
(Supplementary Material)
Hierarchically Structured Neural Bones
for Reconstructing Animatable Objects

from Casual Videos

In this supplementary material, we provide additional details, comparisons,
and results of our method:

– Manipulation UI and comparison in Section A.
– Manipulation user study in Section B
– Descriptions of the datasets in Section C.
– Dynamic addition and deletion of bones in Section D
– Details of our method in Section E.
– Additional ablation studies in Section F.
– Additional s reconstruction results in Section G.
– Additional manipulation results in Section H.
– Discussion on the societal impacts of our method in Section I.

A Manipulation Comparison

We showcase the easier and more comprehensible manipulation process achieved
by our method through the supplementary videos and manipulated results. Dur-
ing the manipulation process, the animator utilizes our manipulation UI and
manually adjusts the bone parameters to achieve the desired poses of the objects.
We provide a description of our manipulation UI in Fig. 8. The supplementary
video (named “manipulation-UI-and-comparison.mp4") demonstrates the
actual manipulation process of our method and BANMo [6]. As shown in the
video, the manipulation process of our method is much easier and interpretable
compared to BANMo, achieving the desired poses in about 4× shorter time.

The manipulated objects are demonstrated in Fig. 9. It is worth mentioning
that users need to take significantly fewer actions for manipulating our struc-
tured deformation model. For instance, to manipulate Eagle, users can obtain
the target pose by manipulating just 5 bones. In contrast, at least 18 bones are
need to be adjusted when manipulating the result of BANMo, as its bones are
unstructured, and just scattered throughout the surfaces without considering
the basis of motions. In the manipulation process of Cat, coarse and large mo-
tions like standing are achieved by moving coarse-level bones using our method.
On the other hand, the result of BANMo requires adjustments of almost all
bones (20 out of 25 bones) to make such manipulations, leading to intricate
adjustments and a challenging manipulation process. Thanks to the hierarchi-
cally structured deformation model, the proposed method provides much more
intuitive and convenient manipulation process to users.
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Fig. 8: Description of our manipulation UI. Users can manipulate cameras and bone
parameters with mouse actions. To select the designated bone, users can see the entire
bones or bones at a specific depth, and select the target bone by clicking it in the left
side, or choosing it from the bone list on the top-right side. The right side shows the
manipulation and camera parameters, in which users can directly manipulate these
parameters. We refer to the provided supplementary video for more descriptions the
actual manipulation process.

Table 5: User study results on manipulation.

Whale Eagle Cat Swing Avg.
Time Pref Time Pref Time Pref Time Pref Time Pref

BANMo 2m 11s 3.2 3m 48s 2.9 5m 17s 2.6 9m 6s 1.5 5m 5s 2.55
Ours 1m 29s 4.6 3m 15s 3.7 3m 31s 3.9 7m 4s 2.5 3m 50s 3.68

B Manipulation User Study

We compare our method with BANMo in terms of manipulation capabilities by
conducting a user study. For the user study, we recruited 12 participants with no
prior experience using 3D tools. Each participant was instructed to manipulate
3D models to match given target poses. The test was conducted on four different
objects, including Whale, Eagle, Cat, and Swing. Fig. 10 shows the target poses
used in the user study. We measured both the time taken to achieve the desired
poses and the preference ratings, rated on a scale from 1 (Difficult) to 5 (Easy).
For each object, we calculated the average of the 10 responses, excluding the
shortest and longest times among the 12 responses. As shown in Table 5, our
method achieve higher preference ratings and shorter completion times across
all objects. The results demonstrate that our structured bone representation
improves manipulation capability in terms of time taken and interpretability of
learned control points.
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Fig. 9: Manipulation comparison with BANMo [6]. Users can firstly achieve manip-
ulations of coarse and larger motions using our method, whereas BANMo requires
adjustments of almost all bones to make such manipulations. Notably, the manipula-
tion of Eagle is achieved only using 5 bones with our method, while at least 18 bones
are adjusted in BANMo.

Whale Eagle Cat Swing

Target Pose

Fig. 10: The problem presented in the user study. In the user study, we instructed the
users to manipulate to achieve the following target pose.

C Dataset

We conduct additional experiments on a more diverse range of animals, including
a dog, a bat, and a whale:

- AMA human dataset [4] includes multi-view videos capturing actor per-
formances from 8 synchronized cameras and ground-truth mesh. We select
two sets of videos, Swing (1200 frames) and Samba (1400 frames). We omit
time synchronization and camera extrinsic parameters during training, treat-
ing the videos as monocular.

- Animated objects dataset [6] offers Eagle videos, that are rendered with
an animated 3D eagle model and varying camera trajectories. Each video
comprises 150 frames, and a total of 5 videos are utilized as input.

