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1 Training and Inference Details

During training, we apply data augmentation for image inputs with colour jitter,
horizontal flipping and random scaling between 0.5 and 2.0. We randomly crop
images to 512x512 pixels. We downsample the audio data to 16 kHz for durations
of 1 second [24] or 3 seconds [20] of the waveform on AVSBench and VPO.
Subsequently, the resampled audio sequence is processed through the Short-Time
Fourier Transform (STFT) using a 512 FFT length, a Hann window size of 400,
and a hop length of 160. This results in 96 x 256 and 300 x 256 magnitude
spectrograms on AVSBench and VPO, respectively. We use the AdamW [17]
optimizer with a weight decay of 0.0001 and a polynomial learning-rate decay
(1 — plter_)Power with power = 0.9. We set the initial learning rate to 0.0001
with a mini-batch size of 16 and 100 epochs training length. During inference,
we use the resized/or original resolution with a mini-batch size of 1. We set
temperature 7 as 0.1 and A as 0.5. We adopted ResNet-50 [9] image backbones
and a similar setting as [5] for the transformer decoder blocks in the segmentation
head. For the audio backbones, we use VGGish [10] (following [24]) and ResNet-

18 [9] (following [2,20]) for AVSBench and VPO, respectively.
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Fig.1: Ablation study on the weight coefficient A using the AVSBench-Semantics
dataset [23], with the ResNet50 [9] backbone.
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Table 1: Quantitative (mlIoU, Fg) audio-visual segmentation results (in %) on AVS-
Bench test sets [23, 24] (resized to 224x224) with PVT-V2-B5 [21] backbone. Best

results in bold, 2" best underlined. Improvements against the 2"¢ best are in the last
row.
Fval. Methods Method AVSBench-Object (SS)|AVSBench-Object (MS)|AVSBench-Semantics
mloU 1 Fs 1 mloU 1 Fs 1 mloU 1 Fs 1
TPAVI [24] 78.74 87.90 54.00 64.50 29.77 35.20
AVSBG [3] 81.71 90.40 55.10 66.80 - -
ECMVAE [19] 81.74 90.10 57.84 70.80 - -
DiffusionAVS [18]] 81.38 90.20 58.18 70.90 - -
CATR |[12] 81.40 89.60 59.00 70.00 32.80 38.50
Per-image AuTR [16] 80.40 89.10 56.20 67.20 - -
AQFormer [11] 81.60 89.40 61.10 72.10 - -
25,21 AVSegFormer [7] | 82.06 89.90 58.36 69.30 36.66 42.00
AVSC [14] 80.57 88.19 58.22 65.10 - -
BAVS [15] 81.96 88.60 58.63 65.49 32.64 36.42
AVSAC [3] 84.51 91.56 64.15 76.60 36.98 42.39
QsD [19] . . . - - .
COMBO [22] 84.70 91.90 59.20 71.20 42.10 46.10
Per-dataset 0] CAVP 87.33 93.61 67.31 78.09 48.59 61.97
CPM 91.26 95.43 68.41 79.09 55.08 69.01

Algorithm 1 Stability Score (STS)

# N: number of queries

: # C: number of classes

# fHungarian: Hungarian algorithm

# H(-): the function used to compute the negative entropy score

require: Training set D with D samples, model fy, class-agnostic query q, an
empty list R.

. # Get assigned labels for each sample and each query.

6
7: for (x;,y:) € D do
8.
9
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p = fo(x:)
: S’l = fHungarian(p) # Yyi: 1 x N
10: R.append(y;)
11: end for
12: # Concatenate all the assigned labels
13: R = Concat(R) # R: D x N
14: STS=0
15: # Iterate through all the classes and compute the average STS score.
16: for cin C do
17: sce= (R ==c¢).sum(0) # sc: 1 x N

18: s = clamp(s./sum(s.), min = le — 12, max = 1)
19: STS =STS+ H(s.)
20: end for

21: STS = STS/C

1.1 Additional Results

Results on Resized AVSBench We follow previous methods [4, 7,8, 11,
, 14-16, 18,19, 24] to evaluate our model with PVT-V2-B5 [21] backbone on
AVSBench-Objects (SS & MS) [24] and AVSBench-Semantics [23] with resized
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image resolution (224x224). The results in Tab. 1 show that we improve mIoU
by 3.93%, 1.10% and 6.49% on the respective benchmarks. Please note that
Tab. 1 includes two evaluation protocols. We employ standard semantic segmen-
tation protocols to compute both mIoU and Fj same as PascalVOC, initially
mentioned in [24].

