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Abstract. We propose a new framework for creating and easily manipu-
lating 3D models of arbitrary objects using casually captured videos. Our
core ingredient is a novel hierarchy deformation model, which captures
motions of objects with a tree-structured bones. Our hierarchy system
decomposes motions based on the granularity and reveals the correla-
tions between parts without exploiting any prior structural knowledge.
We further propose to regularize the bones to be positioned at the ba-
sis of motions, centers of parts, sufficiently covering related surfaces of
the part. This is achieved by our bone occupancy function, which iden-
tifies whether a given 3D point is placed within the bone. Coupling the
proposed components, our framework offers several clear advantages: (1)
Users can obtain animatable 3D models of the arbitrary objects in im-
proved quality from their casual videos, (2) users can manipulate 3D
models in an intuitive manner with minimal costs, and (3) users can in-
teractively add or delete control points as necessary. The experimental
results demonstrate the efficacy of our framework on diverse instances,
in reconstruction quality, interpretability and easier manipulation. Our
code is available at https://github.com/subin6/HSNB.
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1 Introduction

We have witnessed rapid development in creating animatable 3D models, which
are playing vital roles in diverse industries, e.g . films, mixed reality, and games.
However, such development is primarily carried out at the industry level, requir-
ing enormous labor costs and a level of proficiency. Most of the general users, on
the other hand, remain distant from this industry-level advancement, demanding
more simplified ways to obtain animatable models. Recent methods [18,32,50,51]
have suggested an alternative yet effective approach for general users: building
animatable models from casually captured videos.

These methods employed the framework of Neural Radiance Fields (NeRF)
[25] with various forms of controllable deformation models to handle the mo-
tions between frames. While a number of research [18, 32, 33, 42] adopted pre-
defined or hand-crafted templates, e.g . skeletons [18, 32, 51] and 3D body mod-
els [33, 42], we stand for utilizing a set of Gaussian ellipsoids as control points,
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Fig. 1: We aim to reconstruct animatable models that can be manipulated in a coarse-
to-fine manner, using multiple videos capturing a deformable object. The resulting
3D model can be manipulated using a hierarchical deformation model, where coarse
motions are manipulated using the parent bones, and fine motions are subdivided by
the child bones. We present manipulation results in novel poses.

as in BANMo [50]. These ellipsoids, so-called bones, offer a way to acquire artic-
ulated 3D models without being constrained to prior knowledge. Despite their
general applicability, utilizing these bones as “control points” poses challenges
in actual manipulation. This is due to the absence of structures, as these bones
are distributed across the object surfaces without considering the granularity
of movements, lacking correlations between bones with similar motions. Such
an unstructured property also leaves room for improvement in reconstruction
quality, often requiring plenty of input videos to produce plausible results.

In this paper, we present a framework for creating and easily manipulating
3D models of arbitrary objects from casual videos. We build our framework
upon BANMo [50], with careful consideration to tailoring control points into
well-structured forms. To provide better understanding of motions and facilitate
easier manipulation of the reconstructed objects, our structured deformation
model aims to decompose the motions, capture shared movements based on the
granularity, and identify correlations among parts with similar motions.

To achieve this goal, we introduce a novel hierarchical bone system that
represents object deformations with tree-structured bones. Our key idea is to
learn the deformations in a coarse-to-fine manner: parent bones capture coarse
motions of broader regions, with each child bone representing finer motion at
a more specific part. We begin with a small number of bones, covering coarse
parts, and gradually append child bones to cover finer motions of more specific
parts. The resulting tree-structured bones identify connections between relevant
bones in a fully unsupervised manner. These connections facilitate users to easily
understand the structures of the motions and provide better interpretability, as
well as improving reconstruction quality.

Furthermore, we suggest a regularization approach where bones are posi-
tioned at the centers of their respective parts. This is achieved using bone masks
derived from the bone occupancy function and foreground masks of the objects.
Instead of placing them around the surfaces as in previous methods, we extend
the concept widely used in part-based generative methods [12, 30, 36] into our
reconstruction pipeline for animatable models. Our bone regularization term
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prevents surfaces of the same part from being assigned to different bones. This
facilitates our hierarchical bones to correctly capture the parts sharing motions,
ensuring each bone can serve as a basis for the motions of each part.