- Casual video dataset [6] includes multiple videos featuring a Cat and a
Shiba Inu dog, respectively. These videos are captured casually using monoc-
ular cameras, with no control over camera movements. We utilize a total of
11 videos (900 frames) for Cat and 14 videos (1407 frames) for Dog. Specif-
ically, objects exhibit unrestricted movement within individual videos, and
the background undergoes changes across the different video sequences.
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Table 6: Dataset license description.

Dataset Instance Human Synthetic Paper License
AMA human dataset Swing, Samba ✓ [4] License not specified
Animated object dataset Eagle ✓ [6] Turbosquid license
Casual video dataset Cat, Dog [6] CC0
Dynamic Object dataset Bat, Whale ✓ [2] SketchFab Standard License

- Dynamic object dataset [2] presents videos of a whale and a bat, which
are rendered using animated 3D objects. The animals are depicted from 15
different viewing angles, and for optimization purposes, we utilize videos
from 12 of these angles. Each video consists of 46 frames, with a total of 552
frames used for both Bat and Whale.

Dataset license. Additionally, we provide the dataset license, the research pa-
per introducing the dataset, and information on whether it includes human sub-
jects in Table 6.
Human subject. We adhere to ethical principles outlined in ECCV ethics
guidelines. When utilizing human-derived data, particularly in the case of the
AMA human dataset, we exercise careful consideration. The dataset is collected
with consent and is made publicly available. We utilize the data with proper
citation to acknowledge its source. The dataset is intended for editing purposes,
and we ensure its usage aligns with our purpose. If concerns arise regarding
the potential presence of personally identifiable information in facial regions, we
pledge to blur or mask the facial area.

D Dynamic Addition and Deletion of Bones

Thanks to the flexible structure of hierarchically structured bones, users have
the capability to add additional control points where needed or remove unnec-
essary ones. Specifically, users select the designated parent bones to add more
bones, and then the child bones are appended to the selected segments accord-
ingly. With further optimization of the appended bones, users finally obtain the
3D models with more control points for finer manipulation. For the removal
of redundant bones, users select the target bones, and the corresponding child
bones can be eliminated by removing them from our tree structures. This pro-
cess can be easily implemented by modifying the leaf bones. We would like to
note that prior template-free methods [5, 6] lack the capability of dynamically
adding or removing control points in designated areas, as their Gaussian ellip-
soids are unstructured. Skeleton-based approaches [1, 7] have insufficient capa-
bility of modifying predefined templates, and they offer limited transformations
that are restricted to a given skeleton. Fig. 11 illustrates the examples of the
dynamic addition and deletion of the bones on Cat.
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E Method Detail

E.1 Losses

Our method follows reconstruction losses Lrecon and cycle loss Lcycle that are
proposed in BANMo [6], as follows:

Lrecon = Lrgb + Lsil + LOF + Lfeat, (15)

Lcycle = L2D−cyc + L3D−cyc. (16)

– RGB reconstruction loss Lrgb compares rgb values CGT of given frames
to the composited values Ĉ(r), as

Lrgb =
∑
r

||Ĉ(r)− CGT ||2. (17)

– Silhouette reconstruction loss Lsil compares mask values MGT extracted
from given frames and the composited density values M̂(r) through differ-
entiable volume rendering:

Lsil =
∑
r

||M̂(r)−MGT ||2. (18)

– Flow reconstruction loss LOF compares 2D optical flow values FGT ex-
tracted from the off-the-shelf flow network and the predicted flow values. In
detail, given two frames of time t and t′, we compute flows by firstly back-
ward warping rays rt to the rays in the canonical space rc, then forward
warping the rays rc to the rt

′
in the t′ frame. The predicted pixel locations

at time t′ are compared to the pixel location at time t to compute 2D optical
flows F̂ . The flow reconstruction loss is computed as

LOF =
∑

r,(t,t′)

||F̂
(
r, (t, t′)

)
− FGT ||2. (19)

– Feature rendering loss Lfeat compares 2D Dense-CSE feature DGT from
Dense-CSE [3] to the composited predicted Dense-CSE feature values D̂. For
each 3D point sampled from rays r, the 3D Dense-CSE feature is queried
from the feature MLP, and composited to the 2D rendered value.

Lfeat =
∑
r

||D̂(r)−DGT ||2. (20)

– 2D cycle loss L2D−cyc computes cycle consistency between original pixel
locations r and the re-projected pixel locations r̂reproj . Per each pixel, a 3D
point is predicted via canonical embedding in the canonical space. The point
is warped to time t space (forward warping), and then projected to image
space using a predicted camera projection matrix.

