
ReALFRED: An Embodied Instruction Following
Benchmark in Photo-Realistic Environments

Taewoong Kim1,∗ , Cheolhong Min1,∗ , Byeonghwi Kim1 ,
Jinyeon Kim1,2 , Wonje Jeung1 , and Jonghyun Choi1,†

1 Seoul National University
2 Yonsei University

{twoongg.kim, cheolhong.min, byeonghwikim}@snu.ac.kr,
jinyeonkim@yonsei.ac.kr, {specific0924, jonghyunchoi}@snu.ac.kr

Abstract. Simulated virtual environments have been widely used to
learn robotic agents that perform daily household tasks. These envi-
ronments encourage research progress by far, but often provide limited
object interactability, visual appearance different from real-world en-
vironments, or relatively smaller environment sizes. This prevents the
learned models in the virtual scenes from being readily deployable. To
bridge the gap between these learning environments and deploying (i.e.,
real) environments, we propose the ReALFRED benchmark that em-
ploys real-world scenes, objects, and room layouts to learn agents to
complete household tasks by understanding free-form language instruc-
tions and interacting with objects in large, multi-room and 3D-captured
scenes. Specifically, we extend the ALFRED benchmark with updates
for larger environmental spaces with smaller visual domain gaps. With
ReALFRED, we analyze previously crafted methods for the ALFRED
benchmark and observe that they consistently yield lower performance
in all metrics, encouraging the community to develop methods in more
realistic environments. Our code and data are publicly available3.

Keywords: Interactive Scanned Environments · Instruction Following ·
Embodied AI · Reality Gap · Dataset and Benchmark

1 Introduction

Building autonomous robotic assistants that can perform everyday household
tasks has been an elusive aspiration within the research community for decades.
To let them learn these intricate tasks, we may provide them with interactive
environments where agents can learn task completion skills with numerous inter-
actions with environments. A straightforward approach to train such agents that
can carry out real-world activities is to directly deploy robots in real-world envi-
ronments and let them learn to complete desired tasks. However, this often faces
several practical challenges, including cost, time, or safety concerns [3,14,39,68].

3Homepage: https://github.com/snumprlab/realfred
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Fig. 1: Proposed ReALFRED benchmark. The top image provides a perspective
view of one of our scenes. The images below represent third-person views at each time
step, along with their corresponding descriptions, for better understanding. The agent is
required to understand instructions in natural language and then complete the desired
tasks by navigating large 3D-captured environments and interacting with objects.

As an alternative, several simulated environments have been introduced [59,
74] which leverage extensive 3D-captured environments obtained from real-world
scenes [7, 56]. Compared to real-world deployment, these environments offer
agents a faster process of taking actions and observing consequences, and the
convenience of resetting the environment and trying again in case of failure,
which enables agents to learn the skills to complete desired tasks. Adopting such
simulated environments has produced remarkable advancements in various sub-
tasks for embodied AI agents, including visual navigation [9,47,50,55,73], vision
and language navigation [1, 37], and remote object grounding [54]. Due to the
inherently static nature of these 3D-captured environments where objects (e.g .,
books, chairs, etc.) remain non-interactive, however, current benchmarks [1, 9]
for these tasks have less focused on object interaction, which might hinder de-
ployability for more complex tasks that require object interaction. Recent stud-
ies [44,57] insert liftable objects in scanned environments for object interaction,
but they support limited object interaction such as picking up objects, which
might not provide enough deployability for more challenging real-world scenarios
such as heating objects using a microwave or cooling objects using a refrigerator.

Meanwhile, virtual game engines such as Unity have been exploited to build
object-interactable environments with graphically crafted assets, including walls,
floors, ceilings, and objects. These object-interactable environments have led to
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notable progress in the handling of more intricate object-centric tasks, including
rearrangement [67,72] and manipulation [25,26], beyond navigation-centric tasks.
In particular, we have observed significant progress in the execution of more
complex tasks by natural language instructions [5, 33, 46, 51, 61, 62]. However,
object-interactable environments for training and evaluation of such agents often
pose several issues, such as visual domain gaps [69] and relatively smaller room
sizes compared to their counterparts in 3D-captured environments [7, 56,66].
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Fig. 2: While other benchmarks [7,12,
19, 37, 41, 43, 48, 49, 56, 57, 61, 67, 72,
74] provide one or two aspects, our
proposed ReALFRED benchmark ad-
dresses all of these aspects.