Coupling these key ideas, the structured control points in our framework
provide a more user-friendly tool for creating and manipulating 3D models with
several clear advantages:

– Obtaining animatable 3D models of improved quality from casual videos.
– Manipulating 3D models in an intuitive manner with minimal effort.
– Interactively adding or deleting control points in desired parts.

We evaluate the effectiveness of our method through extensive experiments on
various instances, showcasing high-quality results of the models as well as inter-
pretable and structured control points. We also demonstrate the manipulation
capability of our framework through reanimation and manipulation results.

2 Related Work

Dynamic 3D Reconstruction. Dynamic reconstruction [6,8,9,15,21,53] aims
to reconstruct per-frame 3D geometry from a given video sequence. Recently, in-
spired by NeRF [25], its dynamic variant have significantly improved this field
using only RGB videos. These dynamic methods, known as Dynamic NeRFs,
can be broadly categorized into two streams. Firstly, deformation-based meth-
ods [28,29,34,37] learn canonical NeRFs and per-frame deformation fields from
the observation space to the canonical space simultaneously. Another line of ap-
proaches [7,10,11,19,20,44] involve learning time-conditioned NeRFs, which take
time and 3D position as input and directly output color and density. Despite im-
pressive results of such dynamic methods, the implicit learning of deformations
makes it challenging to manipulate scenes into novel poses.
Animatable Object Reconstruction. Reconstructing animatable objects
is a longstanding challenge in computer vision and graphics. Its goal is to re-
construct 3D models with accurate geometry that can be manipulated into
novel poses. Category-specific approaches have been extensively studied with
category-level templates. Model-based methods [1–3,22,33] represent input mo-
tions using 3D deformable models [4, 5, 23, 31, 45], while skeleton-based meth-
ods [18, 32, 35, 42, 43, 51] utilize skeletons. Recent advances in NeRF have also
spurred active research in these approaches [18, 22, 32, 33, 35, 42, 51]. However,
acquiring these category-specific templates necessitates either extensive 3D scan
data or thorough annotation of the respective category. Such templates limits
general applicability of these methods across diverse types of objects.

On the other hand, category-agnostic methods [17, 48–50] propose recon-
structing animatable 3D objects from videos by learning control points simulta-
neously with the 3D shape, bypassing the need for predefined templates. Among
these methods, BANMo [50] demonstrates promising results using a NeRF-based
3D model and linear blend skinning with implicitly learned bones. Successive re-
searches have attempted to improve BANMo in various aspects, including root
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pose decomposition [41], incomplete view coverage [38], and text-to-4D genera-
tion [40]. Orthogonal to these attempts, our method aims to improve deforma-
tion modeling to address challenge of manipulation capability, which is a crucial
aspect but has received relatively little attention.
Part-level representation. Contrary to research that utilizes low-level prim-
itives to represent motions of objects, there have been studies [12–14, 27, 30, 36]
focusing on learning partial representations of 3D shapes using low-level prim-
itives such as ellipsoids, spheres, and cubes. In these approaches, objects are
composed of multiple primitives, where each primitive represents semantic parts
of the object and models shapes of it. The part-based generative models are
learned from a collection of data on the single class, aiming for shape abstrac-
tion [12], part understanding [13, 30], and part-based shape editing [14, 36]. We
draw inspiration from this line of works to regularize our deformation parame-
ters to be aligned with the shapes of objects, ensuring proper decomposition of
motions. Furthermore, our deformation model provides hierarchical structures
of primitives for motions, allowing manipulation in a coarse-to-fine manner.