L2D−cyc =
∑
r

||r̂reproj − r||2. (21)
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Fig. 11: Examples of dynamic addition and deletion of neural bones on the 3D model
of Cat. We add extra bones to the tail and head, allowing for manipulation of finer
regions. Conversely, the torso, which requires fewer bones, can be merged.

– 3D cycle loss L3D−cyc computes cycle consistency of 3D points xt by for-
ward warping the canonical points in the canonical space, which was given
by backward warping in the time t space as

L3D−cyc =
∑
i

τ ||Wc→t · Wt→cxt − xt||2, (22)

where τ is the opacity of the point xt.

E.2 Child Bone Initialization

When increasing the depths of our bone hierarchy, child bones are initialized
using properties inherited from their parent bone. Specifically, a canonical mesh
is extracted from the canonical model. Skinning weights of previous depths are
computed based on the vertices of the canonical mesh. We identify vertices with
the highest skinning weights on the parent bone and cluster them into groups
corresponding to the number of child bones based on euclidean distance. The
centers of these clusters serve as the initial center positions for the child bones. As
for the orients of the child bones, we set them to the identity rotation matrix.
For scales, we initialize them with constant values for all bones, regardless of
depth. Using these initial values, the deformation MLP fd for the new depth d
is optimized with a small number of iterations. Since this procedure relies solely
on the canonical poses of bones, we discovered that a large number of iterations
can lead fd to overfit to these poses. Therefore, additional optimization of fd

using video data containing various poses is necessary.
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Fig. 12: Ablation results on the bone regularization terms within the framework of
bone hierarchy. When bone mask regularization is utilized, it ensures that the scales
of bones correspond to the actual scale of the shape, thereby enabling the subdivision
of depth-1 bones into depth-2 bones.

Table 7: Ablation on the bone regularization with bone hierarchy. The combination
of bone mask regularization with our hierarchical deformation model achieves the best
scores.

Bone Reg #depths #bones Samba Swing
CD F2 CD F2

Sinkhorn 1 6 8.56 57.23 9.60 52.91
2 12 7.84 60.79 8.88 56.22

Bone mask 1 6 7.65 61.93 9.27 54.74
2 12 6.87 66.76 7.74 61.64

E.3 Additional Optimization Detail

We optimize our overall system jointly, including the canonical model gc and
the hierarchical deformation model f , through the previously mentioned losses.
Specifically, we sample 6 pixels for each image and 128 points are sampled for
each ray. All frames are cropped around the object and resized to the size of
512×512, and we use 512 images for one iteration. We use loss weight 1 for LOF ,
Lmatch, weight 0.1 for Lrgb, Lsil, Lbone, and weight 0.001 for Loverlap, Lcover.
As described in the manuscript, we optimize overall system in a coarse-to-fine
manner according to the depth of hierarchical neural deformation model. After
parent bones are sufficiently optimized and child bones are appended, we freeze
the parent bones and concentrate on optimizing the newly added child bones.
We use two NVIDIA GeForce RTX 3090 GPUs for the optimization, and each
stage takes less than 3 hours in our environment.

F Additional Ablation Study

F.1 Bone Regularization

We further present the ablation results on the effects of combining the bone mask
loss with our hierarchical deformation model. We compare the results at depth-
1 and depth-2, with our framework using Sinkhorn divergence regularization
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Table 8: Progressive optimization ablation on Eagle, Samba, and Swing. BANMo+
extends BANMo by gradually increasing the number of bones during optimization,
while BANMo maintains a constant number of bones throughout. Our method also
gradually increases the number of bones but utilizes bone hierarchy when adding bones.

data Eagle Samba Swing
CD F2 CD F2 CD F2

BANMo 4.66 81.44 7.22 64.99 7.33 64.88
BANMo+ 5.52 71.61 6.82 67.17 7.13 64.56

Ours 4.64 81.59 6.15 72.07 7.11 65.88

as in the prior work [6]. The reconstructed 3D shapes and their corresponding
bones at each depth are reported in Fig. 12. The most notable difference is that
the scale of neural bones align with the scale of the shapes when using bone
mask loss. This effect arises from the fact that Sinkhorn regularization only
encourages the center of the bones to be placed near the surfaces, while bone
mask loss regularizes all properties of the bones, scales, orients, and centers, by
encouraging the bones to fit the foreground masks of the objects. Combining
the bone mask loss with our hierarchical deformation model results in improved
interpretability. Users can better understand the corresponding parts assigned
to each bone, while semantic correlations between the bones emerge through
the tree structures. The combination of bone mask loss with our hierarchical
deformation model also leads to more notable improvement in reconstruction
quality, as can be observed in Table 7.