To bridge the gap between limited
object interactability and environmen-
tal sizes with visual domain discrepancy,
we propose the Real-World ALFRED
(ReALFRED) benchmark that requires
agents to complete long-horizon tasks by
understanding free-form language instruc-
tions and interacting with objects in large
3D-captured environments, following a
similar task setup to the widely used em-
bodied instruction following benchmark,
ALFRED [61]. The 3D-captured environ-
ments used in the ReALFRED bench-
mark encompass multiple rooms, provid-
ing ample space for agents to engage in
multiple rooms in a single episode, which
adds a sense of realism to the tasks. This
resembles real-world scenarios in which
agents navigate seamlessly between mul-
tiple rooms. Unlike prior benchmarks focusing primarily on single-room activi-
ties [61] or 3D-captured environments with limited object interaction [59], Re-
ALFRED provides task evaluation in wide, realistic, and interactive environ-
ments to mirror the natural expectations of human-robot interactions. Fig. 1.
illustrates the household task in one of the scenes in ours.

In our experiments, we observe that the models [5,33,46,61–63] proposed in
synthetic environments [61] do not perform well in our ReALFRED benchmark,
implying that models developed for synthetic environments may not easily adapt
to realistic environments.
We summarize our contributions as follows:

– We propose ReALFRED, a benchmark for embodied instruction following
with 3D-captured multi-room environments and objects.

– We collect 3D-captured scenes and objects to reduce the simulation-reality
gap and free-form language instructions to support task completion based on
agents’ language understanding.

– We provide analyses on the recent state-of-the-art models in the literature
and the relevant Sim2Real transfer to empirically validate the necessity of our
ReALFRED benchmark.
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Table 1: Comparison of ReALFRED and other Embodied AI benchmarks.
‘Language’ column denotes the number of human annotated language directives. ‘Envi-
ronment’ column compares spatial characteristics and whether it supports interactivity.
‘Inference’ column denotes whether their action space includes interactive capability
with objects. The ReALFRED benchmark is the first benchmark that provides a 3D-
captured and interactable environment to solve household tasks that require navigation
and interaction at the same time directed by natural language commands. †We count
the number of dialogue sessions. ‡We count the number of annotations in English.
∗Though [16] environment supports interaction, interaction is not required.

Language Environment Inference

Human Visual Multi-Room Movable State Object
Annotations Quality Navigation Objects Changes Interactability

IQA [24] - Synthetic ✗ ✗ ✓ ✓
ManipulaTHOR [19]; RoomR [72] - Synthetic ✗ ✓ ✓ ✓
RoboTHOR [16] - Synthetic ✓ ✓ ✓ ✗∗

ProcTHOR [18] - Synthetic ✓ ✓ ✓ ✓
ReplicaCAD [67] - Synthetic ✓ ✓ ✓ ✓
BEHAVIOR-1K [41]; HSSD-200 [31] - Synthetic ✓ ✓ ✓ ✓
OpenRooms [42] - Photo ✗ ✗ ✗ ✗
MP3D [7]; HM3D [56]; Gibson [74] - Photo ✓ ✗ ✗ ✗
Habitat-Web [57] - Photo ✓ ✓ ✓ ✓

ALFRED [61]; TEACh [49]; CHAI [48] 25k+; 2.0k+†;12k+ Synthetic ✗ ✓ ✓ ✓
LANI [48] ; Walk the Talk [43] 28k+; 0.7k+ Synthetic ✓ ✗ ✗ ✗
Virtualhome [52] 2.7k+ Synthetic ✓ ✗ ✗ ✓

R2R [1]; RxR [38]; VLN-CE [37] 21k+; 42k+‡; 21k+ Photo ✓ ✗ ✗ ✗

ReALFRED 30k+ Photo ✓ ✓ ✓ ✓

2 Related Work

Fig. 2 illustrates the comparison of our ReALFRED with other benchmarks
in three selected aspects. We first review 3D-captured environments and bench-
marks that provide visual aesthetics similar to real-world environments. Then,
we review simulation environments and benchmarks that support object inter-
action. Table 1 compares our ReALFRED with other indoor datasets.
Datasets and benchmarks with 3D-captured environments. The collec-
tion of advanced 3D scans has played a key role in enhancing our understanding
of 3D objects [15, 64, 76] and their perception [2, 30, 45]. While these datasets
offer valuable insights for a deeper understanding of 3D environments, they lack
object interaction for learning interactive embodied agents. To further promote
research on embodied agents for real-world applications, training and evalua-
tion of such agents with physical spaces from scanned data [7, 66, 74] have been
proposed. They provide a rich source of data for researchers to explore the ca-
pabilities of agents operating within real-world-inspired scenarios.