3 Proposed Method

Our goal is to construct a framework for creating 3D animatable models of artic-
ulated objects from casually captured videos, offering structured bones for easier
manipulation. We first deliver preliminaries [50] (Sec. 3.1), and then introduce
our key components, hierarchical deformation model (Sec. 3.2), and bone oc-
cupancy function (Sec. 3.3). The overall process is outlined in Fig. 2 (a). Our
method extends the overall framework of BANMo [50], with a key difference
being our hierarchical deformation model and bone occupancy function.

3.1 Preliminary

BANMo [50] proposes to reconstruct animatable 3D models from RGB videos
through the NeRF [25] framework. It comprises the time-invariant canonical
model and the time-variant deformation model, where the deformation is defined
by ellipsoidal bones and the neural skinning weight module. Given monocular
RGB videos, these bones are responsible for deforming rays at each frame to
the canonical pose. Then the canonical model represents the shape and the
appearance of the deformed rays in the canonical pose. All components are
jointly optimized together through the differentiable volume rendering.
Canonical Model represents the shape and appearance of an object as NeRFs,
gc : (xc,d) → (c, σ), which takes 3D point xc = (x, y, z) in the canonical space
and viewing direction d = (ϕ, θ) as inputs, and produces color c = (r, g, b)
and density σ. Following VolSDF [52], the SDF value s is produced for mesh
extraction, then s is transformed into σ as σ = α

(
1
2+

1
2sgn(−s)

(
1−exp(− |−s|

β )
))

,
where α and β are learnable parameters.
Volume Rendering. To render a frame It at time t, rays rt are cast from each
pixel using a camera projection matrix. The i-th sampled points xt

i in rt are
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Fig. 2: (a) The overview of the proposed framework for creating 3D animatble models
from videos. Each ray from the image pixel is deformed to the canonical space. Rays are
deformed in a coarse-to-fine manner, using the hierarchical neural deformation model.
(b) The process of hierarchical neural deformation model. Coarse motions and fine
motions are composited through the bone hierarchy formulation.

deformed to the canonical space as xc
i = T t→cxt

i. In the canonical space, ci and
σi of the deformed points xc

i are queried from the canonical model. These values
are composited to render the color of rt through the volume rendering:

Ĉ(rt) =

N∑
i=1

τi(1− exp(−σiδi))ci, (1)

where τ = exp(−
∑i−1

j=1 σjδj) is the accumulated transmittance and δi is the
distance between adjacent samples. The overall components are optimized by
minimizing the differences of colors between rendered frames and given videos.

3.2 Hierarchical Neural Deformation Model

To represent motions with coarse-to-fine granularity, we introduce a hierarchical
neural deformation model, as depicted in Fig. 2 (b). It takes time embedding
vectors for each frame as input, and produces neural bone hierarchy for the
frame. Neural bone hierarchy defines bones as Gaussian ellipsoids, with parent
bones capturing coarse motions at larger regions and child bones capturing finer
motions at more specific parts.

To deform a 3D point xt to canonical space, we compute poses of the leaf
bones of neural bone hierarchy Pt = {T t

1 , ..., T
t
B} at time t, where T t

b ∈ SE(3)
refers composited rigid transformation parameters through the bone hierarchy
formulation for the b-th bone. From those parameters, the mappings between Pt

and the canonical poses Pc are defined as

T t→c
b = T c

b · (T t
b )

−1, T c→t
b = T t

b · (T c
b )

−1. (2)

Subsequently, the skinning weight w(xt,Pt) of xt is computed through the skin-
ning weight module. We define the backward warping matrix Wt→c

x from time t
to the canonical space by linear blend skinning (LBS) with w and T :

Wt→c =

B∑
b=1

wb(x
t,Pt) · T t→c

b , (3)
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Fig. 3: Bone hierarchy diagram. Subordinate bones inherit the motion of all their
parent bones (orange line). The leaf bones are used in calculating the skinning weights
(blue line). Bones are gradually added during the optimization. After the optimization,
users can add or delete the bones in desired regions.

where wb is the b-th dimension of w. With the warping field, xt is deformed to
the canonical space as xc = Wt→cxt. As the rigid transformation T is invertible,
we can compute the forward warping matrix from the canonical space to time t:

