the practicality in various real-world scenarios while ensuring its ability
to predict open-set relations.
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