In these environments, notable progress has been achieved, primarily in the
realms of navigation and exploration. Extensive research has been conducted
on agents capable of navigating complex 3D environments, as evidenced by
work such as navigating to a specified object [9, 47, 55], navigating to a cer-
tain point [50, 73], and navigating to the shown image [36]. Similarly, exploring
novel environments has also yielded valuable insights [8, 13].
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Additionally, there is a work to integrate multi-modal sensory information for
developing an agent that can deeply understand environments using inputs such
as vision and language [1,38] and audio and vision [10,11]. These advances enable
agents to utilize a broader range of sensory data, enhancing their perception
and interaction capabilities. Further research explores additional capabilities of
embodied agents, such as object localization alongside navigation [54].

However, a fundamental limitation of these scan-based environments remains
their static nature, which restricts the potential for object interaction. This lim-
itation has resulted in the majority of prior research primarily focusing on nav-
igation tasks, leaving the broader scope of agent adaptability to more complex,
interactive challenges largely unaddressed. Consequently, this limitation ham-
pers the adaptability of agents to more complex tasks.
Object-interactable simulated environments. Scan-based environments [56,
76] are typically composed of static scene representations, focusing on the visual
aspects of real-world spaces. However, they often fail to adequately support in-
teractivity with objects, representing a discrepancy between the dynamic and
interactive characteristics of the real world, necessitating the development of
environments better aligned with the demands of interactive agent research.

To address this gap, various simulators, such as AI2-THOR [35], Manipu-
laTHOR [19], RoboTHOR [16], VirtualHome [52], TDW [20], iGibson [40], and
OmniGibson [41], have emerged as promising solutions. These environments are
engineered with a primary focus on enabling interaction between agents and ob-
jects. They are built upon game engines, which provide a solid foundation for
ensuring realistic interactivity within the virtual environment. On these simu-
lators, researchers publish benchmarks [16, 21, 41, 49, 53, 61, 65, 75] that support
interactions. These benchmarks have been promoting research in the field, lead-
ing to the development of robotic assistants capable of handling complex tasks.

However, the dataset that provide interactive environments are limited in size
of a room because creating a large high-fidelity space is challenging [56]. Fur-
thermore, despite their near-photo realism, agents would face a visual domain
gap when deployed in real world environments [69,71,77]. To this end, Habitat-
Web [57] proposes an interactive pick-and-place task based on the Habitat simu-
lator [59,67]. Their template-based language instructions, however, might not be
sufficient to express the complex nuances of human expression. Innovative meth-
ods for acquiring 3D scans from phone-captured layouts have been proposed for
learning enviroment-specific policies [17]. Nevertheless, its synthetic assets may
lead to visual domain gaps when deployed in the real world. On the contrary, our
ReALFRED supports photorealism, high interactivity with objects, and free-
form language annotations. These features can offer a framework for developing
language-driven agents with visual perception for complex household chores.

3 The ReALFRED Benchmark

To develop agents capable of performing household tasks, substantial progress
has been achieved in various domains, including navigation [1, 38], rearrange-
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Fig. 3: Top-down view of 3D-captured environments. We provide two examples
from our scanned indoor environments. White circles denote where scanners are de-
ployed. By scanning scenes at diverse points, we can prevent including blind spots.

ment [72], and manipulation tasks [25,26]. In particular, [61] recently introduced
the ALFRED benchmark that requires agents to complete long-horizon house-
hold tasks by jointly understanding egocentric visual observations and natural
language instructions in household environments.

However, these environments are restricted to a single room size compared
to previously proposed 3D-captured environments [7, 56] consisting of multiple
rooms, which could potentially restrict the deployability of agents to larger envi-
ronments. Furthermore, the environments used in the ALFRED benchmark [61]
are built with synthetic CAD assets and therefore could potentially yield visual
aesthetics different from those obtained from real-world environments [69], which
could eventually cause performance degradation due to visual domain gaps.

To address these issues, we extend the ALFRED benchmark [61] and propose
a challenging benchmark, named the ReALFRED benchmark, which requires
agents to perform household tasks in large indoor environments captured in 3D
with object interaction. For training and evaluation, we follow the same protocol
as [61] to collect expert demonstrations in the captured large environments.