Target Noise Target Pred

Target Pred

Fig. 2: Visualization of Audio Conditional Prompting (ACP) process on six samples
from the AVSBench-Semantics dataset [16] (two examples per row). Each example
includes a mixture of magnitude spectrogram (Mixed), noise beyond the visible range
(Noise), the ground-truth target (Target), and the prediction generated by the CPM
model (Pred).

Average Pooling Vs. Max Pooling We employed masked average pooling
(MAP) in our prompting-based contrastive learning (PCL) module to extract
correlated audio features. While an alternative option, masked max pooling
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Fig. 3: Qualitative audio-visual segmentation results on AVSBench-Semantics [23] by
TPAVI [24], AVSegFormer [7], CAVP [4] and our CPM. The prediction results can be
compared with the original frame and the ground truth (GT) of the first two rows of
each video.
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Per-pixel Classification Transformer
Methods | TPAVI [24]|CAVP [4] |AVSegFormer [7]|CPM
Training |48 h 22 h 23 h 30 h
Inference|9 fps 20 fps 7 fps 14 fps

Table 2: Efficiency comparison for training and inference on AVSBench-Semantic [16]
using a ResNet50 backbone at original resolution.

(MMP), may seem viable, we argue it is less effective due to its sensitivity to false
activation and incapability to capture spatially distributed information. To val-
idate our choice, we conducted an ablation study replacing MAP with MMP in
PCL during training and compared Fjz scores on AVSBench-Semantics [16]. The
results showed a 1.07% performance drop with MMP, indicating the effectiveness
of MAP.

1.2 Evaluation of Training and Inference Efficiency

We measure the overall training time and frame per second (FPS) required for
inference in Tab. 2. The experiments are conducted on the AVSBench-Semantic
(AVSS) dataset [23] using a ResNet50 backbone at the original resolution. During
inference, we evaluate models on 10 videos, sampling 100 frames per video (i.e., a
total of 10 x 100 frames) to compute the number of frames per second (FPS). The
results show that our CPM requires additional training time (e.g., +8 hours) and
has a slower inference speed (i.e., —6 fps) compared to CAVP. However, CPM
achieves a +7 fps faster inference speed than AVSegFormer for a similar model
architecture.

Hyper-parameter Analysis We further conduct an ablation study to investi-
gate the sensitivity of the hyper-parameter (A) on AVSBench-Semantics [16], as
depicted in Fig. 1. Our findings demonstrate that a moderate value of A is con-
ducive to model training, whereas excessively small values (A = 0.1) may result
in learning stagnation, and overly large weights (A = 1.0) could potentially be
influenced by noisy gradients during the initial stages of learning.

2 Pseudo-code for Stability Score

We present a detailed explanation of the computation methodology for the sta-
bility score STS, as outlined in Alg.1. The STS is calculated after each epoch
to evaluate the stability of the bipartite matching process through an average
entropy score across all classes. The entire process comprises two main steps. Ini-
tially, we gather all assigned labels (generated by the Hungarian Algorithm [1])
for each training sample. Subsequently, we iterate through all classes and com-
pute the respective STS based on the negative entropy of the probability distri-
bution of the assignments.
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3 Audio Conditional Prompting Visualisation

We show six training examples sourced from the AVSBench Semantics [16]
dataset, as depicted in Figure 2. The results demonstrate our successful uti-
lization of class conditional prompts to search for corresponding semantic infor-
mation within the perturbed magnitude spectrogram.

4 Video Visualisation

We present a qualitative comparison visualization among TPAVI [24], AVSeg-
Former [7], CAVP [1], and our CPM on AVSBench-Semantics in Fig. 3. Our
findings demonstrate that our method offers a more accurate approximation of
the true segmentation of objects in the scene compared to alternative methods.
For the demonstration of full video examples on AVSBench-Semantics, please
refer to the “video demo.mp4” file within the attached supplementary mate-
rials.
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