Wc→t =

B∑
b=1

wb(x
c,Pc) · T c→t

b . (4)

Bone Hierarchy. For a structured representation of motions, we organize neu-
ral bones in a tree-like structure, where child bones inherit the motions of their
parents before making fine-grained movements. The diagram of bone hierarchy
is depicted in Fig. 3. Specifically, for a specific bone at depth d, the final trans-
formation T in the world coordinate system is composed by left-multiplying its
corresponding parent transformations at previous depths in a recursive way:

T d = T̂ 1T̂ 2 · · · T̂ d−1T̂ d, (5)

where T̂ d is the local transformation of the bone at depth d. Since the trans-
formations define the center and orient of the bone, this arrangement ensures
child bones are defined in the local coordinate system of their parents. Starting
with a small number of bones at depth 1, as optimization proceeds, each bone
is subdivided into child bones of smaller regions with finer-grained motion.
Neural Bone Representation. We follow a line of previous works [48–50] and
employ 3D Gaussian ellipsoids as the primitives of our bones. Each bone consists
of the rotation R ∈ R3×3, the center t ∈ R3 at each time step, and a shared
scale vector s ∈ R3 across all time steps. These are regressed by the MLP f from
the embedding vector et for each time t. We employ separate MLP fd for each
depth, which takes the embedding of the previous parent bone et,d and the root
embedding et,1 representing global motions. The local transformation matrix T̂i

of i-th bone can be described as

T̂ t,1
i , st,1i = f1

i (e
t,1), T̂ t,d

i , st,di = fd
i ([e

t,1, et,d−1]), (6)

where fd
i denotes the i-th dimension of the MLP output regressing bones at

depth d, and i is a local index of the bone within its parent. The MLP fd

outputs the geometric properties of all child bones at depth d.
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Skinning Weight Module. Each point x is deformed by LBS with the trans-
formation of leaf bones. The skinning weight of b-th leaf bone is defined as

wb =
exp(−dM (x, b) +∆wb)∑B

i=1 exp(−dM (x, b) +∆wb))
, (7)

dM (x, b) =
√

(x− tb)TRT
b SbRb(x− tb), (8)

where dM (x, b) denotes the mahalanobis distance between x and b-th ellipsoidal
bone, and ∆wb denotes delta skinning weights computed through MLP, as in [50].
Manipulation. With the optimized models, users can manipulate the object
into desired poses. To do this, a canonical mesh is extracted by querying the
canonical model and applying the marching cube algorithm [24]. The manipu-
lation of broad movements, which involves the motion of numerous subparts, is
achieved by adjusting the parent bones, while finely-tuned motion can be easily
achieved by adjusting only the sub-bones. The canonical mesh is deformed using
forward warping in Eq. (4) with the new transformation parameters.

3.3 Regularizing with Bone Occupancy Function

One of the challenges in constructing a bone hierarchy lies in determining the
location and the shape of the bones. Previous work [50] regularizes bone cen-
ters using Sinkhorn divergence, yet orients and scales remain under-constrained.
Consequently, bones are scattered across surfaces and often larger than objects,
hindering interpretability and subdivision into finer regions. To address this chal-
lenge, motivated by part-based generative methods [12,13,30], we propose regu-
larization terms to align the properties of bones (center, orient, scale) with the
shape of objects. The core component of our regularization is the bone occu-
pancy function, which utilizes the mahalanobis distance dM (x, b) used in the
skinning weight module for identifying the occupancy.
Bone occupancy. We first model the bone occupancy function gb, which de-
termines the relative position with respect to the surface of bones:

gb(x) = dM (x, b)− γ, (9)

where γ is a predefined threshold. Points inside the bone yield negative values for
g(x), while points outside the bone result in positive values. We further transform
g(x) into the density function σ(−g(x)

τ ), which approximates 1 when x is inside
the bone. Here, σ is a sigmoid function, and τ is a temperature value determining
the sharpness of the boundary. The bone occupancy function provides ways to
relate the locations of the bones with the shapes of the objects.
Bone mask. To determine whether a 3D point x is inside any bones, we define
a unified bone occupancy function G(x) by aggregating gb(x) of all bones:

G(x) = min
b∈1,...B

gb(x). (10)
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With the density obtained from G(x), we construct 2D bone masks Mbone by
accumulating density values along the ray. We compute the bone mask loss by
comparing them with object mask MGT as

Lbone =
∑

||Mbone −MGT ||2. (11)

By regularizing through the bone mask loss, we constrain the location and shape
of bones to align with the actual shape of the objects.
Overlap & coverage loss. We further regularize the properties of bones based
on the bone occupancy function. We extract surface points V of the canonical
model gc(·) by applying the marching cube algorithm to the output. From the
points in V, we impose an overlap loss, enforcing that each point is occupied by
a maximum of λ number of bones:

Loverlap =
1

|V|
∑
x∈V

max
(
0,

B∑
b=1

σ
(−gb(x)

τ

)
− λ

)
. (12)

In addition, we apply a coverage loss to ensure that each bone occupies a certain
portion of the entire region:

Lcover =

B∑
b=1

∑
x∈N

(
max

(
0, gb(x)

))
, (13)

where N denotes the N closest points among V with respect to mahalanobis
distance dM (x, b) to the bone.

3.4 Optimization

Our overall system is optimized on given monocular RGB videos, including 2D
masks, optical flows, and dense-CSE features extracted from them. We compute
the reconstruction loss term Lrecon and cycle loss term Lcycle in BANMo [50],
incorporating additional loss terms related to bones:

L = Lrecon + Lcycle + Lbone + Loverlap + Lcover. (14)

We refer to Supplement for a more detailed description of Lrecon and Lcycle.
Coarse-to-fine motion optimization. To optimize the hierarchical neural
deformation system, we propose a coarse-to-fine motion optimization scheme.
We initially optimize depth-1 bones that are responsible for coarse motion with
larger region. During the optimization, we gradually add child bones to the
previous bones to progressively capture fine motions.
Implementation details. In the optimization process, we start with five ini-
tial bones for animals and six for humans. After establishing the initial set of
bones (parent bones), two additional bones (child bones) are added to each of
the existing bones in subsequent stages. The optimization for each depth in-
volves 20k iterations. We use two NVIDIA GeForce RTX 3090 GPUs for the
optimization, and each stage takes less than 3 hours in our environment. Please
refer Supplement to more implementation details.
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Table 1: Quantitative results on Eagle and AMA. * indicates methods that utilize
predefined skeletons for optimization. (r) indicates reproduced results.

Method ViSER BANMo BANMo(r) CAMM* RAC* Ours
CD F2 CD F2 CD F2 CD F2 CD F2 CD F2

Eagle 19.22 24.76 8.1 56.7 4.66 81.44 4.50 81.21 - - 4.64 81.59
Swing 16.29 19.95 9.1 57.0 7.33 64.88 9.02 56.00 6.10 70.33 7.11 65.88
Samba 23.28 22.47 - - 7.22 64.99 7.50 62.17 6.63 67.71 6.15 72.07