3.1 Object-Interactable 3D-Captured Scenes

To reduce the visual domain gap, a straightforward approach is to use 3D scans
of real world environments. However, the captured 3D scans (i.e., meshes) re-
main static and thus, agents cannot interact with objects in the captured scenes.
For object interaction, we manually replace object parts with 3D object assets
to support object interaction. For photorealism comparison with previous envi-
ronments using FID [27] and KID [4] metrics, please refer to Sec A.3.

We detail the process of collecting object-interactable 3D-captured environ-
ments and highlight key differences from previously proposed benchmarks below.
Data acquisition process. To collect 3D scans of real-world environments, we
visit residential properties and employ scanners. Inspired by recent work [2], we
collect scans outside of the US to add the diversity with public scanned environ-
ments. We utilize the same 3D scanner as [7], equipped with three RGB cameras
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Fig. 4: Distribution of navigable and floor areas in interactive benchmarks
by scenes. ‘Floor area’ denotes the overall size of the scene. ‘Navigable area’ denotes
the size of the space in which the agent can actually navigate. For both metrics, the
ReALFRED benchmark poses a more even distribution and provides larger areas. For
(a), we exclude RoboTHOR since it consists of single-sized floors.

along with a depth sensor, and capture images from three distinct perspectives:
front-facing and slightly vertical above and below. Panoramic images are ac-
quired through six consecutive captures with horizontal rotation from a fixed
viewpoint. We scan each house with 2.5-meter intervals and address blind spots
due to furniture with additional scans from different viewpoints. Fig. 3 shows
houses where scanners were deployed while capturing scans. It can be discerned
that captures were densely concentrated in areas with a high presence of objects.
Object-interactable environments. To construct an environment with nu-
merous interactable objects, separating each objects should be preceded. In other
words, objects in the scans are initially merged into the background and there-
fore they remain as the background. Constructing an environment where objects
can be interacted with requires the separation of objects from the background
and from each other. Therefore, we manually separate the 3D scans into back-
ground elements and interactive objects. Furthermore, each object can exist in
various states. To visualize changes in an object’s state, we add state-relevant
textures on objects. For example, we add a stain texture to a clean object when
it becomes dirty. Finally, we reconstruct these individual object meshes within
the Unity editor, making them compatible with the AI2-THOR simulator [35].
Comparison with previous benchmarks. To investigate the spatial charac-
teristics of scenes in the ReALFRED benchmark, we compare ours with other
benchmarks that support interaction with objects [16, 61, 67]. We observe en-
hancements in our dataset in both: 1) spatial sizes and 2) spatial complexity.
Spatial size. We compare the ReALFRED benchmark with other benchmarks
in terms of spatial size [56] by measuring ‘Floor area’ and ‘Navigable area’ and
provide the result in Fig. 4. ‘Floor area’ represents the total spatial size (m2) of a
scene, defined by the floor projection. ‘Navigable area’ measures the spatial size
(m2) of the space in which an agent can actually navigate. ‘Navigable area’ is
smaller than or equal to ‘Floor area’ since ‘Navigable area’ excludes areas where
the agent collides with any components in the scene from ‘Floor area.’

We observe that the ReALFRED benchmark yields a diverse distribution
of floor areas, compared to previous work [61], with a larger average per scene.
Furthermore, the ReALFRED benchmark provides a broader range of navigable
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Table 2: Component sizes of interactive embodied AI benchmarks. Each
‘Total floor area’ and ‘Total navigable area’ (Total nav. area) denotes the sum of all floor
areas and navigation areas. ‘Nav. complex.’ denotes navigational complexity. ‘Scene
clutter’ measures the amount of clutter in the scene. We do not compare ReplicaCAD’s
Navigable area, Navigation complexity, and Scene clutter as agent sizes differ across
simulators. The highest value for each metric is shown in bold. †We count objects used
as target objects in the ObjectNav task. ‡We count objects used in any of the tasks.

Simulator Habitat2.0 AI2THOR

Dataset ReplicaCAD [67] RoboTHOR [16] ALFRED [61] ReALFRED

# Scenes 111 75 120 150
Total floor area (m2) 8, 824.5 2, 574 2, 555 10,060
Total nav. area (m2) − 1, 258 1, 356 4,251
Nav. complex. − 2.036 2.549 3.020
Scene clutter − 8.095 5.119 8.072
# object class 92 14† 82‡ 112‡

areas, with larger areas on average. This implies that an agent needs the ability
to navigate effectively in spaces of varying sizes, generally wider on average.

