PQ-SAM: Post-training Quantization for Segment Anything Model Supplementary Material

Xiaoyu Liu¹, Xin Ding¹, Lei Yu², Yuanyuan Xi², Wei Li², Zhijun Tu², Jie Hu², Hanting Chen², Baoqun Yin¹, and Zhiwei Xiong¹(⊠)

> ¹ University of Science and Technology of China {liuxyu,xinding64}@mail.ustc.edu.cn, zwxiong@ustc.edu.cn ² Huawei Noah's Ark Lab {wei.lee,zhijun.tu}@huawei.com

1 Results of the 8-bit quantization setting

 Table 1: Quantitative Results on the W8A8 Quantization Setting for the point prompt mode of SAM.

1	Method	l Bit	BBBC	C038V1	ND	D20 City	scape DO	ORS iSh	ape NDIS	SPark
			IoU	Dice	IoU	Dice IoU	Dice IoU	Dice \mid IoU	Dice IoU	Dice
ΗĮ	$_{\rm FP}$	-	0.7795	0.8500	0.8468	0.9100 0.5945	0.7061 0.8496	0.9126 0.3722	0.5108 0.8192	0.8938
12	Ours	8	0.7885	0.8605	0.8383	0.9044 0.5851	0.7011 0.8396	0.9051 0.3655	0.5077 0.8188	0.8943
귄	$_{\rm FP}$	-	0.7761	0.8476	0.8468	0.9075 0.5939	0.7068 0.8514	0.9138 0.3479	0.4856 0.8127	0.8893
ΓiΣ	Ours	8	0.7647	0.8365	0.8377	0.9034 0.5870	0.7012 0.8452	0.9091 0.3386	0.4780 0.8097	0.8873
٩I	FP	-	0.7666	0.8417	0.8322	0.9000 0.5692	0.6884 0.8294	0.8987 0.3536	0.4987 0.7933	0.8760
<u>Vi</u>	Ours	8	0.7368	0.8100	0.8211	0.8924 0.5645	0.6835 0.8374	0.9056 0.3466	0.4912 0.7950	0.8775

In Table 1, we present additional quantitative results for our PQ-SAM method using the 8-bit quantization setting. The results demonstrate that PQ-SAM achieves near-lossless quantization on the majority of the datasets, thereby effectively preserving the ability of SAM.

2 More visualization

In Figure 1 and Figure 2, we provide additional visual results for both the point prompt mode and automatic mode of our proposed method. These results demonstrate the superiority of our PQ-SAM method compared to existing PTQ methods in terms of segmentation performance.

X. Liu and X. Ding—Equal contribution. This research was conducted while Xiaoyu Liu and Xin Ding were interns at Huawei Noah's Ark Lab.

Fig. 1: Visual comparison of different PTQ methods for SAM's point prompt mode. The red block and green star represent the object to be segmented and the position of the prompt point, respectively.

Fig. 2: Visual comparison of different PTQ methods for SAM's automatic mode. The blue circle indicates segmentation errors.

In the point prompt mode, PQ-SAM effectively preserves SAM's understanding ability of the prompt guidance, resulting in accurate segmentation masks for the specific object. Similarly, in the automatic mode, PQ-SAM excels at preserving SAM's accurate segmentation capacity, leading to high-fidelity object boundaries. This further emphasizes the effectiveness of PQ-SAM in maintaining the precision and quality of the segmentation process.

We further give more qualitative results from SAM's bounding-box prompt mode in Figure 3.

Fig. 3: Visual comparison of different PTQ methods for SAM's bounding-box mode. The green circle indicates the bounding box prompts.

3 Analysis on the activation distribution before and after GADT

Fig. 4: Comparison of activation distributions before and after transformation by the proposed grouped activation distribution transformation (GADT).

As depicted in Figure 4, we present a visual comparison of the activation distribution for the output of the same transformer block of SAM's ViT-L version before and after applying the proposed grouped activation distribution transformation (GADT) technique based on the learned scaling and shifting sizes.

Prior to GADT, the activation values in each channel exhibited significant variations in their value ranges. However, after applying the GADT technique, the distribution of values in each channel becomes closer, which is friendly to the per-tensor distribution. More specifically, channels with small value ranges are linearly enlarged, while channels with larger value ranges are also linearly reduced.