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate our method on objects with diverse categories, includ-
ing humans and animals. AMA haman dataset [39] includes multi-view videos
capturing actor performances. We use Swing and Samba sequences for our evalu-
ation on humans, and treat them as monocular videos. We also use Eagle and Cat
data from BANMo dataset [50] for animals. Eagle contains videos that are ren-
dered with an animated 3D eagle model, while Cat contains casually captured
monocular videos. In the preprocessing phase, we utilize off-the-shelf models,
specifically PointRend [16], VCN-robust [47], and CSE [26], to extract object
masks, optical flow, and CSE features. We employ the videos of Swing, Samba,
and Eagle for quantitative evaluation by comparing them to the ground-truth
3D mesh. We provide more descriptions of datasets and results of diverse animal
species in Supplement.
Metrics. We evaluate the quality of reconstructed 3D objects with the following
criteria. Chamfer Distance (CD) measures the average distance between the
ground truth mesh and the estimated surface points. We additionally measure
F-score at distance thresholds d = 2% (F2) of the longest edge of the axis-aligned
object bounding box. Due to the scale ambiguity, we align the estimated 3D mesh
to the ground-truth mesh using Iterative Closest Point before evaluation.
Baselines. We compare our results with both template-free methods [49,50] and
skeleton-based method [17,51]. ViSER [49] reconstructs 3D articulated objects
by learning deformation parameters guided by video-specific surface embeddings.
They utilize 36 ellipsoidal bones for optimization. BANMo [50] estimates the
pose of the objects using Gaussian ellipsoid bones with canonical NeRF. Total
25 bones are used for all categories of objects. CAMM [17] utilizes kinematic
chains from RigNet [46] on top of BANMo to mitigate the challenges associated
with manipulating Gaussian bones. Finally, RAC [51] reconstructs category-
level 3D models. RAC uses pre-defined skeleton and learns to capture video-
specific morphology from videos of diverse instances within the same category.

4.2 3D Reconstruction

Quantitative comparison. We first quantitatively evaluate the 3D reconstruc-
tion results for objects across various categories. For fair comparisons, we also
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CAMMViSER BANMo RAC Ours

Fig. 4: Qualitative comparisons with template-free methods (ViSER, BANMo) and
skeleton-based methods (CAMM, RAC). The 3D reconstruction results and the cor-
responding control points are described. We omit the eagle result for RAC as they
require skeletons for reconstruction, which are not provided.

provide the reproduced results of BANMo as well as the original results re-
ported in their paper. Due to the absence of the skeleton for eagles, results of
RAC on Eagle are omitted. As shown in Table 1, our approach outperforms all
template-free methods across all datasets. We also achieve comparable results
with skeleton-based baselines without exploiting predefined structural knowl-
edge. It is worth noting that our method achieves comparable or better results
on Eagle using fewer control points compared to other baselines. Our method
uses only 10 leaf bones for Eagle, whereas other baselines use 25 or more bones
to represent deformation. This demonstrates the efficacy of our structured de-
formation model in capturing motions with reduced control points, achieving
compelling results and potentially improving manipulation interfaces for users.
Qualitative comparison. Fig. 4 describes 3D reconstruction results on Samba,
Cat, and Eagle datasets. Our method accurately reconstructs the 3D models with
details. ViSER shows over-smoothed results with inaccurate poses, which can be
attributed to their explicit meshes as shape model and the lack of the ability
to aggregate multiple videos. Methods exploiting NeRF and multiple videos, on
the other hand, achieve compelling reconstruction results. Methods leveraging
predefined skeletons for deformations (RAC and CAMM) generally perform well
in capturing poses. However, they have difficulty in accurately representing fine
details of the motions which are absent in their templates, e.g . skirts of the
Samba dataset. We provide more results of such cases in Supplement.
Control points comparison. To illustrate the interpretability of our frame-
work, we also visualize the control points of various methods in Fig. 4. For sim-
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Table 2: Quantitative comparison on neural rendering.

Swing Samba Eagle Cat
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BANMo 29.53 0.921 30.72 0.916 31.05 0.900 28.01 0.850
CAMM 28.04 0.912 28.87 0.907 30.44 0.894 26.47 0.830
RAC 22.82 0.878 23.90 0.878 - - 18.25 0.782
Ours 30.43 0.938 31.74 0.942 32.63 0.924 28.45 0.859

50 steps 200 steps

BANMo OursTarget BANMo OursGT BANMo CAMM RAC Ours

(b)(a)
Fig. 5: (a) Qualitative comparison on neural rendering results. (b) Qualitative com-
parison of the retargeted objects.

plicity, our results only visualize leaf bones, with bones sharing parents colored
in the same tint. As can be seen, our bones are aligned within the body, each
of which sufficiently covers the parts of the objects. Our coarse bones capture
the parts in a more broader context, e.g . the upper body of Samba, the wings of
Eagle. Our child bones in deeper levels sub-divide these coarse parts and repre-
sent finer motions at more specific components of the objects. This can be also
clearly seen in Fig. 7 (a), where bones assigned to the same parent exhibit strong
correlations in movements. In contrast, the resulting control points of BANMo
are scattered across the object surfaces without considering the structure and
the granularity of motions, resulting in difficulty of understanding and animat-
ing the 3D models. The bone hierarchy of our system provides organized control
points for the deformations, enhancing understanding of controls and a more
user-friendly manipulation experience.