We also investigate the spatial characteristics of each benchmark [16, 61, 67]
and summarize the result in Table 2. ‘Total floor area’ denotes the sum of all
floor areas and ‘Total navigable area’ denotes the sum of all navigable areas in
the dataset. We observe that the ReALFRED benchmark has the highest total
floor area and navigable area value, implying that ReALFRED provides more
navigation space for an agent than previous work [16,61,67].
Spatial complexity. We now investigate the complexity of spatial structures in
the ReALFRED benchmark using several metrics. To ensure a fair compari-
son with other datasets [16, 61, 67], we employ the navigation complexity intro-
duced by [74] and the scene clutter measurement from [56]. A higher navigation
complexity indicates an increased difficulty in navigating through the space,
while a higher scene clutter implies the presence of more obstacles in the en-
vironment. By utilizing these metrics, we conduct a comparative analysis with
object-interactable benchmarks [16,61] and provide the result in Table 2.

We observe that the ReALFRED benchmark provides the environment
with higher navigation complexity and scene clutter compared to other bench-
marks [61, 67]. The high navigation complexity in our scenes stems from their
multi-room composition. This setup requires the agent to execute more intricate
navigation when moving from one room to another, in comparison to scenarios
where the agent operates within a single room. We observe that ours poses the
second-highest scene clutter with a marginal gap from [16]. This is because the
spaces in [16] are relatively confined with a high density of furniture. We ob-
serve that ours has a similar value to [16], meaning that our scenes have a large
amount of obstacles with a similar portion of [16] since our scenes’ average size is
larger than that of [16]. This implies that the ReALFRED benchmark provides
a complex and challenging space for the agent to explore the environment.
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Fig. 5: The seven types of tasks’ distribution in ReALFRED. We provide
37.6% more tasks in valid sets and 19.3% in total compared to previous benchmark [61].

3.2 Expert Demonstration Generation

Each expert demonstration includes a set of an egocentric RGB view and ac-
tion information with an interaction mask if exists at each time step. Expert
demonstrations for each task are generated by a planner [29] with encoded state
spaces into Planning Domain Definition Language (PDDL) rules [22]. To gener-
ate household tasks, we utilize seven task types introduced in [61].
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quency in the instructions.

Data splits. We split the generated
demonstrations into train, validation, and
test folds. Specifically, we designate 135
scenes for seen and 15 scenes for unseen
fold. Comparison of the amount of each
task and the distribution across train-
ing and validation folds with previous
work [61] is shown in Fig. 5.
Curating free-form language in-
structions. Detailed language instruc-
tions describe a task that involves a se-
quence of actions, a point of interest in
robotics. The ReALFRED benchmark
offers 30, 696 language directives, each
comprising a human-annotated high-level
goal and a set of step-by-step instruc-
tions. These directives are collected from
93 Amazon Mechanical Turk workers with
a ‘Master’ qualification, ensuring high-
quality. Collected annotations are validated through an additional voting survey,
and invalid instructions are replaced with newly collected instructions. The dis-
tribution of language instructions by their first four words is presented in Fig. 6.
We provide a detailed annotation process and examples of an expert demonstra-
tion with the instruction in Sec. A.1 and A.4 in the supplementary material.
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Multi-room embodied instruction
following. For household robots to be
able to effectively assist humans, it would
be more practical to deploy them in com-
plex and diverse environments with var-
ious room types, rather than confining
them to a single room. Cross-room navi-
gation poses significant challenges, requir-
ing agents to understand room references,
plan efficient paths, and overcome ob-
stacles proficiently. This agent is further
tasked to interpret visual cues, demon-
strate a keen sense of spatial awareness,
and process natural language instructions.

The distribution of the number of steps and the length covered by the expert
demonstrations is shown in Fig. 7. We observe that longer steps and trajecto-
ries are required to complete our tasks compared to the single-room constraint
benchmark [61], meaning that our benchmark provides longer-horizon tasks.

To broaden a range of tasks, we provide an extensive number of object class
types in the ReALFRED benchmark. More object classes are added to the
ReALFRED benchmark, making it a superset of [61] with 86 pickupable and
26 receptacle objects. This has resulted in a more diverse set of tasks, with the
number of unique tasks being 84.3% more than the ALFRED benchmark [61],
and the proportion of unique tasks being higher in the ReALFRED benchmark.
We provide detailed information in Sec. A in the supplementary material.