F.2 Progressive Optimization

In our framework, the number of bones increases gradually as depth grows and is
further optimized. To analyze whether the improvement arises from hierarchical
modeling or the gradual increase in the number of elements, we conduct addi-
tional ablation studies on the optimization process. For the analysis, we intro-
duce BANMo+, in which a small number of bones are initialized and optimized
in the initial stage. Subsequently, additional bones are progressively added and
then re-optimized. We begin with 6 bones in the first stage, doubling their quan-
tity over 3 stages, resulting in a total of 24 bones. We employ identical settings
for progressive optimization as in our hierarchical bones. As shown in Table 8,
BANMo+ does not bring meaningful improvement, sometimes showing degraded
results compared to BANMo. The results suggest that the advancement of our
framework is primarily due to the structured modeling of foundational elements,
which facilitates the disentanglement of coarse and fine motions.

G Additional Reconstruction Result

Reconstruction results for a wider range of object categories are illustrated in
Fig. 13 and Fig. 14. We also present the learned bones, where the bones with the
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Fig. 13: Reconstruction results on synthetic animals (Bat, Whale, and Eagle). Recon-
structed 3D shapes and their corresponding leaf bones are described.

same color indicate the bones assigned to the same parent. Our method demon-
strates generalizability across diverse types of animals with distinct motion prop-
erties. More results of Samba and Swing are depicted in Fig. 15. Template-free
methods excel in reconstructing regions where templates are not provided, such
as the skirts of humans. We emphasize and showcase such cases in Fig. 16.
Additionally, we present reconstruction results along depths in Fig. 17. As the
depth increases, the detailed motion e.g . legs of the cat, and arms of human, is
captured. For more results and comparisons, please refer to our supplementary
video.
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Fig. 14: Reconstruction results of animals from casually captured videos (Dog, Cat).
Reconstructed 3D shapes and their corresponding leaf bones are described.

H Additional Manipulation Result

Coarse-to-fine manipulation. Fig. 18 outlines the process of coarse-to-fine
manipulation employing our hierarchical deformation models. In the coarse ma-
nipulation, all child bones are adjusted simultaneously, e.g . the head of cat and
the left leg of the human. In the fine manipulation, child bones are manipulated
in the local coordinate of their parents, enabling the fine adjustments of the
motions, as shown in the left ear of the cat, and the foot of the human.
Coarse-only manipulation. The decomposition of coarse and fine motions al-
lows coarse-level manipulation of the provided videos while preserving fine-level
motions. Fig. 19 illustrates the results of manipulation. Specifically, adjusting
the parent motions of the arms (colored in blue), which are responsible for con-
trolling both arms, results in the lifting of both arms. The detailed motions of
all child bones are brought from the given sequence, preserving the detailed mo-
tions of upper arms, lower arms, and hands. The decomposition property of our
hierarchical deformation model provides an easier and novel way to manipulate
3D models, which is difficult to be achieved in previous approaches.
Manipulation results. Lastly, we present manipulation results using both
coarse and fine-level manipulations in Fig. 20. Such results demonstrate the
capability to manipulate 3D models in detail and showcase the ability of our
framework to create 3D models with novel poses. For video results, please refer
to the supplementary video.



Hierarchically Structured Neural Bones 11

Sw
in

g
Sa

m
ba

3D
 sh

ap
e

B
on

es
3D

 sh
ap

e
B

on
es

Fig. 15: Reconstruction results on AMA human datasets (Swing, Samba). Recon-
structed 3D shapes and their corresponding leaf bones are described.

I Societal Impact

Our framework presents a range of societal impacts, both positive and neg-
ative. Positively, it revolutionizes 3D modeling by leveraging casually captured
videos, democratizing access to these tools and empowering individuals and small
businesses to produce animatable models. Additionally, its simplification of the
modeling process enhances accessibility, particularly for users with limited tech-
nical skills or resources. However, there are notable concerns regarding potential
job displacement, particularly within industries heavily reliant on traditional 3D
modeling techniques, as automation may reduce demand for skilled modelers.
Furthermore, the use of casually captured videos raises privacy concerns, with
unauthorized utilization posing risks such as identity theft. Additionally, the
ease of manipulation facilitated by our framework may exacerbate issues of dig-
ital manipulation and misinformation, potentially leading to the spread of false
representations and harmful societal consequences.
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Fig. 16: Skirt reconstruction of the Samba dataset. Template-free methods excel in
reconstructing regions where templates are not provided.
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Fig. 17: Motion specification along depths.



Hierarchically Structured Neural Bones 13

Before
Manipulation

Coarse
Manipulation

Fine
Manipulation

Selected Bones and
Skinning Weights 3D shape

Selected Bones and
Skinning Weights 3D shape

Fig. 18: Results of coarse-to-fine manipulation.
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Fig. 19: Coarse-only manipulation results.
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Fig. 20: Manipulation results on the diverse categories of objects.
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