4.3 Neural Rendering

We compare the rendered results with NeRF-based methods. For quantitative
evaluation, we measure the PSNR and SSIM scores between the rendered results
and the ground-truth images. As shown in Table 2, our method outperforms all
baselines across diverse categories of objects, demonstrating that our hierarchical
modeling of motion enhances rendering quality as well. Fig. 5 (a) illustrates the
rendering results on the Cat and Samba datasets. Evident in the detailed motion
of the arm (highlighted in the blue box), our method effectively captures intricate
movements, resulting in clearer RGB renderings.
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Table 3: Quantitative comparison
(CD) of the retargeted objects.

#steps 50 100 150 200
BANMo 2.75 2.03 1.90 1.86

Ours 2.15 1.93 1.83 1.75

Table 4: Ablation results on the number of videos.

#videos 1 vid 4 vids 8 vids
CD F2 CD F2 CD F2

CAMM 17.03 38.52 10.65 48.72 7.50 62.17
BANMo 10.28 47.70 11.34 45.20 7.22 64.99

Ours 9.92 52.29 7.05 62.34 6.15 72.07

Table 5: Quantitative ablation results on the number of depths and the regularization.

Bone reg. No reg. Sinkhorn Bone occupancy function
(#depths, #bones) (1, 6) (1, 24) (1, 6) (1, 24) (1, 6) (1, 12) (1, 24) (2, 12) (3, 24)

Samba CD 7.66 6.84 8.56 7.17 7.65 7.21 7.16 6.87 6.15
F2 61.38 67.66 57.23 65.67 61.93 63.78 65.41 66.76 72.07

Swing CD 8.96 8.37 9.60 8.39 9.27 9.37 8.83 7.74 7.11
F2 55.61 59.39 52.91 59.70 54.74 54.34 58.29 61.64 65.88

4.4 Reanimation

We further compare the reanimation capability and effectiveness of the learned
control points against BANMo [50]. To this end, we conduct optimization-based
motion retargeting experiments, following a previous work [43]. Given canoni-
cal shapes and corresponding bone parameters, the objective is to retarget the
pose of models to a new target pose through bone adjustments. Specifically, the
transform parameters of bones are optimized to minimize CD between predicted
and target shapes while preserving fixed canonical shape and skinning weights.
We rig the ground truth mesh of Samba and craft a sequence of 150 frames de-
picting a novel motion. We also provide results with various optimization steps
(per frame) to illustrate the speed at which we can achieve a target pose.

As shown in Fig. 5 (b), we achieve convincing results with fewer optimization
steps, thanks to our structured property that moves larger regions with similar
motion simultaneously. As the number of steps increases, the fine details of the
poses are further refined. In contrast, BANMo struggles with handling large mo-
tions (e.g., seating, as in the first pose), leading to collapsed body structures.
Table 3 presents a quantitative comparison of the retargeted objects. We outper-
form the baseline at all steps, particularly with a significant margin at a small
number of steps, implying better animating capability of our method.

4.5 Manipulation

We demonstrate the capability of our method in manipulating a diverse set of
objects. The core advantage of our approach is that it provides a coarse-to-fine
manipulation, providing easier manipulation for users. We deliver the example
results of the manipulation using our framework in Fig. 6. Thanks to our tree-
structured control points, we can animate various poses with a minimal number
of actions. For instance, we can animate the human and cat to sit using only
depth-1 bones (coarsest level), with total 5 movements. On the other hand,
the unstructured bones of BANMo necessitate independent manipulation of the
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Canonical Pose Manipulation 1 Manipulation 2 Manipulation 3

Fig. 6: Manipulation results on diverse categories of objects. The left side of each
column illustrates the depth 1 bones and their corresponding skinning weights, while
the right side shows the manipulated results.