4 Experiments

Metrics. We follow the same evaluation protocol of the ALFRED benchmark [61].
The primary metric is ‘Success Rate (SR)’ which measures the percentage of
completed tasks. ‘Goal-Condition Success Rate (GC)’ measures the percentage
of achieved goal conditions. We also use path-length-weighted metrics to measure
how efficiently an agent completes tasks. For more details, kindly refer to [61].
Baselines. We evaluate several recent state-of-the-art methods [5,33,34,46,61–
63] with competitive results in [61]. We provide more details in Sec. B.

4.1 Comparison of the State of the Arts

We evaluate the baselines in the proposed ReALFRED benchmark over multiple
runs and present the average result in Table 3. We report extended results with
path-length-weighted metrics in Sec. C in supplementary.

For a fair comparison, we separate the baseline into two groups based on the
use of additional depth supervision for semantic map reconstruction: ‘Imitation
Learning’ where agents learn direct mapping from visual observations and lan-
guage instructions to action sequences and ‘Spatial Map Reconst.’ where agents
plan action sequences based on reconstructed semantic spatial representations.
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Table 3: Task and Goal-Condition Success Rate. We train and evaluate recent
state-of-the-art methods on our ReALFRED benchmark. For a fair comparison, we
group these methods into two based on the usage of extra depth supervision: models
learned by imitation learning without depth supervision (‘Imitation Learning’) and
ones that maintain semantic spatial representations constructed by predicted depth
maps (‘Spatial Map Reconst.’). Path-length-weighted (PLW) metrics are reported in
Sec. C for each value. †Authors’ implementation as the code is not publicly available.

Learning Model
Validation Test

Seen Unseen Seen Unseen
SR GC SR GC SR GC SR GC

Imitation
Learning

Seq2Seq [61] 0.77± 0.06 6.93± 0.06 0.00± 0.00 4.03± 0.00 1.10± 0.00 6.60± 0.00 0.00± 0.00 3.50± 0.00
MOCA [62] 12.64± 0.12 20.95± 0.18 1.44± 0.05 6.76± 0.04 14.11± 0.03 22.84± 0.04 0.62± 0.08 5.14± 0.08
ABP† [33] 24.71± 0.05 33.80± 0.14 4.22± 0.05 11.71± 0.27 27.44± 0.40 35.81± 0.23 3.54± 0.23 10.57± 0.22

Spatial
Map

Reconst.

HLSM [5] 4.23± 0.08 9.14± 0.09 1.08± 0.14 6.12± 0.23 6.27± 0.04 10.44± 0.13 0.49± 0.16 4.28± 0.13
FILM [46] 7.08± 0.28 11.93± 0.23 4.44± 0.17 9.26± 0.13 8.79± 0.07 13.03± 0.08 2.15± 0.18 6.56± 0.15
LLM-Planner† [63] 5.80± 0.19 11.69± 0.35 3.33± 0.22 8.29± 0.19 8.16± 0.20 13.20± 0.13 1.90± 0.13 6.33± 0.02
CAPEAM† [34] 13.45± 0.05 18.16± 0.27 4.92± 0.22 9.47± 0.23 15.61± 0.15 20.22± 0.11 2.87± 0.13 7.36± 0.07

Human - - - - - - 85.00± 3.54 91.30± 2.94

We observe that all these baselines, ‘Imitation Learning’ and ‘Spatial Map
Reconst.,’ consistently achieve lower performance values for all metrics in both
seen and unseen splits compared to performances achieved in [61], implying that
our proposed ReALFRED provide more challenges compared to [61]. While
in [61], the ‘Spatial Map Reconst.’ baselines [5,34,46] outperform learning-based
approaches [33, 61, 62] by exploiting semantic spatial representation with deter-
ministic algorithms (e.g ., obstacle-free navigation path planning [60]), we observe
a contrasting result that the ‘Imitation Learning’ baselines outperforming the
‘Spatial Map Reconst.’ baselines in our ReALFRED benchmark.

We qualitatively observe that such a confined spatial map reconstruction is
due to a limited field of view and map reconstruction methods. The agent’s
limited field of view often leads to failure in recognizing room corners with doors
or narrow aisles, resulting in (single-room-sized) limited map reconstruction.
In addition, [34, 46] perceives obstacles larger than they actually are for better
obstacle-free path planning by sacrificing navigable area, but this can be quite
critical for narrow doors and aisles as they have a small amount of navigable
space. This may hinder navigation to other rooms and thus, fail at tasks. We
provide a more detailed discussion, supported by figures, on the agents’ difficulty
in recognizing narrow passages and the resulting impact on the agents, who
struggle with spatial map reconstruction in Sec. D in the supplementary material.

4.2 Comparison to the agents with sim-to-real adaptation

We investigate the transfer from simulation training to real-world scan evalua-
tion (sim-to-real) and from real-world scan training to real-world scan evaluation
(real-to-real) with [33]. We train a sim-to-real agent with synthetic visual data
and a real-to-real agent with real scanned visual data, respectively. During in-
ference, both agents predict an action and an object mask based on the scanned
visual input frame and the given language instruction at every time step.
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Training and evaluation data selection. For training the sim-to-real agent,
we use the training dataset in [61], encompassing 21K language annotations.
For a fair comparison, we train the real-to-real agent with tasks from the Re-
ALFRED benchmark’s training fold, specifically involving the manipulation of
the same objects that were used in training the sim-to-real agent with 19K lan-
guage annotations. For evaluation, we select tasks from the valid unseen splits of
our ReALFRED benchmark. We evaluate the agent performance with the tasks
that 1) do not require multi-room navigation 2) and those that do. This selection
specifically includes tasks that feature objects used in the training phase.
Real-to-sim domain adaptation. The use of Generative Adversarial Net-
works (GANs) [23,79] for domain adaptation has recently been examined in the
literature on robotics [6, 28, 32, 58, 77]. These models are employed to adapt in-
put images from real-world domains (i.e. Real → Sim) before they are passed to
the agent policy. We train a CycleGan [79] and its off-the-shelf variant [70] with
unpaired images collected from the ReALFRED (real domain) and ALFRED
benchmarks [61] (simulated domain). Among the trained generators, the one
performing real to simulation conversion, referred to as the real-to-sim goggle,
learns the mapping from the real domain to the simulation domain GS : R → S,
where R denotes the real domain and S denotes the simulated domain.

Table 4: Comparison to the agents
with sim-to-real adaptation. Each
‘Sim2Real’ and ‘Real2Real’ denotes an
agent trained in simulated environ-
ments and 3D-captured scenes. ‘Gog-
gle’ denotes real-to-sim methods.

Multi + Single Single only

# Setting Goggle SR PLWSR SR PLWSR

(a) Sim2Real None 0.115 0.012 0.0 0.0
(b) Sim2Real CycleGan [79] 0.115 0.016 0.327 0.065
(c) Sim2Real UVCGAN-v2 [70] 0.115 0.046 0.327 0.187

(d) Real2Real None 2.405 0.785 2.614 0.762

Results. We present the results of the
sim-to-real experiments in Table 4. We
report the performance of agents when
tasks 1) require agents to navigate multi-
rooms, denoted as ‘Multi + Single,’ and
2) are solvable within a single room, de-
noted as ‘Single only.’ Firstly, we observe
that the sim-to-real agent significantly un-
derperforms its real-to-real counterpart in
all metrics (#(a) vs. #(d)). We then com-
pare the results with goggled agents. By
comparing agents evaluated in the ‘Multi
+ Single’ tasks, we do not observe improvements in the main metric, success
rate (SR). We observe a slight increase in the PLWSR metric for the goggled
sim-to-real agent compared to the vanilla sim-to-real agent (#(a) vs. #(b, c)).

To isolate the impacts of the visual domain gap, we then compare agents
evaluated on ‘Single only’ tasks. We observe that both goggled agents show im-
provements over the vanilla sim-to-real agent which results in zero success rate.
However, a noticeable performance gap exists with the real-to-real agent, imply-
ing the need for learning in real scanned environments (#(d) vs. #(a, b, c)).

4.3 Challenges in ReALFRED

We propose two hypotheses for the low performance observed with state-of-the-
art methods on the ReALFRED benchmark: (1) navigating within larger scenes
and (2) overcoming narrow pathways between rooms. These elements represent
challenges of completing tasks within multi-room, household-scale environments.
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Fig. 8: Distribution of collision spots. The heatmap illustrates collision frequency
on each spot and the black outline depicts a navigable area. We illustrate collision
points of [33] in valid unseen environments to represent the distribution. Specifically,
we choose failure episodes from the two largest scenes in the valid unseen split. We
observe a remarkable concentration of collisions at the entrance to the rooms. The
corresponding egocentric views are presented on the right side of the figure.