No Regularization Sinkhorn BOF BOF + Hier

(b)

Depth 1 Depth 2 Depth 3

(a)

Fig. 7: (a) Visualization of the hierarchically structured bones at each depth. (b) Qual-
itative ablation results on the bone regularization terms.

bones to make the same pose, requiring total 25 movements. In addition, as
our deformation model gradually captures the coarse-to-fine structures of the
motions, we can flexibly add or delete some of the bones if necessary (Fig. 3). If
users want to add more control points on the tail of the cat, to better capture
detailed motions of it, it can be easily achieved by appending child bones to the
corresponding bone. Note that such dynamic control over the number of bones is
not feasible within the framework of BANMo, as its bones lack structure, making
it challenging to determine the locations of new bones. We refer to Supplement
for the results of dynamic addition and deletion of the bones.

4.6 Ablation Study

Hierarchical neural deformation model. We ablate our hierarchical neural
deformation model by gradually increasing the depths (#depths = 1, 2, 3). We
compare this to the models without our hierarchy system, which use the same
number of bones in one depth (#bones = 12, 24). As reported in Table 5, even
when using the same number of bones, the model with our hierarchy system
yields much improved quantitative results. This indicates that capturing coarse
motions at the beginning and progressively refining fine-grained movements is
more effective in optimizing motions. Such progressive procedure is more de-
picted in Fig. 7 (a). In the case of Samba, our system first assigns a single bone
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to the entire leg. As the depth increases, this coarse bone is sub-divided into
more specific parts, e.g . the calf and the foot, providing correlations between
bones with similar motions.
Bone Regularization. We then conduct the ablation on the bone regulariza-
tion terms. We compare our model with (1) the model without regularization
(No regularization) and (2) the model optimized with Sinkhorn divergence, as in
previous work [50]. To explore the effects more clearly, we compare these models
without our hierarchy system (#depths = 1). We deliver the results using 6 and
24 bones, which represent an insufficient and a sufficient number of bones to
capture the motions, respectively. Table 5 and Fig. 7 (b) present quantitative
and qualitative results. The model regularized with our bone mask loss achieves
better results compared to the Sinkhorn divergence loss. Interestingly, in some
cases, the model without regularization delivers the best results. Despite its
quantitative results, as shown in Fig. 7 (b), bones optimized without any reg-
ularization tend to float outside of the body, making it challenging to discern
which bone is responsible for a specific part. The bones regularized with our
bone regularization effectively captures motions while being more appropriately
placed, achieving improvement when combined with our hierarchy system.
Number of input videos. Finally, we investigate the performance with a lim-
ited number of videos. We compare the results on Samba by using a single video
(1 vid), a half number of videos (4 vids), and all videos (8 vids). As shown in
Table 4, we outperform baselines in all settings. BANMo suffers from correctly
reconstructing models when using fewer videos, due to the absence of struc-
tures in its control points. On the other hand, our method outperforms BANMo
(8 vids) with only using a half number of videos (4 vids), demonstrating the
robustness and effectiveness of our structured deformation model.

5 Discussion and conclusion

We presented a new framework for creating and animating 3D models, from a
set of casually captured videos. Our hierarchy neural deformation model pro-
vides a way to acquire structured bone representations, without exploiting prior
structural knowledge, thereby enabling the general applicability of our method.
Combined with the regularization based on the bone occupancy function, our
method facilitates easier and interpretable manipulation. Our approach allevi-
ates the requirements for obtaining animatable models of arbitrary objects, with
more comprehensive control points that truly function as “control points”.
Limitation and future works. While our structured deformation model pro-
vides connections between the bones having similar movements, we expect the
motions of the articulated objects can be better captured by the dynamic dis-
covery of joints and conjunction. Moreover, extending our framework to scenes
having multiple objects is a worth exploring subject, which we plan to resolve
in our future research.
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