We analyze failure cases with the best-performing model, ABP [33], on valid
unseen split, since it seems the most promising on the ReALFRED benchmark.
Difficulty in large environments. Understanding the surrounding environ-
ment, including the location of objects and the positions of obstacles, can be
beneficial for task completion. However, the agent’s visual range is bounded, re-
quiring it to expend more steps for exploration in order to perceive larger spaces.
This intensifies the challenge of navigating larger spaces with limited steps.

We conduct an analysis to see the relationship between the success rate (SR)
and the size of the space. We follow the interquartile range (IQR) method to
set a threshold at 30.44m2 that covers the most navigable space sizes in the
ALFRED [61]. This threshold marks the upper fence, defining spaces above
it as outliers. We classify spaces in the ReALFRED benchmark smaller than
threshold as smaller scenes, and those larger as larger scenes. Results indicate
that the agent [33] with the highest SR in the valid unseen fold showed an average
SR of 5.46% in the smaller scenes and only 1.77% in the larger scenes. This
implies that solving tasks becomes more challenging as the space size increases.

In addition, we compare the difficulty of navigation between the previous [61]
and ReALFRED benchmarks with different average spatial sizes. To quantify,
we first define milestones for each task, which are spots to be reached to interact
with target objects (e.g ., Apple, Knife, etc.). We consider navigation to be a suc-
cess only if all milestones are visited, regardless of whether the actual interaction
(e.g ., slicing an apple) is performed or not. Consequently, the navigation suc-
cess rate in the ReALFRED benchmark is merely 59.18% for the valid unseen
split while the agent’s [33] navigation success rate is 84.82% in ALFRED [61].
The ReALFRED benchmark offering an average space size more than three
times larger than the previous work [61] implies the need for model development
capable of overcoming the challenges associated with this increased scale.
Navigation through narrow doorways. The ReALFRED benchmark sup-
ports environments with multiroom composition, unlike the previous dataset [61]
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providing a single room scale. Specifically, it contains narrow doorways across
rooms, which may hinder the agent from navigating through. Here, we hypoth-
esize that the agent would frequently collide with the walls near the door.

We investigate collision spots and showcase two examples on top of the scene’s
layout in valid unseen fold in Fig. 8. The number of collisions in failed cases is
accumulated and normalized to the maximum number of collisions, respectively,
to indicate the collision frequency at each point. The black outline represents the
agent’s navigable area, as detailed in Sec. 3.1. Each value denotes the normalized
collision frequency. In both scenes, we observe that collisions often occur on walls
near the door, implying that our spatial characteristic (i.e., including narrow
spaces) may hinder the agent from properly navigating without collision.
Human evaluation. Following [61], we randomly select 100 directives from the
test unseen fold and have them evaluated by humans. Five participants are given
20 tasks each, which they complete using a keyboard-and-mouse interface. Before
starting, they are given the opportunity to become familiar with the interface.

Participants achieve a comparable high success rate of 85%, along with a goal-
condition success rate of 91.30%, in average. We agree that human performance
may appear slightly lower compared to the results presented in previous work [57,
61,78]. This is partly because human participants encountered several difficulties
when controlling the agent, particularly in avoiding collisions within narrow
corridors. Furthermore, navigating large spaces with a limited egocentric field of
view introduced additional challenges, leading to task failures.

5 Conclusion

We present ReALFRED, a new dataset and benchmark for embodied instruc-
tion following task on 3D-captured environments. We capture 150 indoor houses
in 3D with interactable objects to enable complex household tasks. The recon-
structed indoor scenes provide a larger spatial area and complex multi-room
environments that are close to the real-world scenario and challenging for an
agent to successfully complete a task. Expert demonstrations are also provided
along with free-form human-language instructions.

In our empirical evaluations, we show that state-of-the-art methods strug-
gle in large multi-room environments, provide analyses of our newly proposed
benchmark, and perform Sim2Real transfer experiments. We have released our
Embodied AI research data and code for reproducibility. We expect that the
ReALFRED benchmark will encourage further research on developing robotic
agents that execute household tasks by language instructions in the real world.
Limitation and future work. Although we support a large number of inter-
actable objects, the types of tasks to be completed are rather limited, consider-
ing more complex real-world scenarios. In addition, we currently address natural
language in English but users may come from different regions with different
languages. We can think of two future research avenues as follows. (1) adding
additional complicated types of task that require both hands to complete. (2)
supporting a multi-lingual interface for users from different regions.
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